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Abstract In this paper some results on approximation by sub-matrix means of multiple
Fourier series in the Holder metric are obtained. Our results are applicable for a wider class
of sequences and give a better degree of approximation than those presented previously by oth-
ers.

1 Introduction

Let f(z,y) be an integrable in the sense of Lebesgue over the square [—m, 7] x [—m, 7| =
[~7,7]? and 27 periodic with respekt 2 and 3. We recall that the double Fourier series of the
function f(z,y) is defined by

oo o0

fz,y) ~ Z Z Amn, {amn €0S mx oS nY + by, SIN ML COS NY

m=1 n=1

4+ Cmn cOSME Sin Ny + diyy Sinma sinny |,

where
1/4, ifm=n=0,
Amn =1 1/2, ifm>0,n=0Vvm=0,n>0,
1, ifm>0,n>0,
and { o
Apn = —2/ f(u, v) cos mu cos nududv,
T -7 J -7
1 s s .
bmn = — f(u,v) sinmu cos nvdudv,
Q0 —mJ -7
1 s ™ .
Cmn = =5 / f(u,v) cos mu sin nvdudv,
™ —7mJ -7
L [/ [ . .
dmn = —5 f(u,v) sin mu sin nvdudv,
m —mJ -7
are the Fourier coefficients of the function f(z,y), form =0,1,2,... andn =0,1,2,....

The sequence {s, . (f;,y)}, %" represents the sequence of partial sums of the double

Fourier series which can be rewritten in integral form by

1 s us
Sm,n(xa y) = Sm,n(f;$7y) = p/ f(CL‘ +u,y+ U)Dm(u)Dn(v)dUdvv
where the Dirichlet’s kernel is defined by

(s+14)t

1 °. . sin
Dy(t) ::§+ E sinrt = 2sinl (s=1,2,...).
r=1
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Beyond this, let

m n
tm,n(x7 Zl/) = tm,n(f;A; B;xay) = Zzam,ibn,jsm,n(xay)a m,n > Oa
i—0 j=0

where A := (a,,,;) and B := (b, ;) are two lower triangular infinite matrices such that

>0, ifi<m Z’"
m,i — — . _ ’ '7 2011727"' d mizl’ L1
@m, {0, if i > m; (Z " ) " i=0 o -

and
>0, ifj<n -
i =1 - in=0,1,2,... d b, = 1. 1.2
g {0, it 0T ) an % g (1-2)
Next definition gives the notion of (A, B) summability of a double Fourier series (see [3]).
The double Fourier series of the function f(z,y) is said to be (A, B) summable to a finite
number s , if 7, (2, y) — s as m,n — oo. The conditions of regularity for double matrix
summability are given by

m n
E E G ibn; — 1 as m,n — oo,

i=0 j=0

n
m > " |ap,ibn ;| =0 foreach i=1,2,...,
m,n

J=0

m
lim " [an,ibn ;| =0 foreach j=1,2,....
m,n < 0

=

Now, we need to recall some notations and definitions.
The Holder (or Lipschitz) class H(, g (or Lip(c, 3)) contains continuous functions f(x,y)
27-periodic with respect to both variables x and y. It is defined by (see [2])

Ho,p) = {f t [f (2, 5:2,0) = |f(2,9) = f(z,0)| < K (Jz = 2[* + |y —w]”) }

for some «, 8 > 0 and for all z, y, z, w, where K is a positive constant which may depend on f,
but not on z,y, z,w. The H, g class is a Banach space with the norm ||(-)||(o ) defined by

1 ll@,s) = Ifllc+  sup AP (2, y;2,w),
T#z,yFw

where

« f Ivy;zaw
ACE f (.3 2,w) = |x_z<a+y_)'wﬁ, T E Uy F v,

by convention A9 f(x, y; 2, w) = 0 and

Iflle="" sup [f(z,y)]

(@,y)€[—m 7]

Throughout this paper, for two positive quantities v and v, we write u = O(v) instead of
u < Kwv, where K is an absolute positive constant.

