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Abstract In this article we introduce the new modulds, ,(¢), for which we prove that in
the general case is different from the classical modulus of noncompact convexity. The main result
of the paper is showing the continuity of the modulus of honcompact convexity for arbitrary
minimalizable (strictly minimalizable) measure of noncompactness on arbitrary metric space.

1 Introduction

There are many ways to describe geometrical properties of Banach spaces. The most common
way is by defining the real function, so called modulus, which depends on the Banach space that
we consider. Usually, with modulus we define a proper constant or coefficient that is directly
related to the modulus. The value of the coefficient tells us more about the properties of the space.
The classical modulus of convexity, that was introduced by Clarkgphat defines uniformly
convex spaces is the origin for many other moduli that were introduced later. Similarly, the
property of uniform smoothness of Banach spaces was defined using the Lindenstrauss modulus
of smoothness?]. Prus described the uniform Opial property of Banach spaces by usin
Opial modulus 7]. Property of near uniform convexity of Banach spaces was defigettieo
modulus of noncompact convexity, more precisely by Goebel-Sekowski, Banas and Dominguez-
Lopez moduli P]. Analysis of the properties of the moduli and their characteristics addiljona
contributes to understanding geometrical properties of the Banach spaces. In this way we get the
classification of Banach spaces and better connection with the theory of fixed point.

We know some results for some properties of the modulus, (<) for an arbitrary (strictly)
minimalizable measure of noncompactnéssid Banach space with Radon-Nikodym property,

as well as the result for continuity of the modulss (<) [10], [11]. The result of the continuity

was a consequence of the result that Prus gave connecting continuity of the madulis) to

the uniform Opial condition which implies normal structure of the spage [

In this paper, using the notion of teminimal set, we define a new function, i.e. the new
modulusAy (). Using properties of the new modulus, we prove continuity of the modulus of
noncompact convexits x () on[0, ¢(Bx)), for arbitrary minimalizable (strictly minimalizable)
measure of noncompactnessind arbitrary metric spack.

1.1 Fundamental concepts and definitions

In this paperX denotes metric spacé(x, ) an open ball centered atof radiusr and Bx the
unit ball in X. If A C X we denote by the closure of a set and bycoA the convex hull ofA.

Definition 1.1.Let B be a family of bounded subsets af. We call the mapping : B —
[0, +00) the measure of noncompactness definedhit satisfies the following :

(i) ¢(B)=0if and only if B is relatively compact set,
(i) ¢(B) = ¢(B),forall B € B,
(iii) ¢(B1U Bz) < max(¢(B1), ¢(B2)), forall By, B, € B.
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Some of well known measures of noncompactness are Kuratowslsuresy,
a(A) = inf{e > 0] A can be covered by finitely many sets of diametere} ,
Hausdorff measurg,
x(A) = inf{e > 0| A can be covered by finitely many balls of radius ¢} ,
and Istratescu measufe
B(A) = sup{r > 0| A has an infinite--separatiof .

For more details on this measures see [ 9].

The notion of a»-minimal set for the measure of noncompactngess introduced by Benavides
[5], while studying the relation between condensing operators for the ldetiadd Kuratowski
measure of noncompactness.

Definition 1.2. Let X be a metric space and IBtbe a family of all bounded subsets &f The
infinite setA € B is calledg-minimal if $(A) = ¢(B) for every infinite setB C A.

We call a measure of noncompactngssminimalizable measure of noncompactness if for every
infinite bounded setl and for every: > 0 there exists a subsgt ¢ A which is¢-minimal and
such thaty(B) > ¢(A) —e. A measurep is a strictly minimalizable measure of noncompactness
if for every infinite, bounded set there exists a subsé&t C A, which is¢-minimal and such
that¢(B) = ¢(A). Clearly, every strictly minimalizable measure is a minimalizable measure
of noncompactness as well. See e.@] dnd [9] for more on minimalizable measures of
noncompactness.

Definition 1.3. A modulus of noncompact convexity associated with an arbitrary measfur
noncompactnessis a functionAx , : [0, ¢(Bx)] — [0, 1] given by

AX7¢(E) = |nf{1 — d(O, CO(A)) | AC Ex, ¢(A) > E}. (11)

Banas considered a modulsy 4 () for ¢ = x, [6], while Goebel and Sekowski considered the
modulus of noncompact convexity associated with the Kuratowski measy4]. For ¢ = S,
Ax g(e) represents the Dominguez-Lopez modulus of noncompact convexity.

