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Abstract In this article we introduce the new modulus△′

X,φ(ε), for which we prove that in
the general case is different from the classical modulus of noncompact convexity. The main result
of the paper is showing the continuity of the modulus of noncompact convexity for arbitrary
minimalizable (strictly minimalizable) measure of noncompactness on arbitrary metric space.

1 Introduction

There are many ways to describe geometrical properties of Banach spaces. The most common
way is by defining the real function, so called modulus, which depends on the Banach space that
we consider. Usually, with modulus we define a proper constant or coefficient that is directly
related to the modulus. The value of the coefficient tells us more about the properties of the space.
The classical modulus of convexity, that was introduced by Clarkson [1], that defines uniformly
convex spaces is the origin for many other moduli that were introduced later. Similarly, the
property of uniform smoothness of Banach spaces was defined using the Lindenstrauss modulus
of smoothness [2]. Prus described the uniform Opial property of Banach spaces by using
Opial modulus [7]. Property of near uniform convexity of Banach spaces was defined by the
modulus of noncompact convexity, more precisely by Goebel-Sekowski, Banas and Dominguez-
Lopez moduli [9]. Analysis of the properties of the moduli and their characteristics additionally
contributes to understanding geometrical properties of the Banach spaces. In this way we get the
classification of Banach spaces and better connection with the theory of fixed point.
We know some results for some properties of the modulus△X,φ(ε) for an arbitrary (strictly)
minimalizable measure of noncompactnessφ and Banach spaceX with Radon-Nikodym property,
as well as the result for continuity of the modulus△X,φ(ε) [10], [11]. The result of the continuity
was a consequence of the result that Prus gave connecting continuity of the modulus△X,χ(ε) to
the uniform Opial condition which implies normal structure of the space [7].
In this paper, using the notion of theφ-minimal set, we define a new function, i.e. the new
modulus△′

X,φ(ε). Using properties of the new modulus, we prove continuity of the modulus of
noncompact convexity△X,φ(ε) on[0, φ(BX)), for arbitrary minimalizable (strictly minimalizable)
measure of noncompactnessφ and arbitrary metric spaceX .

1.1 Fundamental concepts and definitions

In this paperX denotes metric space,B(x, r) an open ball centered atx of radiusr andBX the
unit ball in X. If A ⊆ X we denote byA the closure of a setA and bycoA the convex hull ofA.

Definition 1.1.Let B be a family of bounded subsets ofX . We call the mappingφ : B →
[0,+∞) the measure of noncompactness defined onX if it satisfies the following :

(i) φ(B) = 0 if and only ifB is relatively compact set,

(ii) φ(B) = φ(B), for all B ∈ B,

(iii) φ(B1 ∪B2) ≤ max(φ(B1), φ(B2)), for all B1, B2 ∈ B.
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Some of well known measures of noncompactness are Kuratowski measureα,

α(A) = inf{ε > 0 | A can be covered by finitely many sets of diameter≤ ε} ,

Hausdorff measureχ,

χ(A) = inf{ε > 0 | A can be covered by finitely many balls of radius≤ ε} ,

and Istratescu measureβ,

β(A) = sup{r > 0 | A has an infiniter-separation} .

For more details on this measures see e.g. [8], [9].
The notion of aφ-minimal set for the measure of noncompactnessφ was introduced by Benavides
[5], while studying the relation between condensing operators for the Hausdorff and Kuratowski
measure of noncompactness.

Definition 1.2.Let X be a metric space and letB be a family of all bounded subsets ofX . The
infinite setA ∈ B is calledφ-minimal if φ(A) = φ(B) for every infinite setB ⊂ A.

We call a measure of noncompactnessφ a minimalizable measure of noncompactness if for every
infinite bounded setA and for everyε > 0 there exists a subsetB ⊂ A which isφ-minimal and
such thatφ(B) ≥ φ(A)−ε. A measureφ is a strictly minimalizable measure of noncompactness
if for every infinite, bounded setA there exists a subsetB ⊂ A, which isφ-minimal and such
thatφ(B) = φ(A). Clearly, every strictly minimalizable measure is a minimalizable measure
of noncompactness as well. See e.g. [8] and [9] for more on minimalizable measures of
noncompactness.