In [2] the degree of approximation of the function f(z,y) belonging to Holder (Lipschitz)
class by matrix means of double Fourier series has been determined in consistency with the

norm H(')H(a,ﬁ)-
Let us reword that result:

Theorem 1.1 ([2]). Assume A := (am;) and B := (b, ;) are two lower triangular matrices,
where {a,,;} and {b, ;} are non-decreasing sequences with respect to i < m and j < n,
satisfying the conditions (1.1) and (1.2) respectively, and the double matrix method (A, B) is
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regular. If f(x,y) is a 2n-periodic function in x and y, Lebesgue integrable in [—r,7|*, and
belonging to the class H, g) for 0 < o, 3 < 1, then
1 1 .
— s t =5 if O0<a<l 0<g<l,
[t = Flla,p = O1) § e , (1.3)
10g('rr£+1+1>) + log<n(+l+l))7 lf o= B = 1,

forallm,n=0,1,2,....

In the same paper the little Lipschitz class lip(a, 8) has been defined too. Indeed, it said that
a function f(z,y) € lip(e, B) if

FEpawl
zozw—y [T — 2| + |y — w|?

)

uniformly in (z,y).

It already has been pointed out (see [2]) that for little Lipschitz class lip(«, 8),0 < a, 8 < 1,
analogous statement with Theorem 1.1 holds true when O(1) is replaced with o(1). Moreover,
the results mentioned so far are extended to multiple Fourier series as well.

For our purposes we need still some notations and notions.

A sequence ¢ := {c¢,} of nonnegative numbers tending to zero is called of Rest Bounded
Variation, or briefly c € RBV' S, if it has the property

o0

Z |Cn - cn+1| < K(C)Cm (14)

n=m

for all natural numbers m, where K (c) is a constant depending only on c (see [5]).
Let IF be an infinite subset of N and [F as range of strictly increasing sequence of positive
integers, say F = {\(n)}>,. The Cesaro sub-method C', is defined as

TL

(Cxz) Z (n=1,2,...),

k=

where {x;} is a sequence of real or complex numbers. Therefore, C-method yields a subse-
quence of the Cesaro method C and hence it is regular for any A. C)\-matrix is obtained by
deleting a set of rows from Cesaro matrix. The basic properties of C'y-method can be found in
[1] and [8].

More general means than C'y-means has been considered, see [6], and the following transfor-
mation has also been defined:

A(frsz) Za,\ se(fii2),

where (a,, ) is an infinite lower triangular regular matrix with non-negative entries with row
sums 1, and s, (f1; z) denotes the partial sums of the single Fourier series of the function f;.
Now we define the following trigonometric polynomials

Al
ti\n,n(f;xvy) = a)\(m),ib)\(n),jsi,j(f;‘Tay)a

i

A

B

~

n)

I
o
<.

Il
=}

where (a,, ;) and (b, ;) two lower triangular regular matrix satisfying the conditions (1.1) and
(1.2) respectively.

It is the main aim of this paper to prove an analogous statement as Theorem 1.1 metric using
the trigonometric polynomials tﬁln( fsx,y) instead of ¢,, ,(f;z,y) and instead of conditions
{am,;} and {b, ;} are non-decreasing sequences with respect to i < m and j < n we use
conditions {a,, ;} € RBV S and {b,, ;} € RBV S with respect to ¢ < m and j < n respectively.
Our technique used for the proof of our results has some in common with proofs in [2], but it
has also some differences. As we will see our results give sharper degree of approximation since
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those are not expressed simply in terms of m and n, but in terms of strict increasing sequences
A(m) and A\(n).
To do this we need next notations
1
¥(u,v) :=¥(z,y;u,v) = 1 [f(z+u,y+v)
+f(m+u,y—v)—I—f(x—u,y—i-v)—i-f(x—u,y—v)—4f(x,y)]
F(u,v) :=®(u,v) — ¥(u,v), where ®(u,v) := ¥(z, w;u,v),
/\z(n:)~ sin (k+ 3)t

C}\(’I’L)JC 3 t
=0 s 3

)

k
A)\(n)Jc ::ZE)\(H)J‘? Ké(t) =
r=0

™

where (¢, ) is a lower triangular regular matrix.
Closing this section, it should be noted here that if f € H, g, then

[F(u,0)| = O (|lz — 2| + |y —wl|’). (1.5)

Next section has been devoted to some helpful lemmas.

