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Abstract In this paper, we introduce hemi-slant Riemannian maps from almost contact met-
ric manifolds into Riemannian manifolds as a generalization of anti-invariant Riemannian maps,
semi-invariant Riemannian maps and slant Riemannian maps from almost contact metric man-
ifolds into Riemannian manifolds. Further, we obtain necessary and sufficient c onditions for
integrability of distributions which are involved in the definition of hemi-slant Riemannian maps
and study the geometry of leaves. After it, we investigate the necessary and sufficient condi-
tion for hemi-slant Riemannian maps to be totally geodesic and harmonic. Finally, we obtain a
characterization theorem for the proper hemi-slant Riemannian maps from Sasakian manifolds
to Riemannian manifolds with totally umbilical fibers and also we provide some examples of
such maps.

1 Introduction

To compare the geometric structure defined on t wo Riemannian m anifolds, w e need suitable
types of maps between them. Some maps like an isometric immersion and Riemannian submer-
sion are used widely to compare the geometric structures between two Riemannian manifolds in
differential geometry. Firstly B. O’ Neill [3] and A. Gray [2] studied the map F' to be a Rieman-
nian submersion. Riemannian submersions between Riemannian manifolds equipped with dif-
ferentiable structure were studied by Watson in [4]. Watson also showed that the base manifold
and each fiber have the same kind of structure as the total space, in most cases [4] and [5]. As a
generalization of an isometric immersion, Riemannian submersion and an isometry Riemannian
maps are introduced by A. E. Fischer [1] and harmonic maps between Riemannian manifolds
in [14] and [19]. After that, there are lots of papers on this topic. Moreover, B. Sahin defined
slant Riemannian maps [6], Hemi-slant Riemannian maps [10], conformal Riemannian maps
[7], Conformal slant Riemannian maps [18], semi-invariant Riemannian maps [8], hemi-slant
submersion [12], studied the geometry of the total manifolds and the base manifolds by showing
the existence of such maps. Given a C*° -map F from a Riemannian manifold (M, g,,) to a Rie-
mannian manifold (N, g,, ), according to the conditions on the map F, we call F' a harmonic map
[1], a totally geodesic map [1], an isometric immersion [4], a semi-slant Riemannian submer-
sion [17], a Riemannian map [11], etc. Recently, K.S. Park studied many important results on
semi-slant Riemannian maps [15], almost h-semi-slant Riemannian maps [16]. R. Prasad and S.
Pandey obtained some interesting results on slant Riemannian map from an almost contact man-
ifold [20]. B. Sahin [9] studied and investigated the application of Riemannian submersions and
Riemannian maps on Hermitian manifolds . Motivated by above study, we are interested to study
hemi-slant Riemannian maps from almost contact metric manifolds to Riemannian manifolds.

2 Preliminaries

Let (M, g,,) and (N, g,,) be Riemannian manifolds, where M, N are C°° manifolds and g,,, g»
are Riemannian metrics on M, N respectively. Let F' : (M, g,,) — (N, g,,) be a C>°-map. We
call the map F' a C'°°-submersion if F' is surjective and the differential (F), has a maximal
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rank for any x € M. The map F' is said to be a Riemannian submersion if F' is a C'*° sub-
mersion and (F), @ (ker(F.)z)™, (9m)z) = (Tr@) N, (9n) r(x)) is a linear isometry for each
x € M, where (ker(F,),)* is the orthogonal complement of the space ker(F.), in the tan-
gent space T, M of M at x. We say F be a Riemannian map, if (F.), : (ker(F.).)", (gm)e —

((rangeF.) p(z), (gn) F(2)) is alinear isometry for each z € M, where (rangeF.) p(y) = (Fk)z)(ker(Fy)z)

forz € M. Let F : (M, gy) — (N, g,) be a C°°-map, we call the map F' a slant Riemannian
map, if F' is a Riemannian map and the angle # = 6(X) between JX and the space ker(F,), is
constant for nonzero X € ker(F), and z € M. We call the angle 6 a slant angle.

The map F is said to be anti-invariant Riemannian map if kerF, is anti-invariant with respect to
J such that J(kerF,) C kerFi-.

