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Abstract In this paper, semi-invariant submanifolds of an almost α-cosymplectic f -manifold 
endowed with a semi-symmetric non-metric connection are studied. Necessary and sufficient 
conditions are given on a submanifold of an almost α-cosymplectic f -manifold to be semi-
invariant submanifold with semi-symmetric non-metric connection. Moreover, we studied the in-
tergrability condition of the distribution on semi-invariant submanifolds of an almost α-cosymp-
lectic f -manifold with semi-symmetric non-metric connection.

1 Introduction

The notion of CR-submanifold of a Kaehler manifold was introduced by Bejancu [6]. Later, 
semi-invariant (or contact CR-) submanifolds of a Sasakian manifold was studied by Shahid, 
Sharfuddin and Husain [20], Kobayashi [14], Matsumoto [17] and many others. Submanifolds 
of cosymplectic manifold have been studied by Ludden [16], A. Cabras, A.Ianus and G.H. Pitis 
[11]. Later, the subject was considered for Riemannian manifolds with an almost contact struc-
ture. In this sense A. Bejancu and N. Papaghiuc study semi-invariant submanifolds of a Sasakian 
manifold or Sasakian space form ([7], [8], [18], [19] ) and M. A. Akyol, C. L. Bejan and A. 
Cabras et.al. study on cosymplectic manifolds in ([2], [5], [10]). B. B. Sinha and R. N. Yadav 
studied the integrable conditions of distributions and the geometry of leaves on a semi-invariant 
submanifolds in a Kenmotsu manifold [21].

In [13] Friedmann and Schouten introduced the notion of semi-symmetric linear connections. 
More precisely, if ∇ is a linear connection in a differentiable manifold M, the torsion tensor T 
of ∇ is given by T (X, Y ) = ∇XY − ∇XY − [X, Y ], for any vector fields X  and Y  on M . The 
connection ∇ is said to be symmetric if the torsion tensor T vanishes, otherwise it is said to be 
non-symmetric. In this case, ∇ is said to be a semi-symmetric connection if its torsion tensor 
T is of the form T (X, Y ) = η(Y )X − η(X)Y, for any X, Y ∈ Γ(TM), where η is a 1-form 
on M. Moreover, if g is a (pseudo)-Riemannian metric on M, ∇ is called a metric connection 
if ∇g = 0, otherwise it is called non-metric. We also refer some papers ([3], [4]) related to the 
notion of semi-symmetric non-metric connections.

In 2014, Öztürk et.al. introduced and studied almost α-cosymplectic f -manifold [1] defined 
for any real number α which is defined a metric f -manifold with f -structure (ϕ, ξi, ηi, g) satis-
fying the condition dηi = 0, dΩ = 2αη ∧ Ω.

The paper is organized as follows: In section 2, we give basic formulas and definitions for 
almost α-cosymplectic f -manifolds. In section 3, we defined almost α-cosymplectic f -manifold 
with a semi-symmetric non-metric connection and we obtained some basic results for semi-
invariant submanifolds of almost α-cosymplectic f -manifold with a semi-symmetric non-metric 
connection. In last section, we obtained some necessary and sufficient conditions for integrability 
of certain distributions on semi-invariant submanifolds of almost α-cosymplectic f -manifold 
with a semi-symmetric non-metric connection.



2 Selahattin Beyendi, Nesip Aktan and Ali I. Sivridağ

2 Preliminaries

Let M̃ be a real (2n+s)-dimensional framed metric manifold [15] with a framed (ϕ, ξi, ηi, g), i ∈
{1, ..., s}, that is, ϕ is a non-vanishing tensor field of type (1,1) on M̃ which satisfies ϕ3 +ϕ = 0
and has constant rank r = 2n; ξ1, ..., ξs are s vector fields; η1, ..., ηs are 1-forms and g is a
Riemannian metric on M̃ such that

ϕ2 = −I +
s∑
i=1

ηi ⊗ ξi (2.1)

ηi(ξj) = δij , ϕ(ξi) = 0, ηioϕ = 0, (2.2)