2 Introducing the new modulus

Definition 2.1.Let ¢ be arbitrary measure of noncompactness on a complete metric Zpace
We define the functiod\’y ; : [0, ¢(Bx)] — [0, 1] by

Al 4(e) =inf{1—d(0,co(A)) | A C Bx, A ¢-minimal, $(A) > e} .

The modulus\y ; is awell defined function (see Theorem 1 9)[ In the general case, because
of the definition of infimum for an arbitrary measure of noncompactnessan arbitrary metric
spaceX, we have that

Dx,p(e) < Dy 4(e) - (2.1)

Theorem 2.2.Let ¢ be a strictly minimalizable measure of noncompactness on a metric space
(X,d). Then
Ny p(e) = Dxg(e) -

Proof. Let ¢ be a strictly minimalizable measure of noncompactness ang3e0 be arbitrary.
For arbitrarye € [0, ¢(Bx)], there existsA C Bx, such thaty(A) > ¢ and

Ax,¢(e) +n>1-d(0,A).

Since¢ is strictly minimalizable, there exists@aminimal setB C A, such thaty(B) = ¢(A).
Besides, we haven(B) C co(A), so that

1-4d(0,co(B)) <1—-4d(0,co(A)) < Ax,4(e) + 1.
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If we take the infimum over all the-minimal setsB, such thats(B) > ¢, we get that
Ay o(e) < Dxgle) +1.
Since this holds for arbitrary > 0, we have that
N o) < Bxgle). (22)
Using 2.1) and @.2) we get the required equality. ]

Theorem 2.3.Let ¢ be a minimalizable measure of noncompactness on a metric space (X, d).
Then we have that

Dxg(e) = D y(e)
forall = € [0,¢(Bx)].

Proof. Lete € [0,¢(Bx)] andn > 0 be arbitrary. By the definition of the modulusy 4 (<),
there existsA* C By, such that(A*) > ¢ and

AX7¢(E) +n> 1- d(O, A*) .

that

> 0. Since¢ is minimalizable, there exists@minimal setB ¢ A*, such

o(B) = o4 -5 = 2L

and
1-4d(0,co(B)) < Ax,4(e)+1.

If we take the infimum over alb-minimal setsB, such thatB C By and#(B) > ¢, we have
that

Ny p(e) < Dxple) +1.
Sincen is arbitrary, we conclude that
Ny 4(e) < Dxgle) - (2.3)
Using .1) and @.3) we get the required equality. O

Let X =1, (2 < p < o) be the space g-summable sequences. Since eveminimal set
is s-minimal (Lemma 2.99]), and measurg is minimalizable measure of noncompactness on
the spaceé,, by the explicit expressions fak;, s(¢) (Theorem 1.16.9]) andA;, . (e) (Remark
1.17. B]), we have that

Ay o) =inf{1—d(0,co(A)) | AC By, Aa-minimal, a(A) > ¢}
> inf{1—d(0,co(A)) | AC B;,, A p-minimal, 3(A) > ¢}
= A;,,,B(s) = Ay, 5(e)
p €p
=1-{/1-5
e\P
>1- ¢/1- (E) Al ol€)

This confirms the fact that ir2(1) strict inequality can hold. This also justifies introducing the
new modulus.

Lemma 2.4.Let X be a separable metric space. Then we have that

Axx(e) = D, (e) -
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Proof. Lete € [0, x(Bx)] be arbitrary. By the definition of the modulus of noncompactness, for
n > 0 there existsd C Bx, such thaty(A) > ¢ and

1-4d(0,co(A)) < Ax(e)+1n.

Hence there exists@minimal setB c A, such thaty(A) = x(B) ([5]). For the setB, we have
that the following inequalities hold

1-d(0,co(B)) <1—d(0,co(A)) < Ax(e)+n.

If in the last relation we take the infimum over all theminimal setsB, such thaty(B) > ¢, we
have that
Ny (€) < Axx(e) +n.