The map F' is said to be a semi-invariant Riemannian map if I is a Riemannian map and there
is a distribution D; C kerF, such that

kerF, = Dy @ Dy, J(Dy) = Dy, J(Dy) C (kerF,)*,

where D, is the orthogonal complement of D in kerF.
The map F' is said to be a semi-slant Riemannian map if F' is a Riemannian map and there is a
distribution D; C kerF., such that

kerF., = Dy ® D,, J(Dy) = Dy,

and the angle § = 6(X) between JX and the space (D;), is constant for nonzero X € (D;),
and z € M.

We call the angle 6 a slant angle. where D; is the orthogonal complement of D in kerF.

Let (M, g,,) and (N, g,,) be Riemannian manifolds, where M, N are C° manifolds and g, g,
are Riemannian metrics on M, N respectively. Now, we recall a useful results which are re-
lated to the second fundamental form and the tension field of Riemannian map. Let (17, g,,,) and
(N, g,) are Riemannian manifolds and suppose that F' : (M, g,,,) — (N, g,) is a smooth map be-
tween them. Then the differential F, of F' can be viewed a section of bundle Hom (T M, F~'TN)
M, where F~'TN is the pullback bundle which has fibers (F~'TN), = Tp, N,z € M.
Hom(TM,F~'TN) has a connection V induced from the Levi-Civita connection VM and the
pullback connection. The second fundamental form of F' is given by

(VE)(X,Y) =VEE(Y) - F.(VYY), 2.1)
for X, Y e I(TM).
Denote the range of F, by (rangeF,) as a subset of the pullback bundle F~!T'N with its orthog-
onal complement (rangeF, )", we have the following decomposition

F~'TN = rangeF, @ (rangeF,)™*.

Moreover, we have
TM = kerF, ® (kerF*)J‘.

It is known that the second fundamental form is symmetric and note that the second fundamental
form (VF,)(X,Y),VX,Y € ['(kerF,)*, of a Riemannian map has no component in rangeF.
More precisely we have the following.

Lemma 2.1. Let F' be a Riemannian map from a Riemannian manifold (M, g,,) to a Riemannian
manifold (N, g,,). Then

an(VE)(X,Y),F.(2)) = 0,VX,Y, Z € T((kerF,)™). (2.2)
As aresult of Lemma (2.1), we obtain
(VF,)(X,Y) e I'((rangeF,)*"),¥X,Y, € T'((kerF,)"b). (2.3)

For the tension field of a Riemannian map between Riemannian manifolds, we get the following
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Lemma 2.2. Let F : (M, g,n) — (N, gn) be a Riemannian map between Riemannian mani-
folds. Then the tension field T of F' is

7= —mF.(H) +myH,, (2.4)

where my = dim/(kerF,),my = rankF, H and H, are the mean curvature vector fields of the
distributions kerF, and rangeF, respectively.

Let F be a Riemannian map from a Riemannian manifold (M, g,,,) to a Riemannian manifold
(N, gn). Then we define 7 and A as

AgF = HVygVEF + VVygHF 2.5)

TeF = HVyEVF + VVypHEF (2.6)

for vector fields E,F on M, where V is the Levi-Civita connection of g,,. In fact one can see
that these tensor fields are O’Neill’s tensor fields which are defined for Riemannian submersions.
Forany E € I'(TM), Tg and Ag are skew-symmetric on (I'(T'M), g,,,) reversing the horizontal
and vertical distributions. It is also easy to see that 7 is vertical, 7z = Ty and A is horizontal,
A = Ay r. We note that the tensor field 7 satisfies

ToW = TwU 2.7)
1
AxY = —AxY = SV[X,Y]
for U,W € I'(kerF.,) and X,Y € I'(kerF,)= .
On the other hand, from (2.5) and (2.6), we obtain
VyW =Ty W + Vy W (2.8)
Vy X =HVy X +Ty X (2.9)
VxV =AxV +VVxV (2.10)
VxY = HVxY + AxY @.11)

for X, Y € I'((kerF,)*) and V,W € T'(kerF,), where VyW = VYV W.
Recall that F is said to be harmonic if we have the tension field

7(F) =trace(VF,) =0, (2.12)
and we call the tension field a totally geodesic map if
(VF)(X,Y) =0, (2.13)
for X, Y e I(TM).