ηi(X) = g(X, ξi), (2.3)

g(X,ϕY ) + g(ϕX, Y ) = 0, (2.4)

g(ϕX,ϕY ) = g(X,Y )−
s∑
i=1

ηi(X)ηi(Y ) (2.5)

for all X,Y ∈ Γ(TM̃) and i, j ∈ {1, ..., s}. In above case, we say that M̃ is a metric f -manifold
and its associated structure will be denoted by M̃(ϕ, ξi, ηi, g) [15].
A 2-form Ω is defined by Ω(X,Y ) = g(X,ϕY ), for any X,Y ∈ Γ(TM̃), is called the funda-
mental 2-form. A framed metric structure is called normal [15] if

[ϕ,ϕ] + 2dηi ⊗ ξi = 0

where [ϕ,ϕ] is denoting the Nijenhuis tensor field associated to ϕ. Throughout this paper we
denote by η = η1 + η2 + ...+ ηs, ξ = ξ1 + ξ2 + ...+ ξs and δ

j

i = δ1
i + δ2

i + ...+ δsi . In the sequel,
from [1] we give the following definition.

Definition 2.1. Let M̃(ϕ, ξi, ηi, g) be a (2n+s)-dimensional a metric f -manifold for each ηi, (1 ≤
i ≤ s) 1-forms and each 2-form Ω, if dηi = 0 and dΩ = 2αη∧Ω satisfy, then M̃ is called almost
α-cosymplectic f -manifold [1].

Let M̃ be an almost α-cosypmlectic f -manifold. Since the distribution D is integrable, we
haveLξiηj = 0, [ξi, ξj ] ∈ D and [X, ξj ] ∈ D for anyX ∈ Γ(D). Then the Levi-Civita connection
is given by:

2g(( ˜̃∇Xϕ)Y, Z) = 2αg

(
s∑
i=1

(g(ϕX, Y )ξi − ηi(Y )ϕX), Z

)
(2.6)

+ g(N(Y, Z), ϕX)

for any X,Y ∈ Γ(TM̃). Putting X = ξi we obtain ∇̃ξiϕ = 0 which implies ∇̃ξiξj ∈ D⊥ and

then ˜̃∇ξiξj = ˜̃∇ξjξi, since [ξi, ξj ] = 0.

We put AiX = − ˜̃∇Xξi and hi = 1
2(Lξiϕ), where L denotes the Lie derivative operator. If M̃ is

almost α-cosymplectic f -manifold with Kaehlerian leaves [12], we have

(
˜̃∇Xϕ)Y =

s∑
i=1

[
−g(ϕAiX,Y )ξi + ηi(Y )ϕAiX

]
or

(
˜̃∇Xϕ)Y =

s∑
i=1

[
α
(
g(ϕX, Y )ξi − ηi(Y )ϕX

)
+ g(hiX,Y )ξi − ηi(Y )hiX

]
. (2.7)
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Proposition 2.2. ([1]) For any i ∈ {1, ..., s} the tensor field Ai is a symmetric operator such that

(i) Ai(ξj) = 0, for any j ∈ {1, ..., s}

(ii) Aioϕ+ ϕoAi = −2αϕ

(iii) tr(Ai) = −2αn

(iv) ˜̃∇Xξi = −αϕ2X − ϕhiX.

Proposition 2.3. ([9]) For any i ∈ {1, ..., s} the tensor field hi is a symmetric operator and
satisfies

(i) hi(ξj) = 0, for any j ∈ {1, ..., s}

(ii) hioϕ+ ϕohi = 0

(iii) trhi = 0

(iv) tr(ϕhi) = 0.

Let M̃ be an almost α-cosymplectic f -manifold with respect to the curvature tensor field ˜̃R
of ˜̃∇, the following formulas are proved in [1], for all X,Y ∈ Γ(TM̃), i, j ∈ {1, ..., s}.