2 Auxiliary Lemmas

In this section we are going to prove some estimates for | K\ (¢)|, which we need afterwards for
the proofs of the main results.

Lemma 2.1. Let (¢, 1) be a lower triangular regular matrix with non-negative entries. Then for

1

K ()] = O(A(n) + 1).

Proof. Applying the elementary inequality sina < «, Jordan’s inequality sin 5 > % B for g €
[0, 5], and our assumptions, we have

1 _ sin (k+ 1) ¢
[Ka(8)] < o Ca(n),k (sintZ)
k=0 2
An) 1 A(n)
I~ (ke 1 _
< E g Cx(n),k ¢ < Z(Q)\(’IL) + 1) 2 Cx(n),k = O()\(n) + 1)

Lemma 2.2. Let (¢, ) be a lower triangular regular matrix with non-negative entries and
{¢n.x} € RBV S with respect to k. Then for W <t<m

A n),T
2] =0 ().

where T denotes the integer part of 1/t.

Proof. Using Jordan’s inequality sin 8 > % g for 8 € [0, 3], and our assumptions, we have

; A(n)
1 _ sin (k+ 3) t 1 _ o
A _ 2 i(k+3)t
|K ()] = oy kgzo CA(n)J@T < T I}:O Ca(n),x Ime (k+31)
A(n) A(n)

IN
R
Y

)
o]
o
P
2
e
&)
|
R
™
o
o
2
32
o
&)
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Similar to [9], see Lemma 2, we obtain

A(n)

Y Amae™| <

k=0

Z E/\(n),keikt 4

A(n)
Z E)\(n) k€ M
k=1

7—1

< ZE)‘(”)JC + 2’5/\(,1)7.,_ max

ist

=0 T<k<A(n
~ 1— ei(s+l)t
- A)\(n)’Til + 20/\(77,),7- x T<r/?<a§(n) W
45/\(71) T
< Axn),r—1 ’
MU T — cos )2 + (sint)?
2E/)\(n) T
= A/\(n),‘r 1 —
sin £
27‘-5)\ n),T
< A)\(n),‘rfl t( )

< A)\(n),‘rfl + 27T(T + I)E)\(n),‘r'

Since {¢, ;} € RBVS with respect to j, then for 0 < s < 7 we get

r < Z [Ex(n), () o1

(oo}

< |E)\(n),k - E)\(n),kﬂ | < K(C)EA(H),sv
k=s

SO Cx(n),r < K (€)Cx(n),s» and therefore

A(n)
T S R _
K (t)] < o > Emne™| < o (Axm),r—1 +27(7 + 1)exn),-)
k=0
1 T
<5 Axn)r—1 1 27Cx(n) Zl
s=0
1 A)\(n),‘r
< E (A)\(n)‘r 1+27TK ZC)\ ) = ( n )

3 Main Results

Theorem 3.1. Assume A := (a,, ;) and B := (b, ;) are two lower triangular matrices, where
{am,i} € RBV S and{b, ;} € RBV S with respect toi < m and j < n, satisfying the conditions
(1.1) and (1.2) respectively, and the double matrix method (A, B) is regular. If f(z,y) is a 27-
periodic function in x and y, Lebesgue integrable in [—m, )%, and belonging to the class H )
for0 < a,B <1, then

1 1 .
a+ 75 if O<a<l, 0<pB<l,
||t¢n_nf||<a,g>=0(1>{“?i%+1 A . 3.1)
, &wﬁ1»+ SM))% if a=g=1,

forallm,n=20,1,2,....
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Proof. Using the well-known equality

™ sin(s+ 3)t
——=dt =1 =1,2,...
/_,T 2sin % (s 250,

and some elementary calculations, we get

sij(frx,y) — f(z,y)

Based on (3.2) and the double matrix means ¢, ,,(f;,y) of s; ;(f;z,y), we can write

A(m) A
mn(fra,y) — ZZGA glsii(fimy) — fla,y)]

=0 j=0
_ w( ™) Al) b s1n(z—|— ) u-sin(j+ 1) dud
_7// MX;ZOA A T i udv

_ /0 ! /O "W, 0) K (w) K (0) dudo.