Lemma 2.3. Let F' be a Riemannian map from a Riemannian manifold (M, g,,) to a Riemannian
manifold (N, g,,). Then the map F satisfies a generalized eikonal equation

2¢(F) = ||F.||* = rankF.

As we know, || F,||? is a continuous function on M and rank F is integer valued so that rank
F is locally constant. Hence, if M is connected, then rank F' is a constant function.
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2.1 Almost contact metric manifolds

An odd dimensional differentiable manifold M is said to have an almost contact structure (M, J, £, n)
if it carries a tensor field J of type (1, 1), a vector field £ and 1—form 1 on M respectively such
that

JP=—I+n®¢ JE=0,n0J =0, (&) =1, (2.14)

where I denotes identity tensor. An almost contact structure is said to be normal if N+dn®¢ = 0,
where NV is the Nijenhuis tensor of J. Suppose that a Riemannian metric tensor g, is given in
M and satisfies the condition

Im(JX,JY) = gm (X, Y) = 0(X)n(Y), gm(X,€) = n(X). (2.15)

Then (J, ¢, 1, gm) structure is called an almost contact metric structure. A manifold M with an
almost contact metric structure (J, &, 7, g, ) is called an almost contact metric manifold and is
denoted by (M, J, &, 1, gm)-

Define a tensor field ® of type (0,2) by ®(X,Y) = g(X, JY). If dy = P then an almost contact
metric structure is said to be normal contact metric structure. A normal contact metric structure
is called a Sasakian structure, which satisfies

(VXJ)Y = gm(Xv Y)§ - U(Y)X, (2.16)

Vx§=-JX, (2.17)

where V denotes the Levi-Civita connection of g,,,. For a Sasakian manifold (M, J, &, 7, gm), it
is known that

R(§,X)Y = gm (X, Y)E = n(Y)X, (2.18)
forall X,Y € I'(M)

3 Hemi-slant Riemannian maps from an almost contact metric manifold into
a Riemannian manifold

In this section, we introduce and study hemi-slant Riemannian maps from an almost contact
metric manifold into a Riemannian manifold. We give definition and we obtain necessary and
sufficient conditions for integrability of distributions and study the geometry of leaves for hemi-
slant Riemannian map.

Definition 3.1. Let (M, J, £, 7, g, ) be an almost contact metric manifold and (N, g,,) be a Rie-
mannian manifold. A Riemannian map F : (M, J, &, 1, gm) — (N, g,) is said to be a hemi-slant
Riemannian map if there is a distributions D and D, of kerF, of F' such that

kerFy, = D1 @ Dy® < & >, 3.1

where orthogonal complementry distributions D is slant and D, is anti-invariant. The angle
6 = 6(X) between JX and the space (D), is constant for nonzero X € (D;), and x € M,
where < £ > is one dimensional vector space orthogonal to distributions D and D; in kerFl.
We call the angle 0 is a hemi-slant angle.

We can easily observe the notion of hemi-slant Riemannian map is natural generalization
of both the notions of anti-invariant Riemannian maps, semi-invariant Riemannian maps and
slant Riemannian maps. More precisely, if we denote the dimension of D; and D, by p and ¢ ,
respectively, then we have the following:

(a) If p = 0, then M is an anti-invariant Riemannian map.

(b) If g =0 and # = 0, then M is an invariant Riemannian map.

(c)Ifg=0and 0 # 0, 5 , then M is a proper slant submersion with slant angle 6.

(d) If = 7 , then M is an anti-invariant Riemannian map.

We say that the hemi-slant Riemannian map F : (M, J,&,n, gm) — (N, gn) is proper if D, # 0
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and 0 # 0, 5.
For any X € I'(kerF,), we have

X =PX +QX +n(X)¢, (3.2)
where PX € D and QX € D, and we put
JX = ¢ X +wX, (3.3)

where ¢ X € T'(kerF,) and wX € ['(kerF,)*.
Also for any Z € T'(kerF,)*, we get

JZ =BZ+CZ, (3.4)

where BZ € T'(kerF,) and CZ € T'(kerF,)= .
Then the horizontal distribution = (kerF, )= is decomposed as

(kerF,)" =wDy @ JDy @ p, (3.5)

where p is orthogonal complementry distribution wD; & JD; and it is invariant distribution of
(ker F,)* with respect to J. As we have seen from above argument, anti- invariant Riemannian
map, semi-invariant Riemannian map and slant Riemannian map are all examples of hemi-slant
Riemannian map. Now, using equations (3.3), (3.4) and (3.5), we have following lemma:

Lemma 3.2. Let F' be a hemi-slant Riemannian map from an almost contact metric manifold
(M, J, €, 1, gm) into a Riemannian manifold (N, g,,). Then, we get

(i) Dy = Dy

(ii) $Ds = {0}

(iii) BwD; C D,

(iv) BJD; = D;.

