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Abstract In this paper, we introduce hemi-slant Riemannian maps from almost contact met-
ric manifolds into Riemannian manifolds as a generalization of anti-invariant Riemannian maps, 
semi-invariant Riemannian maps and slant Riemannian maps from almost contact metric man-
ifolds into Riemannian manifolds. Further, we obtain necessary and sufficient c onditions for 
integrability of distributions which are involved in the definition of hemi-slant Riemannian maps 
and study the geometry of leaves. After it, we investigate the necessary and sufficient condi-
tion for hemi-slant Riemannian maps to be totally geodesic and harmonic. Finally, we obtain a 
characterization theorem for the proper hemi-slant Riemannian maps from Sasakian manifolds 
to Riemannian manifolds with totally umbilical fibers and a lso we provide some examples of 
such maps.

1 Introduction

To compare the geometric structure defined o n t wo R iemannian m anifolds, w e n eed suitable 
types of maps between them. Some maps like an isometric immersion and Riemannian submer-
sion are used widely to compare the geometric structures between two Riemannian manifolds in 
differential geometry. Firstly B. O’ Neill [3] and A. Gray [2] studied the map F to be a Rieman-
nian submersion. Riemannian submersions between Riemannian manifolds equipped with dif-
ferentiable structure were studied by Watson in [4]. Watson also showed that the base manifold 
and each fiber have the same kind of structure as the total space, in most cases [4] and [5]. As a 
generalization of an isometric immersion, Riemannian submersion and an isometry Riemannian 
maps are introduced by A. E. Fischer [1] and harmonic maps between Riemannian manifolds 
in [14] and [19]. After that, there are lots of papers on this topic. Moreover, B. Sahin defined 
slant Riemannian maps [6], Hemi-slant Riemannian maps [10], conformal Riemannian maps 
[7], Conformal slant Riemannian maps [18], semi-invariant Riemannian maps [8], hemi-slant 
submersion [12], studied the geometry of the total manifolds and the base manifolds by showing 
the existence of such maps. Given a C∞ -map F from a Riemannian manifold (M, gm) to a Rie-
mannian manifold (N, gn), according to the conditions on the map F , we call F a harmonic map 
[1], a totally geodesic map [1], an isometric immersion [4], a semi-slant Riemannian submer-
sion [17], a Riemannian map [11], etc. Recently, K.S. Park studied many important results on 
semi-slant Riemannian maps [15], almost h-semi-slant Riemannian maps [16]. R. Prasad and S. 
Pandey obtained some interesting results on slant Riemannian map from an almost contact man-
ifold [20]. B. Sahin [9] studied and investigated the application of Riemannian submersions and 
Riemannian maps on Hermitian manifolds . Motivated by above study, we are interested to study 
hemi-slant Riemannian maps from almost contact metric manifolds to Riemannian manifolds.

2 Preliminaries

Let (M, gm) and (N, gn) be Riemannian manifolds, where M, N are C∞ manifolds and gm, gn 
are Riemannian metrics on M, N respectively. Let F : (M, gm) → (N, gn) be a C∞-map. We 
call the map F a C∞-submersion if F is surjective and the differential (F∗)x has a maximal
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rank for any x ∈ M . The map F is said to be a Riemannian submersion if F is a C∞ sub-
mersion and (F∗)x : (ker(F∗)x)⊥, (gm)x) → (TF (x)N, (gn)F (x)) is a linear isometry for each
x ∈ M , where (ker(F∗)x)⊥ is the orthogonal complement of the space ker(F∗)x in the tan-
gent space TxM of M at x. We say F be a Riemannian map, if (F∗)x : (ker(F∗)x)⊥, (gm)x →
((rangeF∗)F (x), (gn)F (x)) is a linear isometry for each x ∈M , where (rangeF∗)F (x) = (F∗)x)(ker(F∗)x)⊥

for x ∈ M . Let F : (M, gm) → (N, gn) be a C∞-map, we call the map F a slant Riemannian
map, if F is a Riemannian map and the angle θ = θ(X) between JX and the space ker(F∗)x is
constant for nonzero X ∈ ker(F∗)x and x ∈M . We call the angle θ a slant angle.
The map F is said to be anti-invariant Riemannian map if kerF∗ is anti-invariant with respect to
J such that J(kerF∗) ⊂ kerF⊥∗ .
The map F is said to be a semi-invariant Riemannian map if F is a Riemannian map and there
is a distribution D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1, J(D2) ⊂ (kerF∗)
⊥,