˜̃
R(X,Y )ξi = α2

s∑
k=1

(ηk(Y )ϕ2X − ηk(X)ϕ2Y ) (2.8)

− α

s∑
k=1

(ηk(X)ϕhkY − ηk(Y )ϕhkX)

+ (
˜̃∇Y ϕhi)X − (

˜̃∇Xϕhi)Y,
˜̃
R(X, ξj)ξi =

s∑
k=1

δkj (α
2ϕ2X + αϕhkX) (2.9)

+ αϕhiX − hihjX + ϕ(
˜̃∇ξjhi)X,

˜̃
R(ξj , X)ξi − ϕR̃(ξj , ϕX)ξi = 2(−α2ϕ2X + hihjX). (2.10)

Moreover, by using the above formulas, in [1] it is obtained that

˜̃
S(X, ξi) = −2nα2

s∑
k=1

ηk(X)− (divϕhi)X (2.11)

˜̃
S(ξi, ξj) = −2nα2 − tr(hjhi) (2.12)

for allX,Y ∈ Γ(TM̃), i, j ∈ {1, ..., s},where ˜̃S denote, the Ricci tensor field of the Riemannian
connection. From [1], we have the following result.

Proposition 2.4. Let M̃ be an almost α-cosymplectic f -manifold and M be an integral manifold
of D. Then

(i) when α = 0, M is totally geodesic if and only if all the operators hi vanish,

(ii) when α 6= 0, M is totally umbilic if and only if all the operators hi vanish.
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3 Basic Results

Let ˜̃∇ be the Levi-Civita connection of M̃ with induced metric g. Then Gauss and Weingarten
formulas are given by ˜̃∇XY = ∇?XY +B(X,Y ) (3.1)

˜̃∇XN = −ANX +∇?⊥X N (3.2)

for any X,Y ∈ Γ(TM) and N ∈ Γ(TM⊥). ∇?⊥ is the connection in the normal bundle, B is
the second fundamental form of M̃ and AN is the Weingarten endomorphism with associated
with N . The second fundamental form B and the shape operator A related by

g(B(X,Y ), N) = g(ANX,Y ) (3.3)

Now, a semi-symmetric non-metric connection ∇̃ is defined as

∇̃XY =
˜̃∇XY +

s∑
i=1

ηi(Y )X (3.4)

such that

(∇̃Xg)(Y,Z) = −
s∑
i=1

{g(X,Y )ηi(Z) + g(X,Z)ηi(Y )} (3.5)

from (3.4), we have

(∇̃Xϕ)Y = (
˜̃∇Xϕ)Y − s∑

i=1

ηi(Y )ϕX (3.6)

and if M̃ with Kaehlerian leaves

(∇̃Xϕ)Y =
s∑
i=1

[
α
(
g(ϕX, Y )ξi − ηi(Y )ϕX

)
+ g(hiX,Y )ξi − ηi(Y )hiX

]
(3.7)

−
s∑
i=1

ηi(Y )ϕX.

Corollary 3.1. Let M be semi-invariant submanifold of an almost α-cosymplectic f -manifold
M̃ with semi-symmetric non-metric connection, then

∇̃Xξi = −αϕ2X − ϕhiX +X (3.8)

and
(∇̃X η̄)Y = (

˜̃∇X η̄)Y − η̄(X)η̄(Y ). (3.9)

We denote by same symbol g both metrices on M̃ and M . Let ∇̃ be the semi-symmetric
non-metric connection on M̃ and∇ be the induced connection on M with respect to unit normal
N . Then,

(∇̃XY ) = ∇XY +m(X,Y ) (3.10)

where m is a tensor field of type (0, 2) on semi-invariant submanifold M . Using (3.1) and (3.4)
we have,

∇XY +m(X,Y ) = ∇?XY +B(X,Y ) +
s∑
i=1

ηi(Y )X. (3.11)

So equation tangential and normal components from both the sides, we get

m(X,Y ) = B(X,Y )

and

∇XY = ∇?XY +
s∑
i=1

ηi(Y )X. (3.12)
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From (3.2) and (3.12),

∇XN = ∇?XN +
s∑
i=1

ηi(N)X

= −ANX +
s∑
i=1

ηi(N)X

= (−AN +
s∑
i=1

ηi(N))X.