Lemma 3.3. Let F' be a hemi-slant Riemannian map from an almost contact metric manifold
(M, J, &, 1, gm) into a Riemannian manifold (N, g,,). Then, we have

(i) * + Bw = —I +1® ¢ on kerF,,

(ii) C?+wB=—-Ion k:erF*J-,

(iii) B + BC = 0 on kerF,,

(iv) wp + Cw = 0 on kerF-.

Now, we deﬁAne A
@) (Vx@)Y = VxoY — ¢VxY
and
(i) (Vxw)Y = VxwY —wVxY for X,Y e ['(kerF,).
Then from (¢) and (i7), we get following lemma.

Lemma 3.4. Let F' be a hemi-slant Riemannian map from almost contact manifolds (M, J, &, 1, gm)
into Riemannian manifolds (N, g,,). Then, we have
¢ is parallel i.e.

V¢ =0« TxwY = BTxY,

w is parallel i.e.
Vw=0& TxoY = BTxY,

for XY € T'(kerF,).

Theorem 3.5. Let F' be a hemi-slant Riemannian map from an almost contact metric manifold
(M, J, &, 1, gm) into a Riemannian manifold (N, g,,) with the hemi-slant angle 0. Then, F is a
hemi-slant Riemannian map if and only if there exist a constant \ € [0, 1] and a distribution D
on (kerF,) such that

(1) D={X € kerF, : ¢* = -\I —n®¢)},

(2) for X € kerF, orthogonal to D, we get X = 0.

In this case A = cos® § and 0 is a hemi-slant angle of F.
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Proof. Let F be a hemi-slant Riemannian map from an almost contact metric manifold
(M, J,&,1m,gm) into a Riemannian manifold (N, g,) with the hemi-slant angle 6. Then for
X € (D), we get

(29
g =171 .
cos JX] (3.6)
If X eI'(D) =T(D1® < £ >) and X is not parallel to £, then we have
_ leX|
cost = TX|’
g (JX, ¢X)
cos) = =——————=
X[ X]
Using (3.3), we obtain
gm (90X, ¢X)
cost) = Z—————=
X[ X]
g (X, ¢*X)
cos) = I 2 (3.7)
[ X|loX]|
Now, using (2.14), (3.6) and (3.7), we get
¢*X = —cos” 0(X — n(X)¢), (3.8)
for X € [(D). If A = cos? 6, then
$1X = =X = n(X)g), (3.9)

for X e I'(D).
Conversely, Let there exist a constant A for X € I'(kerF,) such that ¢> = —\(I — n ® &) is
satisfied. Then X € I'(D), we have

cosf = ImlJX, 9X)
[JXloX]|
gm(¢X, 9X)
cosh = =———————~
[JX[oX]|
So, we obtain
(¢ X]|
0=——
cos x|
since cos) = % then we get from above \ = cos?f, which implies that 6 is constant. Clearly

(2) is obvious.

Lemma 3.6. Let F' be a hemi-slant Riemannian map from an almost contact metric manifold
(M, J, €, 1, gm) into a Riemannian manifold (N, g,,) with hemi-slant angle 0. Then, we obtain

g (06X, 0Y) = cos*0g,,(X,Y), (3.10)

Im (WX, wY) = 5in*0g,,(X,Y), (3.11)
Sforany X, Y € T'(Dy).