where D2 is the orthogonal complement of D1 in kerF∗.
The map F is said to be a semi-slant Riemannian map if F is a Riemannian map and there is a
distribution D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)x is constant for nonzero X ∈ (D2)x
and x ∈M .
We call the angle θ a slant angle. where D2 is the orthogonal complement of D1 in kerF∗.
Let (M, gm) and (N, gn) be Riemannian manifolds, where M,N are C∞ manifolds and gm, gn
are Riemannian metrics on M,N respectively. Now, we recall a useful results which are re-
lated to the second fundamental form and the tension field of Riemannian map. Let (M, gm) and
(N, gn) are Riemannian manifolds and suppose that F : (M, gm)→ (N, gn) is a smooth map be-
tween them. Then the differential F∗ of F can be viewed a section of bundleHom(TM,F−1TN)→
M , where F−1TN is the pullback bundle which has fibers (F−1TN)x = TF (x)N, x ∈ M .
Hom(TM,F−1TN) has a connection ∇ induced from the Levi-Civita connection ∇M and the
pullback connection. The second fundamental form of F is given by

(∇F∗)(X,Y ) = ∇FXF∗(Y )− F∗(∇MX Y ), (2.1)

for X,Y ∈ Γ(TM).
Denote the range of F∗ by (rangeF∗) as a subset of the pullback bundle F−1TN with its orthog-
onal complement (rangeF∗)⊥, we have the following decomposition

F−1TN = rangeF∗ ⊕ (rangeF∗)
⊥.

Moreover, we have
TM = kerF∗ ⊕ (kerF∗)

⊥.

It is known that the second fundamental form is symmetric and note that the second fundamental
form (∇F∗)(X,Y ),∀X,Y ∈ Γ(kerF∗)⊥, of a Riemannian map has no component in rangeF∗.
More precisely we have the following.

Lemma 2.1. Let F be a Riemannian map from a Riemannian manifold (M, gm) to a Riemannian
manifold (N, gn). Then

gn((∇F∗)(X,Y ), F∗(Z)) = 0,∀X,Y, Z ∈ Γ((kerF∗)
⊥). (2.2)

As a result of Lemma (2.1), we obtain

(∇F∗)(X,Y ) ∈ Γ((rangeF∗)
⊥),∀X,Y,∈ Γ((kerF∗)

⊥). (2.3)

For the tension field of a Riemannian map between Riemannian manifolds, we get the following
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Lemma 2.2. Let F : (M, gm) −→ (N, gn) be a Riemannian map between Riemannian mani-
folds. Then the tension field τ of F is

τ = −m1F∗(H) +m2H2, (2.4)

where m1 = dim(kerF∗),m2 = rankF , H and H2 are the mean curvature vector fields of the
distributions kerF∗ and rangeF∗, respectively.

Let F be a Riemannian map from a Riemannian manifold (M, gm) to a Riemannian manifold
(N, gn). Then we define T and A as

AEF = H∇HEVF + V∇HEHF (2.5)

TEF = H∇VEVF + V∇VEHF (2.6)

for vector fields E,F on M , where ∇ is the Levi-Civita connection of gm. In fact one can see
that these tensor fields are O’Neill’s tensor fields which are defined for Riemannian submersions.
For any E ∈ Γ(TM), TE and AE are skew-symmetric on (Γ(TM), gm) reversing the horizontal
and vertical distributions. It is also easy to see that T is vertical, TE = TVE and A is horizontal,
A = AHE . We note that the tensor field T satisfies

TUW = TWU (2.7)

AXY = −AXY =
1
2
V[X,Y ]

for U,W ∈ Γ(kerF∗) and X,Y ∈ Γ(kerF∗)⊥.
On the other hand, from (2.5) and (2.6), we obtain

∇VW = TVW + ∇̂VW (2.8)

∇VX = H∇VX + TVX (2.9)

∇XV = AXV + V∇XV (2.10)

∇XY = H∇XY +AXY (2.11)

for X,Y ∈ Γ((kerF∗)⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW = V∇VW .
Recall that F is said to be harmonic if we have the tension field

τ(F ) = trace(∇F∗) = 0, (2.12)

and we call the tension field a totally geodesic map if

(∇F∗)(X,Y ) = 0, (2.13)

for X,Y ∈ Γ(TM).

Lemma 2.3. Let F be a Riemannian map from a Riemannian manifold (M, gm) to a Riemannian
manifold (N, gn). Then the map F satisfies a generalized eikonal equation

2e(F ) = ||F∗||2 = rankF.