Now, Gauss and Weingarten formulas for a semi-invariant submanifolds of an almost α- cosym-
plectic f - manifold with a semi-symmetric non-metric connection is

∇̃XY = ∇XY +B(X,Y ) (3.13)

and

∇̃XN = (−AN +
s∑
i=1

ηi(N))X +∇⊥
XN (3.14)

= −ANX +∇⊥
NX

for all X,Y ∈ Γ(TM), N ∈ Γ(TM⊥), B second fundamental form of M and AN is the Wein-
garten endomorphism associated with N . The second fundamental form B and the shape opera-
tor A related by

g(B(X,Y ), N) = g(ANX,Y ) (3.15)

The projection morphisms of TM to D and Q respectively. For any X,Y ∈ Γ(TM) and N ∈
Γ(TM⊥), we have

X = PX +QX +
s∑
i=1

ηi(X)ξi (3.16)

and

ϕN = CN +DN (3.17)

hiX = tiX + fiX (3.18)

where CN and tiX(resp.DN and fiX) denotes the tangential (resp. normal) of ϕN and hiX ,
respectively.

Theorem 3.2. The connection induced on semi-invariant submanifolds of an almost α-cosymplectic
f -manifold M̃ with semi-symmetric non-metric connection is also a semi-symmetric non-metric
connection.

For any X,Y ∈ Γ(TM), we put

u(X,Y ) = ∇XϕPY −AϕQYX. (3.19)

We start with proving the following lemma.

Lemma 3.3. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold
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with Kaehlerian leaves admitting semi-symmetric non-metric connection. Then we have

P (u(X,Y )) = ϕP∇XY −
s∑
i=1

[(α+ 1)ηi(Y )ϕPX + ηi(Y )PtiX] (3.20)

Q(u(X,Y )) = QCB(X,Y )−
s∑
i=1

ηi(Y )QtiX (3.21)

B(X,ϕPY ) +∇⊥
XϕQY = ϕQ∇XY +DB(X,Y ) (3.22)

−
s∑
i=1

[(α+ 1)ηi(Y )ϕQX − ηi(Y )fiX]

ηi(u(X,Y ))ξi =
s∑
i=1

[αg(ϕPX, Y )ξi + g(hiX,Y )ξi] (3.23)

−
s∑

i,j=1

ηi(Y )ηj(tiX)ξi.

Proof. For any X,Y ∈ Γ(TM), putting (3.6) in the equation (2.7) we get

(∇̃Xϕ)Y =
s∑
i=1

[α(g(ϕPX, Y )ξi − ηi(Y )ϕPX − ηi(Y )ϕQX) + g(hiX,Y )ξi

− ηi(Y )PtiX − ηi(Y )QtiX − ηi(Y )
s∑
j=1

ηj(tiX)ξj − ηj(Y )fiX

− ηi(Y )ϕPX − ηi(Y )ϕQX].

On the other hand

(∇̃Xϕ)Y = ∇̃XϕY − ϕ∇̃XY

= ∇̃XϕPY + ∇̃XϕQY − ϕ(∇XY +B(X,Y ))

= ∇XϕPY +B(X,ϕPY )−AϕQYX +∇⊥
XϕQY

− ϕP∇XY − ϕQ∇XY − CB(X,Y )−DB(X,Y )

(∇̃Xϕ)Y = P∇XϕPY +Q∇XϕPY +
s∑
i=1

ηi(∇XϕPY )ξi +B(X,ϕPY )

− PAϕQYX −QAϕQYX +∇⊥
XϕQY −

s∑
i=1

ηi(AϕQYX)ξi

− ϕP∇XY − ϕQ∇XY − CB(X,Y )−DB(X,Y ).

Taking the components of D, ξi, D⊥ and TM⊥ in above equations, we get desired result.