The proof of above Lemma is exactly the same with slant immersions (see [13], for Sasakian
case). Therefore, we omit its proof.
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Lemma 3.7. Let F' be a hemi-slant Riemannian map from an almost contact metric manifold
(M, J, &, 1, gm) into a Riemannian manifold (N, g,,) with the hemi-slant angle 0. if w is parallel
with respect to V on kerF, then we have

Tox X = —cos?0(Tx X — n(X)Tx€) (3.12)
for X € T'(kerF,).
Proof. If w is parallel, from (3.3), we get
CTxY = Tx¢Y, (3.13)
for X,Y € I'(kerF.). Interchange X and Y in equation (3.13), we obtain
Tx oY =Ty ¢pX. (3.14)
Replacing Y by ¢X in above equation and then using Theorem (3.4), we obtain our result.

Theorem 3.8. Let F' be a hemi-slant Riemannian map from an almost contact metric manifold
(M, J, &, 1, gm) into a Riemannian manifold (N, g,,) with the hemi-slant angle 6. Then the dis-
tribution D,® < & > is integrable.

Proof. Let for X, Y € I'(D>® < € >) and W € I'(D,), we get

3dw(X,Y, W) = Xw(Y, W) + Yw(W, X) + Ww(X,Y) — w([Y, W], X)
- w([Xv Y]v W) - w([W, X]7Y)7

where w(X,Y) = g, (X, JY) is the fundamental 2— form of M which vanish for an almost
contact metric manifold. Thus we obtain

gm([X, Y], 6W) = 0. (3.15)
Thus proof is complete.

Theorem 3.9. Let F' be a hemi-slant Riemannian map from an almost contact metric manifold
(M, J, &, 1, gm) into a Riemannian manifold (N, g,,) with the hemi-slant angle 6. Then the dis-
tribution D1 ® < & > is integrable if and only if

Im(TywodZ — TzweY, X) = g (VE)(Y,wZ) — (VE)(Y,wZ), F.(JX)),
forX € DyandY,Z € T(D1® < £ >).

Proof. Let for X € D, and Y, Z € I'(D1& < & >). Then using (2.1), (3.3) and (3.4), we
obtain

gn([Y. 2], X) = gn(J[Y, Z], JX) = —gm(VywodZ, X) + g (V z08Y, X)
+ g (VywZ, JX) — gm(VzwY, JX).

Now using (2.9) and Theorem 3.4 in above equation, we have
5in*gm([Y, 2], X) = gm(TywoZ — TzwdY, X) + gm(HVywZ — HV zwY, JX)
Using equation (2.1), we have
g (TywoZ — TzwoY, X) = g, (VF.)(Y,wZ) — (VE,)(Y,wZ), F.(J X)),
for X € Dyand Y, Z € I'(Dy).

Now, here we give results for leaf of the distribution D@ < £ > and for the leaf of the distribu-
tion D& < € >.
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Theorem 3.10. Let F' be a hemi-slant Riemannian map from almost contact manifolds (M, J, &, 1, gm )
into Riemannian manifolds (N, g,,) with the hemi-slant angle 6. Then the distribution D& <
& > defines a totally geodesic foliation on M if and only if

gm(7—ZW¢K X) = gn((VF*)(K UJZ)v F*(JX))7
forX € DyandY,Z € T(D1® < £ >).
In a similar pattern, we have the following result.

Theorem 3.11. Let F' be a hemi-slant Riemannian map from an almost contact metric mani-
Jold (M, J, £, 1, gm) into a Riemannian manifold (N, g,,) with the hemi-slant angle 0. Then the
distribution D,® < € > defines a totally geodesic foliation on M if and only if

gm(TxwZ,Y) = gn(VF.)(X,wZ), F.(JX)),
for XY € Dy® < & >and Z € T'(Dy).

Theorem 3.12. Let F' be a hemi-slant Riemannian map from an almost contact metric mani-
Jold (M, J, £, 1, gm) into a Riemannian manifold (N, g,,) with the hemi-slant angle 0. Then the
distribution kerF), defines a totally geodesic foliation on M if and only if

gm(Tx JY, BW) = g, ((VE,) (X, JY),CW),

and
gn(quSZF*(CW)7 F*(WX)) + gn(waF*(WX)a F*(CZW)) = 9m
—9m

—~

BW, A,gzwX)

WWeasz BW 4 AuyzCW, ¢ X)

X, ApzC*W) 4 g (wZ, TxwBW)
VV,z06X + AyzwX, BCW)

+ 9m

P

—9m
for X € U(kerF.,),Y € Dy, Z € Dy and W € T((kerF,)*)