As we know, ||F∗||2 is a continuous function on M and rank F is integer valued so that rank
F is locally constant. Hence, if M is connected, then rank F is a constant function.



4 Rajendra Prasad and Shashikant Pandey

2.1 Almost contact metric manifolds

An odd dimensional differentiable manifoldM is said to have an almost contact structure (M,J, ξ, η)
if it carries a tensor field J of type (1, 1), a vector field ξ and 1−form η on M respectively such
that

J2 = −I + η ⊗ ξ, Jξ = 0, η ◦ J = 0, η(ξ) = 1, (2.14)

where I denotes identity tensor. An almost contact structure is said to be normal ifN+dη⊗ξ = 0,
where N is the Nijenhuis tensor of J . Suppose that a Riemannian metric tensor gm is given in
M and satisfies the condition

gm(JX, JY ) = gm(X,Y )− η(X)η(Y ), gm(X, ξ) = η(X). (2.15)

Then (J, ξ, η, gm) structure is called an almost contact metric structure. A manifold M with an
almost contact metric structure (J, ξ, η, gm) is called an almost contact metric manifold and is
denoted by (M,J, ξ, η, gm).
Define a tensor field Φ of type (0, 2) by Φ(X,Y ) = g(X, JY ). If dη = Φ then an almost contact
metric structure is said to be normal contact metric structure. A normal contact metric structure
is called a Sasakian structure, which satisfies

(∇XJ)Y = gm(X,Y )ξ − η(Y )X, (2.16)

∇Xξ = −JX, (2.17)

where ∇ denotes the Levi-Civita connection of gm. For a Sasakian manifold (M,J, ξ, η, gm), it
is known that

R(ξ,X)Y = gm(X,Y )ξ − η(Y )X, (2.18)

for all X,Y ∈ Γ(M)

3 Hemi-slant Riemannian maps from an almost contact metric manifold into
a Riemannian manifold

In this section, we introduce and study hemi-slant Riemannian maps from an almost contact
metric manifold into a Riemannian manifold. We give definition and we obtain necessary and
sufficient conditions for integrability of distributions and study the geometry of leaves for hemi-
slant Riemannian map.

Definition 3.1. Let (M,J, ξ, η, gm) be an almost contact metric manifold and (N, gn) be a Rie-
mannian manifold. A Riemannian map F : (M,J, ξ, η, gm)→ (N, gn) is said to be a hemi-slant
Riemannian map if there is a distributions D1 and D2 of kerF∗ of F such that

kerF∗ = D1 ⊕D2⊕ < ξ >, (3.1)

where orthogonal complementry distributions D1 is slant and D2 is anti-invariant. The angle
θ = θ(X) between JX and the space (D1)x is constant for nonzero X ∈ (D1)x and x ∈ M ,
where < ξ > is one dimensional vector space orthogonal to distributions D1 and D2 in kerF∗.
We call the angle θ is a hemi-slant angle.

We can easily observe the notion of hemi-slant Riemannian map is natural generalization
of both the notions of anti-invariant Riemannian maps, semi-invariant Riemannian maps and
slant Riemannian maps. More precisely, if we denote the dimension of D1 and D2 by p and q ,
respectively, then we have the following:
(a) If p = 0, then M is an anti-invariant Riemannian map.
(b) If q = 0 and θ = 0, then M is an invariant Riemannian map.
(c) If q = 0 and θ 6= 0, π2 , then M is a proper slant submersion with slant angle θ.
(d) If θ = π

2 , then M is an anti-invariant Riemannian map.
We say that the hemi-slant Riemannian map F : (M,J, ξ, η, gm) → (N, gn) is proper if D2 6= 0
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and θ 6= 0, π2 .
For any X ∈ Γ(kerF∗), we have

X = PX +QX + η(X)ξ, (3.2)

where PX ∈ D1 and QX ∈ D2 and we put

JX = φX + ωX, (3.3)

where φX ∈ Γ(kerF∗) and ωX ∈ Γ(kerF∗)⊥.
Also for any Z ∈ Γ(kerF∗)⊥, we get

JZ = BZ + CZ, (3.4)

where BZ ∈ Γ(kerF∗) and CZ ∈ Γ(kerF∗)⊥.
Then the horizontal distribution H = (kerF∗)⊥ is decomposed as

(kerF∗)
⊥ = ωD1 ⊕ JD2 ⊕ µ, (3.5)

where µ is orthogonal complementry distribution ωD1 ⊕ JD2 and it is invariant distribution of
(kerF∗)⊥ with respect to J . As we have seen from above argument, anti- invariant Riemannian
map, semi-invariant Riemannian map and slant Riemannian map are all examples of hemi-slant
Riemannian map. Now, using equations (3.3), (3.4) and (3.5), we have following lemma:

Lemma 3.2. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M,J, ξ, η, gm) into a Riemannian manifold (N, gn). Then, we get
(i) φD1 = D1
(ii) φD2 = {0}
(iii) BωD1 ⊆ D1
(iv) BJD2 = D2.