Definition 1.3. A modulus of noncompact convexity associated with an arbitrary measure of
noncompactnessφ is a function△X,φ : [0, φ(BX)] → [0,1] given by

△X,φ(ε) = inf{1− d(0, co(A)) | A ⊆ BX , φ(A) > ε}. (1.1)

Banas considered a modulus△X,φ(ε) for φ = χ, [6], while Goebel and Sekowski considered the
modulus of noncompact convexity associated with the Kuratowski measure α, [4]. For φ = β,
△X,β(ε) represents the Dominguez-Lopez modulus of noncompact convexity.

2 Introducing the new modulus

Definition 2.1.Let φ be arbitrary measure of noncompactness on a complete metric spaceX .
We define the function△′

X,φ : [0, φ(BX)] → [0,1] by

△′

X,φ(ε) = inf{1− d(0, co(A)) | A ⊆ BX , A φ-minimal, φ(A) > ε} .

The modulus△′

X,φ is a well defined function (see Theorem 1.2. [9]). In the general case, because
of the definition of infimum for an arbitrary measure of noncompactnessφ on an arbitrary metric
spaceX , we have that

△X,φ(ε) ≤ △′

X,φ(ε) . (2.1)

Theorem 2.2.Let φ be a strictly minimalizable measure of noncompactness on a metric space
(X, d). Then

△′

X,φ(ε) = △X,φ(ε) .

Proof. Let φ be a strictly minimalizable measure of noncompactness and letη > 0 be arbitrary.
For arbitraryε ∈ [0, φ(BX)], there existsA ⊆ BX , such thatφ(A) > ε and

△X,φ(ε) + η > 1− d(0, A).

Sinceφ is strictly minimalizable, there exists aφ-minimal setB ⊂ A, such thatφ(B) = φ(A).
Besides, we haveco(B) ⊆ co(A), so that

1− d(0, co(B)) ≤ 1− d(0, co(A)) < △X,φ(ε) + η.
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If we take the infimum over all theφ-minimal setsB, such thatφ(B) > ε, we get that

△′

X,φ(ε) ≤ △X,φ(ε) + η .

Since this holds for arbitraryη > 0, we have that

△′

X,φ(ε) ≤ △X,φ(ε) . (2.2)

Using (2.1) and (2.2) we get the required equality.

Theorem 2.3.Let φ be a minimalizable measure of noncompactness on a metric space (X, d).
Then we have that

△X,φ(ε) = △′

X,φ(ε) ,

for all ε ∈
[

0, φ(BX)
]

.

Proof. Let ε ∈
[

0, φ(BX)
]

andη > 0 be arbitrary. By the definition of the modulus△X,φ(ε),
there existsA∗ ⊆ BX , such thatφ(A∗) > ε and

△X,φ(ε) + η > 1− d(0, A∗) .

Let δ =
φ(A)− ε

2
> 0. Sinceφ is minimalizable, there exists aφ-minimal setB ⊂ A∗, such

that

φ(B) ≥ φ(A∗)− δ =
2φ(A) + ε

2
> ε

and
1− d(0, co(B)) ≤ △X,φ(ε) + η .

If we take the infimum over allφ-minimal setsB, such thatB ⊆ BX andφ(B) > ε, we have
that

△′

X,φ(ε) ≤ △X,φ(ε) + η .

Sinceη is arbitrary, we conclude that

△′

X,φ(ε) ≤ △X,φ(ε) . (2.3)

Using (2.1) and (2.3) we get the required equality.

Let X = lp (2 ≤ p < ∞) be the space ofp-summable sequences. Since everyα-minimal set
is β-minimal (Lemma 2.9 [9]), and measureβ is minimalizable measure of noncompactness on
the spacelp, by the explicit expressions for△lp,β(ε) (Theorem 1.16. [9]) and△lp,α(ε) (Remark
1.17. [9]), we have that

△′

lp,α
(ε) = inf{1− d(0, co(A)) | A ⊆ Blp , A α-minimal, α(A) > ε}

≥ inf{1− d(0, co(A)) | A ⊆ Blp , A β-minimal, β(A) > ε}

= △′

lp,β
(ε) = △lp,β(ε)

= 1− p

√

1−
εp

2

> 1− p

√

1−
( ε

2

)p

= △lp,α(ε) .