Firstly, we estimate the quantity |t;), ,,(f:z,y) — f(z,y) — [t), . (f32,w) — f(z,w)]|. Indeed,

o (Fiy) = F(@,y) = [thn(f12,0) = £(z,w)]]
/07r F(u,v) K (u) K (v)dudv

/Mm / 3.3)
/ / ) F(u,0)||Kpy, (u)|| K (v)|dudy
+1

( )

— ](1)n_|_[() +[(>

Using (1.5) and Lemma 2.1 twice, we have

/ / P, 0) 1K) ()| K2 (0) dud

:(’)[()\(m)—l—l)()\(n)—l—l)]/om /0ﬁ | F(u, 0)|dudv

=0 (Jz— 2|+ ]y —wl?).

(3.4)
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In order to estimate L(ﬁ)n we use Lemmas 2.1-2.2 and (1.5), which imply

%, / / F(u, 0)[| KX (0)|| K (0) | dudv

/Mm / Baw).1/2] g
v

B, 11/4]
v

O ja— 21 + 1y - w|)/] dv

A(n)+1

(>+IB>\
:O(|x—z|a—|—|y—w|ﬁ)/ ;) dt

™

a B)\n,)\n 1 Aln)+1
=0 (|z - 2| +|y—w|ﬁ)ﬁ/ dt

(3.5)

=0 (jo =21 +]y — wl?),

since 22 Ar:t is a monotone increasing function with respect to t € [L, A(n) + 1].
Usmg Lemmas 2.1-2.2 again and (1.5), we have proved that

10 :(9(|acfz|a—§—|y—w|ﬁ)7 (3.6)

as well as
I, =0 (lo— 2"+ |y —w|?). (3.7)
Inserting (3.4)-(3.7) into (3.3) we obtain

’ : —0(1). 3.8
:v#szl,lyp#w |z —2]* + |y — w|B (1) (3-8)

Now, it is clear that we can write

ltyn (fray) —

/‘{’uvK/\ (u) K (v)dudv

: </0 o /o v +/0 o / WI (3.9)
/ / / /)) (u, 0) | K, ()| K (v)  dud

7n)+l

J>+%g+mm+mg

Itis verified in [4] that if f € H(«, 8) then ¥ € H(a, B) as wellie. [¥(u,v)| = O (Jul* + [v|?).
Whence, using Lemma 2.1 we have

/ / B (u, 0)| [, (1) | KM (0) o

X [ XG0T 3.10
:O[()\(m)—i—l)()\(n)—{—l)]/o " /0( (u® + %) dudv G-10

=0 ((A\(m) + 1)+ (A(n) + 1)~*#
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Next, Lemmas 2.1-2.2 and [¥(u,v)| = O (Ju|* + |v|?) imply

A / P (u,0)[| K, (w) || K7 (v) | dudy

n)+l

/ / u —|—v ( Hl/v]dudv
v

n)+l

i -
/“ L du/ DA 1] g
0 b v

A(n)+1

[Mm)+u‘”*/; a db%Mm;+1/:

—a— 1 B)\(n) A(n)+1 Aln)+1 dt
1 ! : 7 ab
Ao+ 1+ S T T A 1 / 7

B {wJﬂw+um%Wv if 0<a<l,0<B<l,
- 1
)

+EOWED i 0<a <1, B=1,

B)\(n),v
v

since is a monotone increasing function with respect to ¢ € [%, A(n) + 1].