Lemma 3.3. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M,J, ξ, η, gm) into a Riemannian manifold (N, gn). Then, we have
(i) φ2 +Bω = −I + η ⊗ ξ on kerF∗,
(ii) C2 + ωB = −I on kerF⊥∗ ,
(iii) φB +BC = 0 on kerF∗,
(iv) ωφ+ Cω = 0 on kerF⊥∗ .

Now, we define
(i) (∇Xφ)Y = ∇̂XφY − φ∇̂XY
and
(ii) (∇Xω)Y = ∇̂XωY − ω∇̂XY for X,Y ∈ Γ(kerF∗).
Then from (i) and (ii), we get following lemma.

Lemma 3.4. Let F be a hemi-slant Riemannian map from almost contact manifolds (M,J, ξ, η, gm)
into Riemannian manifolds (N, gn). Then, we have
φ is parallel i.e.

∇φ ≡ 0⇔ TXωY = BTXY,

ω is parallel i.e.
∇ω ≡ 0⇔ TXφY = BTXY,

for X,Y ∈ Γ(kerF∗).

Theorem 3.5. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then, F is a
hemi-slant Riemannian map if and only if there exist a constant λ ∈ [0, 1] and a distribution D
on (kerF∗) such that
(1) D = {X ∈ kerF∗ : φ2 = −λ(I − η ⊗ ξ)},
(2) for X ∈ kerF∗ orthogonal to D, we get φX = 0.
In this case λ = cos2 θ and θ is a hemi-slant angle of F .
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Proof. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then for
X ∈ Γ(D1), we get

cosθ =
|φX|
|JX|

, (3.6)

If X ∈ Γ(D) = Γ(D1⊕ < ξ >) and X is not parallel to ξ, then we have

cosθ =
|φX|
|JX|

,

cosθ =
gm(JX, φX)

|JX||φX|
,

Using (3.3), we obtain

cosθ =
gm(φX, φX)

|JX||φX|
,

cosθ = −gm(X,φ
2X)

|JX||φX|
, (3.7)

Now, using (2.14), (3.6) and (3.7), we get

φ2X = − cos2 θ(X − η(X)ξ), (3.8)

for X ∈ Γ(D). If λ = cos2 θ, then

φ2X = −λ(X − η(X)ξ), (3.9)

for X ∈ Γ(D).
Conversely, Let there exist a constant λ for X ∈ Γ(kerF∗) such that φ2 = −λ(I − η ⊗ ξ) is
satisfied. Then X ∈ Γ(D), we have

cosθ =
gm(JX, φX)

|JX||φX|
,

cosθ =
gm(φX, φX)

|JX||φX|
,

So, we obtain

cosθ =
|φX|
|JX|

,

since cosθ = |φX|
|JX| , then we get from above λ = cos2θ, which implies that θ is constant. Clearly

(2) is obvious.

Lemma 3.6. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with hemi-slant angle θ. Then, we obtain

gm(φX, φY ) = cos2θgm(X,Y ), (3.10)

gm(ωX,ωY ) = sin2θgm(X,Y ), (3.11)

for any X,Y ∈ Γ(D1).

The proof of above Lemma is exactly the same with slant immersions (see [13], for Sasakian
case). Therefore, we omit its proof.
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Lemma 3.7. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with the hemi-slant angle θ. if ω is parallel
with respect to ∇ on kerF∗, then we have

TφXφX = −cos2θ(TXX − η(X)TXξ) (3.12)

for X ∈ Γ(kerF∗).

Proof. If ω is parallel, from (3.3), we get

CTXY = TXφY, (3.13)

for X,Y ∈ Γ(kerF∗). Interchange X and Y in equation (3.13), we obtain

TXφY = TY φX. (3.14)

Replacing Y by φX in above equation and then using Theorem (3.4), we obtain our result.

Theorem 3.8. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then the dis-
tribution D2⊕ < ξ > is integrable.