Proof. Let us suppose X € ['(kerF.),Y € D, and W € ['((kerF,)"), using (2.3), (2.8)
and (3.4), we get

gm(VxY, W) = g (JVxY, JW)
= g (HV x JY,CW) + gm(Tx JY, BW),
from (2.1) and (2.3), we have
gm(VxY, W) =g, (VE)(X,JY),CW) + g (Tx JY, BW).
Now, for Z € Dy, using (2.1), (2.10), (3.3), (3.4) and Theorem 3.3, we obtain
5in20gm(Vx Z) = —gm(HV xwdZ, W) + gm(HV xwZ, CW)
+ gm(TxwZ, BW).
Since [W, X| € T'(kerF,), for W € T'((kerF,)*) and X € ['(kerF,), we get
gm(HV xwdpZ, W) = —gm(Vwez W, X).
Now, using (2.1), (2.10), (2.11), (3.3) and (3.4), we have
G (HV xwpZ, W) = —gm(Awpz BW, wX) — gm (VVuez BW, 0 X)
= 9m(HVwpzCW,wX) = gm(AuszCW, ¢X).
Then using (2.1), we get
Im(HV xwdZ, W) = —gm (AwpzBW,wX) — gm(VViupzBW + AuezCW, 9 X)
= 9n(VugpzFast(CW), Fi(wX)).
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In similar pattern, we can easily get
Im(HV xwZ,CW) = =g (Auz¢6X,C°W) + g (VVuz¢X + AyzwX, BCW)
+ 9n(Vuz Fu(wX), F(C?W)).
Thus putting (3.18) and (3.19) in (3.17), we obtain
sin*0gm (Vx Z,W) = —gim(Awgz BW,wX) = g (VVWusz BW + AuszCW, ¢ X)

= 9n(Vaoz F(CW), Fu(wX) = g (Auzd X, C*W)
+ 9m(VVuzdX + ApzwX, BOW) + g, (Va7 Fu(wX), F. (C?W))
+ gm(TxwZ, BW).

Then using (3.16) and (3.20), we get required result.

Theorem 3.13. Let F' be a hemi-slant Riemannian map from an almost contact metric mani-
Jold (M, J, £, 1, gm) into a Riemannian manifold (N, g,,) with the hemi-slant angle 0. Then the
distribution (kerF,)* defines a totally geodesic foliation on M if and only if

gm(BY, AxJZ) = g,(VxF.(CY),F.(JZ)),

and
Im(AxBY,wZ) = gno(Fu(CY), Vx Fu(wZ)) — gn(Fu(Y),VxFi(w9Z)),

for X, Y € T((kerF.)*) and Z € T(Dy).
Proof. For X,Y € I'(kerF,)* and W € I'(D,), using (2.16), (2.10) and (2.11), we have
Im(VxY, W) = g(HVxCY + AxBY, JW).

Then using (2.1), we get

Im(VxY, W) = g,(VxF.(CY), F,(JW)) 4 gm(Ax BY, JW). (3.16)
Now, using theorem 3.4 for Z € I'(D;), we obtain

51209 (Vx Y, W) = g (Y, HV xwdZ) — g (CY, HV xwZ) — gm(BY, AxwZ).
From equations (2.1) and (2.3), we can easily get
5in*0g,m(VxY, W) = gn(Fu(Y), Vx Fu(w$Z)) — gn(Fu(CY ), Vx Fu(wZ))
— gm(BY, AxwZ). (3.17)

Then from (3.16) and (3.17), we get our results.

4 Harmonicity of hemi-slant Riemannian maps from a Sasakian manifold
into a Riemannian manifold

In this section, we find necessary and sufficient condition for hemi-slant Riemannian maps from
a Sasakian manifold into a Riemannian manifold to be harmonic and totally geodesic. Also, we
obtain a characterization theorem for the proper hemi-slant Riemannian maps from a Sasakian
manifold into a Riemannian manifold and we give some examples of such maps.