Lemma 3.4. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold M̃
with Kaehlerian leaves admitting semi-symmetric non-metric connection. Then we have

ϕP (ANX) + P (∇XCN) = P (ADNX) (3.24)

Q((C∇⊥
XN) +ADNX −∇XCN) = 0 (3.25)

η(ADNX −∇XCN) = αg(X,CN) + g(hiX,N)ξi (3.26)

B(X,CN) + ϕQ(ANX) +∇⊥
XDN = D∇⊥

XN (3.27)

for any X ∈ Γ(TM) and N ∈ Γ(TM⊥).
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Proof. By using the decompositions (3.16), (3.17) and the equations of Gauss and Weingarten
in (2.7) we have

(∇̃Xϕ)N = ∇̃XϕN − ϕ∇̃XN =
s∑
i=1

[αg(ϕX,N)ξi + g(hiX,N)ξi]

∇XCN +B(X,CN)−ADNX +∇⊥
XDN + ϕANX − ϕ∇⊥

XN =
s∑
i=1

[αg(ϕX,N)ξi + g(hiX,N)ξi]

= P∇XCN +Q∇XCN +
s∑
i=1

ηi(∇XCN)ξi +B(X,CN)− PADNX −QADNX −
s∑
i=1

(ADNX)ξi

+∇⊥
XDN + ϕPANX + ϕQANX − C∇⊥

XN −D∇⊥
XN

= −
s∑
i=1

[αg(X,CN)ξi + g(hiX,N)ξi].

Then (3.24)-(3.27) follows by taking the components on each of the vector bundle D, D⊥, ξi
and respectively TM⊥.

Lemma 3.5. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold
admitting semi-symmetric non-metric connection. For any X ∈ Γ(D) and X ∈ Γ(D⊥), then we
have

∇Xξi = (α+ 1)X − ϕtiX − CfiX, B(X, ξi) = −DfiX (3.28)

∇ξiξj = 0, B(ξi, ξj) = 0. (3.29)

Proof. For X ∈ Γ(TM), using (3.8), (3.13), (3.17) and (3.18) we have

∇̃Xξi = ∇Xξi +B(X, ξi) = −αϕ2X − ϕhiX +X

= αX − α
s∑
i=1

ηi(X)ξi − ϕhiX +X

= αX − α
s∑
i=1

ηi(X)ξi − ϕtiX − ϕfiX +X

= αX − α
s∑
i=1

ηi(X)ξi − ϕtiX − CfiX −DfiX +X. (3.30)

Thus (3.28) and (3.29) follows from (3.30).

Lemma 3.6. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold M̃
with Kaehlerian leaves admitting semi-symmetric non-metric connection. Then we have

AϕXY = AϕYX (3.31)

for all X,Y ∈ Γ(D⊥).

Proof. By using (3.7), (3.13) and (3.15), we get

g(AϕXY,Z) = g(B(Y, Z), ϕX) = g(∇̃ZY, ϕX)

= −g(ϕ∇̃ZY,X) = −g(∇̃ZϕY − (∇̃Zϕ)Y,X)

= −g(∇̃ZϕY,X)− g((∇̃Zϕ)Y,X)

= −g(∇̃ZϕY,X) = g(ϕY, ∇̃ZX)

= g(ϕY,B(Z,X))

= g(AϕYX,Z)

for all X,Y ∈ Γ(D⊥), Z ∈ Γ(TM) which proves (3.31).
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Lemma 3.7. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold M̃
with admitting semi-symmetric non-metric connection. Then we find

∇ξkU ∈ Γ(D), for any U ∈ Γ(D) (3.32)

∇ξiV ∈ Γ(D⊥), for any V ∈ Γ(D⊥). (3.33)

Proof. From (3.5), we have

(∇̃Xg)(Y,Z) = −
s∑
i=1

{g(X,Y )ηi(Z) + g(X,Z)ηi(Y )}

= Xg(Y, Z)− g(∇̃XY,Z)− g(Y, ∇̃XZ).

Now, by taking Y = U ∈ D and X = ξk, Z = ξ`, k, ` ∈ {1, ..., s} in the above equation, we get

(∇̃ξkg)(U, ξ`) = −
s∑
i=1

{g(ξk, U)ηi(ξ`) + g(ξk, ξ`)η
i(U)}

= ξkg(U, ξ`)− g(∇̃ξkU,Z)− g(U, ∇̃ξkξ`).

Then we obtain,
g(∇ξkU, ξ`) = 0.