Proof. Let for X,Y ∈ Γ(D2⊕ < ξ >) and W ∈ Γ(D1), we get

3dω(X,Y,W ) = Xω(Y,W ) + Y ω(W,X) +Wω(X,Y )− ω([Y,W ], X)

− ω([X,Y ],W )− ω([W,X], Y ),

where ω(X,Y ) = gm(X, JY ) is the fundamental 2− form of M which vanish for an almost
contact metric manifold. Thus we obtain

gm([X,Y ], φW ) = 0. (3.15)

Thus proof is complete.

Theorem 3.9. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then the dis-
tribution D1⊕ < ξ > is integrable if and only if

gm(TY ωφZ − TZωφY,X) = gn((∇F∗)(Y, ωZ)− (∇F∗)(Y, ωZ), F∗(JX)),

for X ∈ D2 and Y, Z ∈ Γ(D1⊕ < ξ >).

Proof. Let for X ∈ D2 and Y, Z ∈ Γ(D1⊕ < ξ >). Then using (2.1), (3.3) and (3.4), we
obtain

gm([Y, Z], X) = gm(J [Y, Z], JX) = −gm(∇Y ωφZ,X) + gm(∇ZωφY,X)

+ gm(∇Y ωZ, JX)− gm(∇ZωY, JX).

Now using (2.9) and Theorem 3.4 in above equation, we have

sin2gm([Y, Z], X) = gm(TY ωφZ − TZωφY,X) + gm(H∇Y ωZ −H∇ZωY, JX)

Using equation (2.1), we have

gm(TY ωφZ − TZωφY,X) = gn((∇F∗)(Y, ωZ)− (∇F∗)(Y, ωZ), F∗(JX)),

for X ∈ D2 and Y,Z ∈ Γ(D1).
Now, here we give results for leaf of the distribution D1⊕ < ξ > and for the leaf of the distribu-
tion D2⊕ < ξ >.
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Theorem 3.10. Let F be a hemi-slant Riemannian map from almost contact manifolds (M,J, ξ, η, gm)
into Riemannian manifolds (N, gn) with the hemi-slant angle θ. Then the distribution D1⊕ <
ξ > defines a totally geodesic foliation on M if and only if

gm(TZωφY,X) = gn((∇F∗)(Y, ωZ), F∗(JX)),

for X ∈ D2 and Y,Z ∈ Γ(D1⊕ < ξ >).

In a similar pattern, we have the following result.

Theorem 3.11. Let F be a hemi-slant Riemannian map from an almost contact metric mani-
fold (M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then the
distribution D2⊕ < ξ > defines a totally geodesic foliation on M if and only if

gm(TXωφZ, Y ) = gn((∇F∗)(X,ωZ), F∗(JX)),

for X,Y ∈ D2⊕ < ξ > and Z ∈ Γ(D1).

Theorem 3.12. Let F be a hemi-slant Riemannian map from an almost contact metric mani-
fold (M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then the
distribution kerF∗ defines a totally geodesic foliation on M if and only if

gm(TXJY,BW ) = gn((∇F∗)(X, JY ), CW ),

and

gn(∇ωφZF∗(CW ), F∗(ωX)) + gn(ωωZF∗(ωX), F∗(C
2W )) = gm(BW,AωφZωX)

− gm(V∇ωφZBW +AωφZCW,φX)

+ gm(φX,AωZC
2W ) + gm(ωZ, TXωBW )

− gm(V∇ωZφX +AωZωX,BCW )

for X ∈ Γ(kerF∗), Y ∈ D2, Z ∈ D1 and W ∈ Γ((kerF∗)⊥)

Proof. Let us suppose X ∈ Γ(kerF∗), Y ∈ D2 and W ∈ Γ((kerF∗)⊥), using (2.3), (2.8)
and (3.4), we get

gm(∇XY,W ) = gm(J∇XY, JW )

= gm(H∇XJY,CW ) + gm(TXJY,BW ),

from (2.1) and (2.3), we have

gm(∇XY,W ) = gn((∇F∗)(X, JY ), CW ) + gm(TXJY,BW ).

Now, for Z ∈ D1, using (2.1), (2.10), (3.3), (3.4) and Theorem 3.3, we obtain

sin2θgm(∇XZ) = −gm(H∇XωφZ,W ) + gm(H∇XωZ,CW )

+ gm(TXωZ,BW ).

Since [W,X] ∈ Γ(kerF∗), for W ∈ Γ((kerF∗)⊥) and X ∈ Γ(kerF∗), we get

gm(H∇XωφZ,W ) = −gm(∇ωφZW,X).