This confirms the fact that in (2.1) strict inequality can hold. This also justifies introducing the
new modulus.

Lemma 2.4.Let X be a separable metric space. Then we have that

△X,χ(ε) = △′

X,χ(ε) .
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Proof. Let ε ∈ [0, χ(BX)] be arbitrary. By the definition of the modulus of noncompactness, for
η > 0 there existsA ⊂ BX , such thatχ(A) > ε and

1− d(0, co(A)) < △X,χ(ε) + η .

Hence there exists aχ-minimal setB ⊂ A, such thatχ(A) = χ(B) ([5]). For the setB, we have
that the following inequalities hold

1− d(0, co(B)) ≤ 1− d(0, co(A)) < △X,χ(ε) + η .

If in the last relation we take the infimum over all theχ-minimal setsB, such thatχ(B) > ε, we
have that

△′

X,χ(ε) ≤ △X,χ(ε) + η .

Sinceη > 0 is arbitrary, we get
△′

X,χ(ε) ≤ △X,χ(ε) .

If we apply (2.1) for the measureχ, then by the last inequality, we get the result.

Relations between the moduli of noncompactness, associated with the standard measures of
noncompactnessα, χ andβ, and modulus of convexity are well known,

δX(ε) ≤ △X,α(ε) ≤ △X,β(ε) ≤ △X,χ(ε) , (2.4)

whereδX is the modulus of convexity. Since the measure of noncompactnessβ is minimalizable
on every complete metric space, by the Theorem2.3 we have that△X,β(ε) = △′

X,β(ε). If we
apply (2.1) for the measureχ, we get the following relations:

△X,α(ε) ≤ △′

X,β(ε) ≤ △′

X,χ(ε) .

Lemma 2.5.For the measures α and β we have that

△′

X,β(ε) ≤ △′

X,α(ε).

Proof. If A is anα-minimal set, thenA is also aβ-minimal set andα(A) = β(A). Furthermore,

△′

X,α(ε) = inf{1− d(0, co(A)) : A ⊆ BX , A α-minimal, α(A) > ε}

≥ inf{1− d(0, co(A)) : A ⊆ BX , A β-minimal, β(A) > ε}

= △′

X,β(ε).

If we assume thatα is a minimalizable measure of noncompactness on a spaceX , then by
the Lemma2.5we can more precisely formulate the relation between the moduli for considered
measuresα, β andχ. We have that

△′

X,β(ε) = △′

X,α(ε) ≤ △′

X,χ(ε) . (2.5)

Lemma 2.6.For the measures α and χ we have that

△′

X,α(ε) ≤ △′

X,χ(ε) (2.6)

Proof. Assume that there existsε0 ∈ [0, α(BX)), such that

△′

X,α(ε0) > △′

X,χ(ε0) .

By the definition of the modulus△′

X,χ(ε), there exists aχ-minimal setA∗ ⊂ BX , such that
χ(A∗) > ε0 and

△′

X,α(ε0) > 1− d(0, co(A∗)) .

Because of the property of the infimum, for allα-minimal setsA ⊂ BX , such thatα(A) > ε0

we have that
1− d(0, co(A)) > 1− d(0, co(A∗)) . (2.7)
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If we assume thatA∗ is α-minimal, then sinceα(A∗) ≥ χ(A∗) > ε0 holds, inequality (2.7) is
true for the setA∗, which is impossible. Therefore,A∗ is not anα-minimal set. This means that
there exists an infinite setB∗ ⊂ A∗, such thatα(B∗) < α(A∗). Since the setB∗ is bounded,
there exists a setC∗ ⊂ B∗ which isα-minimal.
Assuming thatα(C∗) > ε0 and applying (2.7) for the setC∗, we get that

1− d(0, co(C∗)) > 1− d(0, co(A∗)) ,

which is not possible sinceC∗ ⊂ A∗.
Assuming thatα(C∗) ≤ ε0 and since the setC∗ is a subset of theχ-minimal set, we have that

ε0 < χ(A∗) = χ(C∗) ≤ α(C∗) ≤ ε0 .