On the other hand, by taking X = ξk, Y = U ∈ D,Z = V ∈ D⊥ we obtain

(∇̃ξkg)(U, V ) = −
s∑
i=1

{g(ξk, U)ηi(V ) + g(ξk, V )η
i(U)}

= ξkg(U, V )− g(∇̃ξkU, V )− g(U, ∇̃ξkV ).

Hence,

g(∇̃ξkU, V ) = −g(U, ∇̃ξkV )

= g(ϕ2U, ∇̃ξkV )

= −g(ϕU,ϕ∇̃ξiϕV )

= −g(ϕU, ∇̃ξkϕV )

= g(∇̃ξiϕU,ϕV )
= 0.

So ∇ξkU ∈ Γ(D). In a similary way is deduced (3.33).

4 Integrability of Distribution on a Semi-Invariant Submanifolds of Almost
α-Cosymplectic f -Manifolds Admitting a semi- symmetric non-metric
connection

Lemma 4.1. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold M̃
with admitting semi-symmetric non-metric connection. Then we have

g(X, tiY ) = g(tiX,Y ), (4.1)

ϕtiX + tiϕX + CfiX = 0, (4.2)

DfiX + fiϕX = 0 (4.3)

for any X,Y ∈ Γ(M).
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Proof. Since hi is symmetric, we get

g(X,hiY ) = g(hiX,Y )

g(X, tiY + fiY ) = g(tiX,Y ) + g(fiX,Y )

g(X, tiY ) + g(X, fiY ) = g(tiX,Y ) + g(fiX,Y ).

From above equation we get (4.1). By making use of proposotion 2.3 and using (3.17), (3.18),
we get

ϕtiX + tiϕX + CfiX +DfiX + fiϕX = 0. (4.4)

Comparing the tangential and normal part of (4.4), we get (4.2) and (4.3), respectively.

Theorem 4.2. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold
M̃ with admitting semi-symmetric non-metric connection. Then the distribution D is never inte-
grable.

Proof. For all X,Y ∈ Γ(D), we have

g([X,Y ], ξi) = g(∇XY, ξi)− g(∇YX, ξi)
= −g(Y,∇Xξi) + g(X,∇Y ξi)
= −g(Y, αX − ϕtiX − CfiX +X) + g(X,αY − ϕtiY − CfiY + Y )

= g(Y, ϕtiX) + g(Y,CfiX)− g(X,ϕtiY )− g(X,CfiY )
= g(Y, ϕtiX + CfiX)− g(X,ϕtiY + CfiY )

= −g(Y, tiϕX) + g(X, tiϕY )

= −g(tiY, ϕX) + g(tiX,ϕY )

= −g(Y, tiϕX)− g(ϕtiX,Y )
= −g(Y, tiϕX + ϕtiX)

= g(Y,CfiX) 6= 0.

This follows the non-integrability of D.

Theorem 4.3. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold
M̃ with Kaehlerian leaves admitting semi-symmetric non-metric connection. The distribution
D ⊕ {ξ1, ..., ξs} is integrable if and only if

B(X,ϕY ) = B(ϕX, Y ) (4.5)

is satisfied.

Proof. From (3.22), the distribution D ⊕ {ξ1, ..., ξs} is integrable if and only if

B(X,ϕY )−B(Y, ϕX) = ϕQ[X,Y ] = 0

is satisfied so, B(X,ϕY ) = B(Y, ϕX).

Theorem 4.4. Let M be a semi-invariant submanifold of an almost α-cosymplectic f -manifold
M̃ with Kaehlerian leaves admitting semi-symmetric non-metric connection. Then the distribu-
tion D⊥ is integrable.

Proof. From (3.19), we have for X,Y ∈ Γ(D⊥)

U(X,Y ) = −AϕQYX

operating ϕ in (3.20) we get
P ∇̃XY = ϕP (AϕYX) (4.6)

for any X,Y ∈ Γ(D⊥). By virtue of Lemma 3.6, (4.6) reduce to

P ([X,Y ]) = 0

which is prove that [X,Y ] ∈ Γ(D⊥).
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