Now, using (2.1), (2.10), (2.11), (3.3) and (3.4), we have

gm(H∇XωφZ,W ) = −gm(AωφZBW,ωX)− gm(V∇ωφZBW,φX)

− gm(H∇ωφZCW,ωX)− gm(AωφZCW,φX).

Then using (2.1), we get

gm(H∇XωφZ,W ) = −gm(AωφZBW,ωX)− gm(V∇ωφZBW +AωφZCW,φX)

− gn(∇ωφZFast(CW ), F∗(ωX)).
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In similar pattern, we can easily get

gm(H∇XωZ,CW ) = −gm(AωZφX,C2W ) + gm(V∇ωZφX +AωZωX,BCW )

+ gn(∇ωZF∗(ωX), F∗(C
2W )).

Thus putting (3.18) and (3.19) in (3.17), we obtain

sin2θgm(∇XZ,W ) = −gm(AωφZBW,ωX)− gm(V∇ωφZBW +AωφZCW,φX)

− gn(∇ωφZF∗(CW ), F∗(ωX))− gm(AωZφX,C2W )

+ gm(V∇ωZφX +AωZωX,BCW ) + gn(∇ωZF∗(ωX), F∗(C
2W ))

+ gm(TXωZ,BW ).

Then using (3.16) and (3.20), we get required result.

Theorem 3.13. Let F be a hemi-slant Riemannian map from an almost contact metric mani-
fold (M,J, ξ, η, gm) into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then the
distribution (kerF∗)⊥ defines a totally geodesic foliation on M if and only if

gm(BY,AXJZ) = gn(∇XF∗(CY ), F∗(JZ)),

and
gm(AXBY, ωZ) = gn(F∗(CY ),∇XF∗(ωZ))− gn(F∗(Y ),∇XF∗(ωφZ)),

for X,Y ∈ Γ((kerF∗)⊥) and Z ∈ Γ(D1).

Proof. For X,Y ∈ Γ(kerF∗)⊥ and W ∈ Γ(D2), using (2.16), (2.10) and (2.11), we have

gm(∇XY,W ) = gm(H∇XCY +AXBY, JW ).

Then using (2.1), we get

gm(∇XY,W ) = gn(∇XF∗(CY ), F∗(JW )) + gm(AXBY, JW ). (3.16)

Now, using theorem 3.4 for Z ∈ Γ(D1), we obtain

sin2θgm(∇XY,W ) = gm(Y,H∇XωφZ)− gm(CY,H∇XωZ)− gm(BY,AXωZ).

From equations (2.1) and (2.3), we can easily get

sin2θgm(∇XY,W ) = gn(F∗(Y ),∇XF∗(ωφZ))− gn(F∗(CY ),∇XF∗(ωZ))
− gm(BY,AXωZ). (3.17)

Then from (3.16) and (3.17), we get our results.

4 Harmonicity of hemi-slant Riemannian maps from a Sasakian manifold
into a Riemannian manifold

In this section, we find necessary and sufficient condition for hemi-slant Riemannian maps from
a Sasakian manifold into a Riemannian manifold to be harmonic and totally geodesic. Also, we
obtain a characterization theorem for the proper hemi-slant Riemannian maps from a Sasakian
manifold into a Riemannian manifold and we give some examples of such maps.

Theorem 4.1. Let F be a hemi-slant Riemannian map from a Sasakian manifold (M,J, ξ, η, gm)
into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then F is harmonic if and only
if

trace|D2{F∗(T(.))(.)− CAJ(.)(.)− ωV∇J(.)(.) +∇J(.)F∗J(.)}+ trace|D1

{F∗(CT(.))φ(.) + ωV∇(.)φ(.) + CH∇(.)ω(.) + JT(.)(.)− sec2θTφ(.)φ(.)

− csc2θ(CAω(.)(.) + ωV∇ω(.)(.) + θAω(.)φ(.)) + csc2θ∇ω(.)F∗(ω(.))} = 0.



10 Rajendra Prasad and Shashikant Pandey

Proof. Let kerF∗ has an orthonormal frame {e1, e2, ....., es1 , ē1, ē1, ....., ēs2 ,
secθφē1, secθφē2, ......, secθφēs2 , ξ} such that {e1, e2, ....., es1} is an orthonormal frame ofD2 and
{ē1, ē1, ....., ēs2 , secθφē1, secθφē2, ......, secθφēs2} is an orthonormal frame of D1 and < ξ > is
vertical vector field orthogonal toD1 andD2. Therefore it follows that {Je1, Je2, ....., Jes, cscθωē1,
cscθωē2, ....., cscθω ¯es2} is an orthonormal frame of (kerF∗)⊥. Let for X ∈ Γ(D2) and Y ∈
Γ(D1), we define Ω(X,Y ) as

Ω(X,Y ) = (∇F∗)(X,X) + (∇F∗)(JX, JX) + (∇F∗)(Y, Y )

+ sec2θ(∇F∗)(φY, φY ) + csc2θ(∇F∗)(ωY, ωY ).