Sincen > 0 is arbitrary, we get
Dy (e) < Dxx(e) -
If we apply @.1) for the measurg, then by the last inequality, we get the result. ]

Relations between the moduli of noncompactness, associated with tharstamebsures of
noncompactness, y ands, and modulus of convexity are well known,

ox(e) < Axale) < Dxple) < Ax (o), (2.4)

whered yx is the modulus of convexity. Since the measure of noncompactniessinimalizable
on every complete metric space, by the Theo&Bwe have thath x 5(c) = Ay 4(e). If we
apply @.1) for the measurg, we get the following relations:

Axale) < Oy gle) < A\ (o) -
Lemma 2.5.For the measures o and 3 we have that
DNy p(e) < Dy o (e)-
Proof. If A isana-minimal set, therd is also a3-minimal set andv(A) = 3(A). Furthermore,
Ay (e) =inf{1—d(0,co(A)): AC Bx, Aa-minimal, a(A) > ¢}
>inf{1—d(0,co(A)): AC Bx, A jB-minimal, 5(A) > ¢}
O

If we assume that is a minimalizable measure of noncompactness on a spat¢ken by
the Lemma2.5we can more precisely formulate the relation between the moduli for cenesid
measures, S andy. We have that

Ny ple) = Ay o(e) < Ay (e) - (2.5)
Lemma 2.6.For the measures o and y we have that
Ay ale) < Dy (6) (2.6)
Proof. Assume that there exists € [0, «(Bx)), such that
Ny o (g0) > Ay (e0) -

By the definition of the modulug\’y | (¢), there exists &-minimal setA* C By, such that
x(A4*) > o and
Ay (e0) > 1 —d(0,co(A)) .

Because of the property of the infimum, for alminimal setsA C Bx, such thatv(A) > ¢
we have that
1—d(0,co(A)) >1—d(0,co(A")) . (2.7)
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If we assume thatl* is a-minimal, then sincex(A4*) > x(A*) > ¢ holds, inequality 2.7) is
true for the setd*, which is impossible. Thereforel* is not ana-minimal set. This means that
there exists an infinite sé* c A*, such thatn(B*) < «(A*). Since the seB* is bounded,
there exists a s&t* c B* which isa-minimal.

Assuming thaty(C*) > e and applying 2.7) for the setC*, we get that

1—d(0,co(C*)) >1—d(0,co(A")),

which is not possible sino€* c A*.
Assuming thaty(C*) < ¢o and since the set* is a subset of thg-minimal set, we have that

g0 < X(A") =x(C") < a(C") < 0.
Once again this is a contradiction. We conclude that the initial assumptionssisiatinable. o

Using the Lemma&.5and Lemma2.6 we conclude that in the general case of the complete
metric spaceX, we have that

Ny p(e) < Dy ole) < D\ (o) -

Generally, using4.1) and @.4) we have that
0x(e) < A g(e) < Ay o(e) < Ay () - (2.8)

Lemma 2.7.Let 1 < p < co. If a bounded set is a-minimal in the [, space, then it is x-minimal
inthel, space.

Proof. Let A C [, be ana-minimal set. This means that for all infinite subsBts- A, we have
thata(B) = a(A). Using Corollary 4.59], we conclude that(A4) = 27 x(A). Let B C A be

an arbitrary infinite set. Then(B) = a(A4) anda(A) = Z%X(A). Since every seB is a subset
of the a-minimal set, the seB is a-minimal itself. So,a(B) = Z%X(B). Now we have that

Z%X(B) = Z%X(A), i.e. x(B) = x(A). Since the seB is arbitrary, we conclude that the sét
is xy-minimal set. O

The equalitya(4) = Z%X(A) holds for allA c [, in thel, spaces (I< p < o). So, if
the set isy-minimal, it is alsoa-minimal. Since for 1< p < oo the space$, are reflexive,
measure of noncompactnegss minimalizable and equality; | () = Ay, 4 (¢) holds. Since

the modulus?;, () is a subhomegenous functior8j), we have that the modulus’ (e)is
also a subhomegenous function. Using Lenm&in the case of, spaces, the foIIowmg holds:

Ay o(e) =inf{1—d(0,co(A)) | A C By,, A a-minimal, a(4) > ¢}
—inf{1—d(0,co(A)) | A C By, A x-minimal, y(A) > 2 »e}
=/ X(27%5)
<27 (e
<A L (e)
This example shows that in the relatidgh®) we can have strict inequality.

Theorem 2.8.1f the Kuratowski measure of honcompactness « is minimalizable on a complete
metric space X, then

AX’Q(E> == Ax’g(&?).