Once again this is a contradiction. We conclude that the initial assumption is notsustainable.

Using the Lemma2.5 and Lemma2.6we conclude that in the general case of the complete
metric spaceX , we have that

△′

X,β(ε) ≤ △′

X,α(ε) ≤ △′

X,χ(ε) .

Generally, using (2.1) and (2.4) we have that

δX(ε) ≤ △′

X,β(ε) ≤ △′

X,α(ε) ≤ △′

X,χ(ε) . (2.8)

Lemma 2.7.Let 1 ≤ p < ∞. If a bounded set is α-minimal in the lp space, then it is χ-minimal
in the lp space.

Proof. Let A ⊆ lp be anα-minimal set. This means that for all infinite subsetsB ⊆ A, we have

thatα(B) = α(A). Using Corollary 4.5 [9], we conclude thatα(A) = 2
1
pχ(A). Let B ⊆ A be

an arbitrary infinite set. Thenα(B) = α(A) andα(A) = 2
1
pχ(A). Since every setB is a subset

of theα-minimal set, the setB is α-minimal itself. So,α(B) = 2
1
pχ(B). Now we have that

2
1
pχ(B) = 2

1
pχ(A), i.e. χ(B) = χ(A). Since the setB is arbitrary, we conclude that the setA

is χ-minimal set.

The equalityα(A) = 2
1
pχ(A) holds for allA ⊂ lp in the lp spaces (1≤ p < ∞). So, if

the set isχ-minimal, it is alsoα-minimal. Since for 1< p < ∞ the spaceslp are reflexive,
measure of noncompactnessχ is minimalizable and equality△′

lp,χ
(ε) = △lp,χ(ε) holds. Since

the modulus△lp,χ(ε) is a subhomegenous function ([3]), we have that the modulus△′

lp,χ
(ε) is

also a subhomegenous function. Using Lemma2.7, in the case oflp spaces, the following holds:

△′

lp,α
(ε) = inf{1− d(0, co(A)) | A ⊆ Blp , A α-minimal, α(A) > ε}

= inf{1− d(0, co(A)) | A ⊆ Blp , A χ-minimal, χ(A) > 2−
1
p ε}

= △′

lp,χ
(2−

1
p ε)

≤ 2−
1
p△′

lp,χ
(ε)

< △′

lp,χ
(ε) .

This example shows that in the relation (2.6) we can have strict inequality.

Theorem 2.8.If the Kuratowski measure of noncompactness α is minimalizable on a complete
metric space X , then

∆X,α(ε) = ∆X,β(ε).

Proof. Sinceα is a minimalizable measure of noncompactness on a spaceX , using Theorem
2.2and Theorem2.3we have that∆X,α(ε) = ∆′

X,α(ε). Furthermore, sinceβ is a minimalizable
measure of noncompactness on every complete metric space (Theorem 2.10. [9]), we get that

∆′

X,β(ε) = ∆X,β(ε).
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Based on the above and Lemma2.5, we conclude that

∆X,α(ε) ≥ ∆X,β(ε). (2.9)

Using (2.4) and (2.9) we have that

∆X,α(ε) = ∆X,β(ε) ,

which proves the claim.

If we consider the assertion above in the contraposition, we can induce that if the moduli
associated with the measuresα andβ are different on some space, then the Kuratowski measure
α is not minimalizable. So,α is not strictly minimalizable on the space either. Since

∆lp,α(ε) = 1−
(

1−
(ε

2

)p)
1
p

6= 1−

(

1−
εp

2

)
1
p

= ∆lp,β(ε) ,

(Theorem 1.16. and Remark 1.17. , [9]) for p ≥ 2, we see that the measure of noncompactness
α is not minimalizable on the spacelp.
It is known that for Day spacesD1 andD∞ the following holds

∆D1(D∞),α(ε) = 1−

(

1−
( ε

2

)2
)

1
2

6= 1−

(

1−
ε2

2

)

1
2

= ∆D1(D∞),β(ε) ,

see [4]. So, we get that the measure of noncompactnessα is not minimalizable on these spaces.
Now we can define the characteristic for the modulus△′

X,φ,

ε′φ(X) = sup{ε | △′

X,φ(ε) = 0} ,

analogously to how the characteristic of the modulus of noncompact convexity was defined.
Because of (2.1), it is clear that the following holds

ε′φ(X) ≤ εφ(X) .