get
mn/ / W (u, 0)| [ ()| (0) | dudo
0

n A
/ /M u —i—v Alm )[l/u]dudv

m)+l

m),[1/u)dU

)\(n) +1 1

A(m)+1

T Axmliy , [T
+/ Alm),[1/ ]du/ ( 8 dwv
1 u 0

1 /\(’m)+l A}\ m).t
—Db— A m
+Wm+uﬁ1[ ﬁ>ﬁ]

_ 1 Axmy a1 M at —B-1
=0 D)+ 1| ST - A /7 )+ 1

1 1 .
:O{log((i?() (173: +)>()\(")+1)‘13’ ?f O<a<1, 0<B<1,

)\(m)+1 +()\(n)+l)/3’ lf O[ZI, 0<ﬂ§ 1

A(n)+1 B)\('n)
tB+1

V), u

Again, using Lemmas 2.1-2.2, [¥(u,v)| = O (|u|* + |v|?) and monotonicity of Arm

(3.

),u

Now, using only Lemma 2.2, [¥#(u,v)| = O (Ju|* + [v|”) and monotonicity of Arimiu

¢4

we

12)

and
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Byt w )
2. we obtain

T / / P (u, 0) || K, (u) | K, (0) [dudw

YCyEs

A B
—0 / . (u -+ o) AN 1] dudv]
B
o An) [1/2]
O/ / A)\(m),[l/u] v dudv
A(mHI n)+l
A
B—1 A(m),[1/4]
+/1 /1 By 10— dudv] (3.13)
X1 Y X+

A(m)+1 A/\ An)+1l B
_ (m),t A(n),s
_o[ [ At [ B,

™ ™

A(m)+1 Ay A(n)+1 B
(m),t An),s
+/¢ t dt,/i sl 0

1 1 .
- {1("%'(("& ) +>>(M”1)3émi< J+1)) ?f Peach0=i<l
Nom)+ + =X i a=p=1

Inserting (3.10)-(3.13) into (3.9) we obtain

1 1 :
+ 7, if O<a<l, 0<pB<,
tn(fr2.y) = f(2y)| = O {f B elr )
()\((n§> )+1) + g()\in()jt)l ))7 if a= B = 1.
Subsequently,
1 1 :
I62,0()  Fllc = {logmi(”";J T ¢ aogoy
’ A(m)+1 + A(n)+ , if a=g=1

With this the proof is completed.

Corollary 3.2. If a,,, ; = O] )+1’ Vi and b,
J € Hp for0 <a,p <1, is given by

m}

= /\(n) —1> VJ, then the degree of approximation of

I | .
+ if O<a<l, 0<g8<1
_ (A(m)+1)« [6) (n) +1)8> ) ;
[tmn = Fllas) = O(1) {log( ((2; m) 1) fog (;((n() M) g, (3.14)

forallm,n=20,1,2,....

Remark 3.3. Note that our results are sharper than those obtained in [2], since A(m) > m,

1 1 1 1
A(n) >nandfor0<a <1, 0< < 1hold ooiE < e A 5eE < Ganee

Remark 3.4. In particilar case, if we take A\(m) = m and A\(n) = n, we exactly obtain the results
proved in [2].

Corollary 3.5. If ayn.i = p;’%)_f’ Vi and by, ; = qgj: =, /j, then the degree of approximation of
f € Hop) for0 < a,B <1, is given by

1 1 .
+ if O<a<l, 0<p<l
A _ )+ A\(n)+1)B )
[N =l = O(1) {l(og((rrg)\(r)n) 1) Ji l)og(7)'r(A( )+1))
A( Aln

" (3.15
o i a=p=1, G-19)

m)+1

forallm,n=0,1,2,..., where

A . .
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Remark 3.6. If we take A(m) = m and A(n) = n in Corollary 3.5 we obtain Corollary 2.3 of
[2]. Even in this case our results are sharper as we discussed above.

Remark 3.7. The results obtained here can be extended to multiple Fourier series of three or
more dimensions.
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