Proof. Sincea is a minimalizable measure of noncompactness on a sgaaesing Theorem
2.2and Theoren2.3we have thal\x . (¢) = Al ,(¢). Furthermore, sincg is a minimalizable
measure of noncompactness on every complete metric space (irh2d@ P]), we get that

Ay 5(e) = Dx p(e).
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Based on the above and Lemi2&, we conclude that

Ax.o(g) > Dx 5(e). (2.9)
Using 2.4) and .9 we have that

Ax,a(e) = Dxp(e),
which proves the claim. ]

If we consider the assertion above in the contraposition, we can inducd tha moduli
associated with the measuresandg are different on some space, then the Kuratowski measure
a is not minimalizable. Say is not strictly minimalizable on the space either. Since

Bl =1- (1= (5)") #1- (1— %) =By, 5(2)

(Theorem 1.16. and Remark 1.179])[for p > 2, we see that the measure of noncompactness
« is not minimalizable on the spaég
It is known that for Day space®; and D, the following holds

9 62

2\ ? 2
Boupma®) =1 (1-(5)) 21 (1-F) = Bounarse).

see f]. So, we get that the measure of noncompactaeisnot minimalizable on these spaces.
Now we can define the characteristic for the modulys ;,

ey(X) = supe | Ay 4(e) = O},

analogously to how the characteristic of the modulus of noncompacegiywas defined.
Because 0fZ.1), itis clear that the following holds

ep(X) S ep(X).
Due to .8), we have the relation between these characteristics

LX) < <4 (X) < Eh(X) < <ol X)

3 Main result

Theorem 3.1.Let (X, d) be a metric space and let ¢ be a measure of noncompactness on X .
Then the modulus Ay, (¢) isa continuous function from below on [0, ¢(Bx)).

Proof. Leteg € [0, ¢(Bx)) be arbitrary and < 0. For arbitraryn > 0 there existg-minimal
setA C By, such thaty(A) > ¢ and

1—-d(0,co(A)) < Ay 4(e) + .
1-d(0, A) . - - . .
Letk = 1+ ———"—~=. Consider the setli* = kAN By C Byx. A* is ¢-minimal set, as a
subset of the>-minimal setk A. Besides, we have that
¢(A7) = ¢(kA) = ko(A) > ke,

and
1-d(0,co(A*)) < 1—d(0,co(A)) < Ay 4(e) +n.

1
Letd =¢p (1 — E) Then fore € (eg — §,¢0)

P(A*) > k(eo — 9) = eo,
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holds and
inf{1—d(0,co(A*)) : A* C Bx, A* ¢-minimal, p(A*) > eo} < Ay 4(¢) + 1.
Sincen is arbitrary, we conclude that

lim Ay ,(e) = Ak 4(€0). (3.1)

E—EQ—

O

Theorem 3.2.Let (X, d) beametric space and let ¢ be a minimalizable measure of noncompactness
on X. Themodulus Ay 4(e) isa continuous function from above on [0, ¢(Bx)).

Proof. Letn > 0andso € [0, ¢(Bx)) be arbitrary and fixed. Using the definition of the modulus
Ay 4(€0), we conclude that there existgaminimal setA C B, such thaty(A4) > ¢, and

1—-d(0,co(A)) < Ay 4(e) + 1.

Let ¢ > O be arbitrary. Since is a minimalizable measure of noncompactness, there exists a
¢-minimal setB C A, such that

p(B) > p(A) — €.

But, since the setl is ¢y-minimal, we have that(A) = ¢(B). Letd = ¢(A) — o and let
e € (e0,e0 + 0) be arbitrary. Due to

1-4d(0,co(B)) < A/X,¢(5> +n,
and¢(B) > e, we have
inf{1—d(0,co(B)) : B C Bx,B ¢-minimal, ¢(B) > e} < Aly 4(e0) + 1,

or equivalently,
o) < O 4(e0) + 1.
Sincen is arbitrary, we have that
lim Al () = A y(c0), (3.2)

e—eo+
which proves that the modulus’y ,(¢) is a continuous function from above @ ¢(Bx)). O

Using Theoren8.1and Theoren8.2we conclude that the new modulds, , (<) associated

with the minimalizable measure of noncompactness a continuous function of0, ¢(Bx)).
Hence, the modulus of noncompact convexity , (<) is equal to the modulua'y ,(¢) for the
minimalizable measure of noncompactnesend we get the following assertion.

Corollary 3.3. Let (X, d) beametric space. Themodulus A x (=) associated with the minimali-
zable measure of noncompactness ¢ is a continuous function on [0, ¢(Bx)).

Clearly, Corollary3.3also holds for the strictly minimalizable measure of noncompactness.
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