Therefore using (2.1) and (2.16), we obtain

Ω(X,Y ) = −F∗(∇XX) +∇JXF∗JX − F∗(J∇JXX) + F∗(J∇Y JY )

− sec2θF∗(∇φY φY ) + csc2θ∇FωY F∗(ωY )− csc2θF∗(∇ωY ωY ).

Now, using (3.3), (3.4) and (2.8)-(2.10), we obtain

Ω(X,Y ) = −F∗(TXX) +∇FJXF∗JX − F∗(CAJXX) + F∗(ωV∇JXX) + F∗(TY φY )

+ F∗(ωV∇Y φY ) + F∗(CH∇Y ωY ) + F∗(JTY ωY )− sec2θF∗(TφY φY )

+ csc2θ∇FωY F∗(ωY )− csc2θF∗(CAωY Y )− csc2θF∗(ωV∇ωY Y ) + csc2θF∗(AωY φY ).

which proves our assertion.

Theorem 4.2. Let F be a hemi-slant Riemannian map from a Sasakian manifold (M,J, ξ, η, gm)
into a Riemannian manifold (N, gn) with the hemi-slant angle θ. Then F is totally geodesic on
M if and only if

ωTUJV + CH∇UJV = 0,

H∇WωφZ + CH∇WωZ + ωTWωZ = 0,

H∇XωφZ + CH∇XωZ + ωAXωZ = 0

and
F∗(AXφBY +H∇XωBY ) + CH∇XCY + ωAXCY = ∇fXf∗(Y ),

for W ∈ Γ(kerF∗), U, V ∈ Γ(D1), Z ∈ Γ(D2) and X,Y ∈ Γ(kerF∗)⊥.

Proof. Using (2.1) and (2.16) for U, V ∈ Γ(D2), we get

F∗(J∇UJV ) = (∇F∗)(U, V.

Now, using (2.9), (3.3) and (3.4), we have

F∗(ωTUJV + CH∇UJV ) = (∇F∗)(U, V ). (4.1)

Since ξ ∈ Γ(kerF∗) and Z ∈ Γ(D1) and using (2.1), (2.16) and (3.3), which gives

F∗(∇Uφ2Z +∇UωφZ + J∇UωZ) = (∇F∗)(U,Z).

Then using (2.9), (3.4) and Theorem 3.4, we can obtain easily

F∗(H∇UωφZ + CH∇UωZ + ωTXωZ) = sin2θ(∇F∗)(U,Z). (4.2)

Proceeding in the same way, for X ∈ Γ((kerF∗)⊥) and Z ∈ Γ(D1), we have

F∗(H∇XωφZ + CH∇XωZ + ωAXωZ) = sin2θ(∇F∗)(X,Z). (4.3)

Using (2.1), (2.16) and (3.3) for X,Y ∈ Γ((kerF∗)⊥), we get

∇FXF∗(Y ) + F∗(∇XJBY ) + F∗(J∇XCY ) = (∇F∗)(X,Y )
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Now, using (2.10), (2.11), (3.3) and (3.4), we obtain

∇FXF∗(Y )− F∗(AXφBY −H∇XBY )− CH∇XCY − ω(AXCY = (∇F∗)(X,Y ). (4.4)

We get results from equations (4.1)-(4.4).
Now, we investigate the geometry of hemi-slant submersions with totally umbilical fibers.
So, first we recall that a fiber of a Riemannian map F is called totally umbilical if

TUV = gm(U, V )H (4.5)

for any U, V ∈ (KerF∗), where H is the mean curvature vector field of the fiber M . This fiber
is said to be minimal, if H = 0, identically.

Theorem 4.3. Let F be a proper hemi-slant Riemannian map with totally umbilical fibers from
a Sasakian manifold (M,J, ξ, η, gm) into a Riemannian manifold (N, gn). Then either the anti-
invariant distribution D2 is one dimensional or the mean curvature vector field H of any fiber
F−1(p), p ∈ N is perpendicular to JD2. Moreover, if φ is parallel, then H ∈ µ, Furthermore, if
ω is parallel then T ≡ 0.