Due to (2.8), we have the relation between these characteristics

ε′χ(X) ≤ ε′α(X) ≤ ε′β(X) ≤ ε0(X) .

3 Main result

Theorem 3.1.Let (X, d) be a metric space and let φ be a measure of noncompactness on X .
Then the modulus △′

X,φ(ε) is a continuous function from below on [0, φ(BX)).

Proof. Let ε0 ∈ [0, φ(BX)) be arbitrary andε < ε0. For arbitraryη > 0 there existsφ-minimal
setA ⊂ BX , such thatφ(A) > ε and

1− d(0, co(A)) < △′

X,φ(ε) + η.

Let k = 1 +
1− d(0, A)

2
. Consider the setA∗ = kA ∩ BX ⊂ BX . A∗ is φ-minimal set, as a

subset of theφ-minimal setkA. Besides, we have that

φ(A∗) = φ(kA) = kφ(A) > kε,

and
1− d(0, co(A∗)) < 1− d(0, co(A)) < △′

X,φ(ε) + η.

Let δ = ε0

(

1−
1
k

)

. Then forε ∈ (ε0 − δ, ε0)

φ(A∗) > k(ε0 − δ) = ε0,
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holds and

inf{1− d(0, co(A∗)) : A∗ ⊂ BX , A∗ φ-minimal , φ(A∗) > ε0} ≤ △′

X,φ(ε) + η.

Sinceη is arbitrary, we conclude that

lim
ε→ε0−

△′

X,φ(ε) = △′

X,φ(ε0). (3.1)

Theorem 3.2.Let (X, d) be a metric space and let φ be a minimalizable measure of noncompactness
on X . The modulus △′

X,φ(ε) is a continuous function from above on [0, φ(BX)).

Proof. Let η > 0 andε0 ∈ [0, φ(BX)) be arbitrary and fixed. Using the definition of the modulus
△′

X,φ(ε0), we conclude that there exists aφ-minimal setA ⊆ BX , such thatφ(A) > ε0 and

1− d(0, co(A)) < △′

X,φ(ε) + η .

Let ξ > 0 be arbitrary. Sinceφ is a minimalizable measure of noncompactness, there exists a
φ-minimal setB ⊂ A, such that

φ(B) ≥ φ(A)− ξ .

But, since the setA is φ-minimal, we have thatφ(A) = φ(B). Let δ = φ(A) − ε0 and let
ε ∈ (ε0, ε0 + δ) be arbitrary. Due to

1− d(0, co(B)) < △′

X,φ(ε) + η ,

andφ(B) > ε, we have

inf{1− d(0, co(B)) : B ⊆ BX , B φ-minimal, φ(B) > ε} ≤ △′

X,φ(ε0) + η ,

or equivalently,
△′

X,φ(ε) ≤ △′

X,φ(ε0) + η .

Sinceη is arbitrary, we have that

lim
ε→ε0+

△′

X,φ(ε) = △′

X,φ(ε0), (3.2)

which proves that the modulus△′

X,φ(ε) is a continuous function from above on[0, φ(BX)).

Using Theorem3.1and Theorem3.2we conclude that the new modulus△′

X,φ(ε) associated
with the minimalizable measure of noncompactnessφ is a continuous function on[0, φ(BX)).
Hence, the modulus of noncompact convexity△X,φ(ε) is equal to the modulus△′

X,φ(ε) for the
minimalizable measure of noncompactnessφ and we get the following assertion.

Corollary 3.3. Let (X, d) be a metric space. The modulus △X,φ(ε) associated with the minimali-
zable measure of noncompactness φ is a continuous function on [0, φ(BX)).

Clearly, Corollary3.3also holds for the strictly minimalizable measure of noncompactness.
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