Theorem 4.1. Let F be a hemi-slant Riemannian map from a Sasakian manifold (M, J, &, 1, gm)
into a Riemannian manifold (N, g,,) with the hemi-slant angle 0. Then F is harmonic if and only

if
trace| p,{ Fu(T())(.) = CA;) () = wVV ) () + V) FuJ ()} + trace| p,
{F.(CT())o(.) + wVV(0(.) + CHV yw(.) + JT()(.) — sec*0Ty,o(.)
— cscze(C’Aw(,)(.) + wVVw(J(.) + HAW(.@(.)) + csczevw(,)F* (w(.))}=0.
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Proof. Let kerF has an orthonormal frame {e;, ey, ....., €5, €1, €1, -...., Es,,
sechpe, secloe, ...... , secOgé,,, £} such that {ej, es, ....., €5, } is an orthonormal frame of D, and
{€1,€1, ..., Es,, sSECOPE], SECOPES, ...... , seclpés, } is an orthonormal frame of Dy and < £ > is
vertical vector field orthogonal to D and D,. Therefore it follows that { Je;, Jey, ....., Jes, cscOwéq,
cscfwéy, ..., cscwes, } is an orthonormal frame of (kerF,)*. Let for X € I'(D;) and Y €
I'(Dy), we define Q(X,Y) as

QX,Y) = (VE)(X,X) + (VFE)(JX,JX) + (VE)(Y,Y)
+ 5ePO(VF,) (@Y, ¢Y) + csc?0(VE,)(wY,wY).
Therefore using (2.1) and (2.16), we obtain
QX,Y) = —F.(VxX)+ VixF.JX — F,(JV;xX) + F.(JVyJY)
— 5ec®0F, (Vy oY) + es?OVEy, F(wY) — csc®0F, (VoywY).

Now, using (3.3), (3.4) and (2.8)-(2.10), we obtain
Q(X,Y) = —F.(TxX) + ViyF.JX — F,(CA;x X) + F.(wVV x X) + F.(Ty ¢Y)

+ F(wVVy @Y ) + F(CHVywY) + Fu(JTywY) — sec?0F. (Toy ¢Y)

+ es?OVEy Fo(wY) — esc®0F (CALyY) — csc?0F, (wVV oy Y) + csc®0F (ALy Y).
which proves our assertion.

Theorem 4.2. Let F be a hemi-slant Riemannian map from a Sasakian manifold (M, J, &, 1, gm)
into a Riemannian manifold (N, g,,) with the hemi-slant angle 0. Then F is totally geodesic on
M if and only if

wTyJV + CHVyJV =0,

HVwwodZ + CHVwwZ + wTwwZ =0,
HY xwpZ + CHV xwZ + wAxwZ =0

and
F.(Ax¢BY +HVxwBY) 4+ CHVxCY + wAxCY = VL f.(Y),

for W € T(kerF,),U,V € T(Dy),Z € T(D,) and X,Y € ['(kerF,)*.
Proof. Using (2.1) and (2.16) for U,V € I'(D,), we get
F,(JVyJV) = (VE)(U,V.
Now, using (2.9), (3.3) and (3.4), we have
F.(wTyJV + CHVyJV) = (VE)(U, V). (4.1
Since ¢ € I'(kerF,) and Z € I'(D; ) and using (2.1), (2.16) and (3.3), which gives
F.(Vu¢*Z + VywoZ + IVywZ) = (VE)(U, Z).
Then using (2.9), (3.4) and Theorem 3.4, we can obtain easily
F.(HVywoZ + CHVywZ + wTxwZ) = sin*0(VF,) (U, Z). (4.2)
Proceeding in the same way, for X € I'((kerF,)*) and Z € T'(D;), we have
F.(HVxwéZ + CHV xwZ + wAxwZ) = sin*0(VF,)(X, Z). (4.3)
Using (2.1), (2.16) and (3.3) for X,Y € ['((kerF.)*), we get

VEF.(Y)+ F.(VxJBY) + F.(JVxCY) = (VE.)(X,Y)
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Now, using (2.10), (2.11), (3.3) and (3.4), we obtain
VEF(Y) - F.(Ax¢BY —HVxBY) — CHVxCY —w(AxCY = (VFE)(X,Y). (44

We get results from equations (4.1)-(4.4).
Now, we investigate the geometry of hemi-slant submersions with totally umbilical fibers.
So, first we recall that a fiber of a Riemannian map F' is called totally umbilical if

TV = gu(U.V)H (4.5)

for any U,V € (KerF,), where H is the mean curvature vector field of the fiber M. This fiber
is said to be minimal, if H = 0, identically.