Proof. Since F is a proper hemi-slant Riemannian map, then either dim(D2) = 1 or dim(D2) >
1. If dim(D2) = 1, it is obvious if dim(D2) > 1, then we can choose X,Y ∈ D2 such that
{X,Y } is orthonormal.
Using (2.7), (3.3), (3.4) and (2.14)

TXJY +H∇XJY = ∇XJY
= (∇XJ)Y + J∇XY

= φ∇̂XY + ω∇̂XY +BTXY + CTXY + g(X,Y )ξ.

Taking innerproduct with X , we obtain

gm(TXJY,X) = gm(φ∇̂XY,X) + gm(BTXY,X).

Using (2.14), we get
gm(TXJY,X) = −gm(TXY, JX). (4.6)

Then using (4.5) and (4.6), we obtain

gm(H,JY ) = gm(TXX, JY ) = −gm(TXJY,X) = gm(TXY, JX)

= gm(X,Y )gm(H,JX) = 0.

So, we observe that
H ∈ JD2. (4.7)

Now, if φ is parallel then using (2.14) and Lemma 3.3 for Z ∈ D1, we get

gm(H,ωZ) = gm(TXX,ωZ) = −gm(TXωZ,X)

= −gm(BTXωZ,X) = −gm(JTXωZ,X) = gm(TXωZ, JX) = 0.

So
H ∈ ωD1. (4.8)

Using (4.7) and (4.8), we observe that H ∈ µ. Further if ω is parallel then using (2.14) and
Lemma 3.3 for unit vector field X ∈ D2 and W ∈ µ, we get

gm(H,W ) = gm(TXX,W ) = gm(JTXX, JW ) = gm(BTXX + CTXX, JW )

= gm(TXφX, JW )

since φX = 0. Thus, we get H = 0, that is, the fibers are minimal. Since the fibers are also
totally umbilical, we obtain T ≡ 0 from (4.5).



12 Rajendra Prasad and Shashikant Pandey

5 Example

Example 5.1. For an Euclidean space R2n+1 with standard coordinates (x1, x2....x2n, x2n+1), we
can choose an almost contact structure J on R2n+1 as follows:

J(a1
∂

∂x1
+ ....+ a2n+1

∂

∂x2n+1
) = (−a2

∂

∂x1
+ a1

∂

∂x2
+ ....− a2n

∂

∂x2n
+ a2n−1

∂

∂x2n−1
)

where a1, a2, ...., a2n, a2n+1 are C∞ real valued function defined on R2n+1. Let ξ = ∂
∂x2n+1

,
η = dx2n+1 and g is usual inner product on R2n+1. Then (R2n+1, J, ξ, η, g) is an almost contact
metric structure on R2n+1. Throughout this section we will use this notion.

Example 5.2. Define a map F : R9 → R8 by
F (x1, x2, x3, x4, x5, x6, x7, x8, x9) = (x1−x3√

2
, 0, x4, x5, x6,

x7+x8√
2
, 0, 0)

Then the map F is hemi-slant Riemannian map such that
D1 = span{ 1√

2(
∂
∂x1

+ ∂
∂x3

), ∂
∂x2
}, D2 = span{ 1√

2(
∂
∂x7
− ∂

∂x8
)} and ξ = ∂

∂x9
with hemi-slant

angle θ = π
4 .

Example 5.3. Define a map F : R9 → R8 by
F (x1, x2, x3, x4, x5, x6, x7, x8, x9) = (x1+x3√

2
, 0, x4, x5, x6,

x7−x8√
2
, 0, 0)

Then the map F is hemi-slant Riemannian map such that
D1 = span{ 1√

2(
∂
∂x1
− ∂

∂x3
), ∂
∂x2
}, D2 = span{ 1√

2(
∂
∂x7

+ ∂
∂x8

)} and ξ = ∂
∂x9

with hemi-slant
angle θ = π

4 .

Example 5.4. Every semi-invariant Riemannian map from an almost contact metric manifolds
into a Riemannian manifold is a hemi-slant Riemannian map with θ = π

2 .

Example 5.5. Every slant Riemannian map from an almost contact metric manifold into a Rie-
mannian manifold is a hemi-slant Riemannian map with D2 = 0.

Example 5.6. Every slant submersion from an almost contact metric manifold into a Riemannian
manifold is a hemi-slant Riemannian map with (rangeF∗)⊥ = 0 and D2 = 0.

Example 5.7. Every hemi-slant submersion from an almost contact metric manifold into a Rie-
mannian manifold is a hemi-slant Riemannian map with (rangeF∗)⊥ = 0.
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