Theorem 4.3. Let F' be a proper hemi-slant Riemannian map with totally umbilical fibers from
a Sasakian manifold (M, J,&,n, gm) into a Riemannian manifold (N, g,,). Then either the anti-
invariant distribution D, is one dimensional or the mean curvature vector field H of any fiber
F~Y(p),p € N is perpendicular to JD?. Moreover, if ¢ is parallel, then H € 1, Furthermore, if
w is parallel then T = 0.

Proof. Since F is a proper hemi-slant Riemannian map, then either dim(D;) = 1 or dim(D;) >
1. If dim(D,) = 1, it is obvious if dim(D,) > 1, then we can choose X,Y € D, such that
{X,Y} is orthonormal.
Using (2.7), (3.3), (3.4) and (2.14)
TxJY + HVxJY =VxJY
= (VxJ)Y + JVxY

= ¢VxY +wVxY + BTxY + CTxY + g(X,Y)E.
Taking innerproduct with X, we obtain
9n(Tx JY. X) = gu(#VxY, X) + gu(BTxY, X).

Using (2.14), we get
gn(Tx TV, X) = —gu(Tx Y, JX). 4.6)
Then using (4.5) and (4.6), we obtain
= gm(X,Y)gm(H,JX) =0.

So, we observe that

He JD,. (4.7
Now, if ¢ is parallel then using (2.14) and Lemma 3.3 for Z € Dy, we get

gm,(vaz) = gnL(TXX» WZ) = 79777,(TXWZ7X)
= —gm(BTxwZ,X) = —gm(JTxwZ, X) = gn(TxwZ,JX) = 0.

So

H cwD;. (4.8)

Using (4.7) and (4.8), we observe that H € y. Further if w is parallel then using (2.14) and
Lemma 3.3 for unit vector field X € D, and W € p, we get

I (HW) = g (Tx X, W) = g (JTx X, JW) = g (BTx X + CTx X, JW)
= gm(Tx¢X, JW)

since $X = 0. Thus, we get H = 0, that is, the fibers are minimal. Since the fibers are also
totally umbilical, we obtain 7' = 0 from (4.5).
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5 Example

Example 5.1. For an Euclidean space R?"*! with standard coordinates (21,22 Top, Topi1), WE
can choose an almost contact structure J on RZ"t! as follows:

Ja—+ ... +a )= (gt g i)
oy T T @) = (Fag s Bm T T P B, T B
where a1, a, ..., aopn, aony1 are C™ real valued function defined on R?"*!. Let ¢ = m

n = dxa,+1 and g is usual inner product on R*"*!. Then (R*"*!, J £, 1, g) is an almost contact
metric structure on R>"*!. Throughout this section we will use this notion.

Example 5.2. Define a map F : R° — R® by

F(Z‘l, L2, T3, T4,T5,T6, L7, T8, a’:g) = ( ]\[ s T5,T6, Ll}—gx 0 O)

Then the map F' is hemi-slant Riemannian map such that

D, = span{ﬁ(a% + 823), 8162} Dy = span{ \/2(077 - 873)} and { = - with hemi-slant
angle 0 = 7.

Example 5.3. Define amap F : R’ — R® by

F(x1, 22, 23, 24,25, %6, 7, 78, 09) = (*-52,0, 24, 25, w6, “5%,0,0)

Then the map F is hemi-slant Riemannian map such that

D, = span{ﬁ(a%l - 8%3)7 6%2}, D, = span{ﬁ(a%7 + 8%8)} and { = 5 - with hemi-slant
angle 6 = 7.

Example 5.4. Every semi-invariant Riemannian map from an almost contact metric manifolds
into a Riemannian manifold is a hemi-slant Riemannian map with 6 = 7.

Example 5.5. Every slant Riemannian map from an almost contact metric manifold into a Rie-
mannian manifold is a hemi-slant Riemannian map with D, = 0.

Example 5.6. Every slant submersion from an almost contact metric manifold into a Riemannian
manifold is a hemi-slant Riemannian map with (rangeF,)* = 0 and D, = 0.

Example 5.7. Every hemi-slant submersion from an almost contact metric manifold into a Rie-
mannian manifold is a hemi-slant Riemannian map with (rangeF.,)* = 0.
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