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Abstract The object of the present paper is to study some curves on three-dimensional trans-
Sasakian manifolds with Lorentzian metric. Here we study biharmonic almost contact curves
and slant curves on three-dimensional Lorentzian trans-Sasakian manifolds. We also consider
C-loxodrome and C-parallel curves. An example is given.

1 Introduction

After the work of Baikoussis and Blair [1], the study of curves on contact manifolds has become
a popular topic. They have studied Legendre curves on contact three-manifolds. In the study of
contact manifolds, Legendre curves play an important role, e.g., a diffeomorphism of a contact
manifold is a contact transformation if and only if it maps Legendre curves to Legendre curves.
In [2], the authors have studied Legendre curves on Lorentzian Sasakian manifolds. Trans-
Sasakian manifolds form an important class of almost contact manifolds. It generalizes a large
number of contact and almost contact manifolds. Recently, in the paper [4] Lorentzian trans-
Sasakian manifolds was studied. For detailed references on Lorentzian trans-Sasakian manifolds
we refer [4]. Recently, in [6] a large class of almost contact manifolds was studied admitting dif-
ferent types of curves. The present author has studied some curves on trans-Sasakian manifolds
admitting semi-symmetric metric connections [14]. The present paper is organized as followes:

We give the required preliminaries and some basic results in Section 2. Section 3, contains the
study of slant curves on Lorentzian trans-Sasakian manifolds. In Section 4, we study biharmonic
almost contact curves on three-dimensional Lorentzian trans-Sasakian manifolds. Section 5, is
devoted to study C-loxodrome and C-parallel slant curves. Finally we construct an example of
three-dimensional Lorentzian trans-Sasakian manifold.

2 Priliminaries

Let M be a (2n + 1)- dimensional connected differentiable manifold together with an almost
contact metric structure (φ, ξ, η, g), where φ is a (1, 1) tensor field, ξ is a vector field, η is a
1-form and g is a Lorentzian metric such that

φ2(X) = X + η(X)ξ, (2.1)

φξ = 0, η(φX) = 0, ηφ = 0, η(ξ) = −1, η(X) = g(X, ξ), (2.2)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), g(X,φY ) = −g(φX, Y ), (2.3)

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX), ∀X,Y ∈ T (M). (2.4)

Then M is called a Lorentzian trans-Sasakian manifold. Also a Lorentzian trans-Sasakian man-
ifold M satifies

∇Xξ = −α(φX)− β(X + η(X)ξ), (2.5)
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(∇Xη)Y = αg(φX, Y ) + βg(φX, φY ), (2.6)

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric
g. If α = 0 and β ∈ R, the set of real numbers, then the manifold reduces to a Lorentzian
β−Kenmotsu manifold studied by Yaliniz et al [15]. If β = 0 and α ∈ R, then the manifold
reduces to a Lorentzian α-Sasakian manifold studied by Yildiz, Turan and Murathan [16]. If
α = 0 and β = 1, then the manifold reduces to a Lorentzian Kenmotsu manifold introduced by
Mihai, Oiaga and Rosca [8]. Furthermore, if β = 0 and α = 1, then the manifold reduces to a
Lorentzian Sasakian manifold studied by Ikawa and Erdogan [7]. Also Lorentzian para contact
manifolds were introduced by Matsumoto [9] and futher studied by the authors [10], [11], [12].
Trans Lorentzian para Sasakian manifolds have been used by Gill and Dube [5].

Lemma 2.1. The Riemannian curvature tensorR in a three-dimensional Lorentzian trans-Sasakian
manifold is given by [4]

R(X,Y )Z =(
r

2
+ 2ξβ − 2(α2 + β2) + 2ψ(ξα− 2αβ))[g(Y, Z)X − g(X,Z)Y ]

+ g(Y, Z)[(
r

2
+ ξβ − 3(α2 + β2)− 4αβψ)η(X)ξ

+ η(X)(φ(gradα)− ψ(gradα)− gradβ)− (Xβ − (φX)α) + ψ(Xα))ξ]

+ g(X,Z)[(
r

2
+ ξβ − 3(α2 + β2)− 4αβψ)η(Y )ξ

+ η(Y )(φ(gradα)− ψ(gradα)− gradβ)− (Y β − (φY ) + ψ(Y α))ξ]

+ [(
r

2
+ ξβ − 3(α2 + β2)− 4αβψ)η(Y )η(Z)

+ η(Y )(−Zβ + (φZ)α− ψ(Zαψ))− η(Z)(Y β − (φY )α+ ψ(Y α))]X

− [(
r

2
+ ξβ − 3(α2 + β2)− 4αβψ)η(X)η(Z))

+ η(X)(−Zβ + (φZ)α− ψ(Zαψ))− η(Z)(Xβ − (φX)α+ ψ(Xα))]Y

+ (2αβ − ξα)[g(φY,Z)X − g(φX,Z)Y ],

(2.7)

where ψ =
3∑
i=1

εig(φei, ei). and εi = g(ei, ei), εi = ±1. r is the scalar curvature of the

manifold M with respect to Levi-Civita connection.

Lemma 2.2. In a Lorentzian trans-Sasakian manifold [4], we have

R(X,Y )ξ =(α2 + β2)(η(Y )X − η(X)Y )

+ 2αβ(η(Y )φX − η(X)φY )

+ (Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y,

(2.8)

where R is the curvature tensor.

Lemma 2.3. For a Lorentzian trans-Sasakian manifold [4], we have

R(ξ, Y )ξ = (α2 + β2 − ξβ)φ2Y + (2αβ − ξα)φY. (2.9)

Lemma 2.4. In a (2n+ 1)-dimensional Lorentzian trans-Sasakian manifold [4], we have

S(X, ξ) =(2n(α2 + β2)− ξβ)η(X) + (2n+ 1)(Xβ)

− (φX)α+ ψ(2αβη(X) +Xα),
(2.10)

Qξ =(2n(α2 + β2)− ξβ)ξ + (2n− 1)gradβ

− φ(gradα) + ψ(2αβξ + gradα),
(2.11)

where S is the Ricci curvature andQ is the Ricci operator given by S(X,Y ) = g(QX,Y ), ψ =
2n+1∑
i=1

εig(φei, ei), and εi = g(ei, ei), εi = ±1.
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Let M be a 3-dimensional Riemannian manifold. Let γ : I → M, I being an interval, be a
curve inM which is parameterized by arc length, and let∇γ̇ denotes the covariant differentiation
along γ with respect to the Levi-Civita connection on M. It is said to that γ is a Frenet curve if
one of the following three cases holds:

(a) γ is of osculating order 1, if, ∇TT = 0 (geodesic), T = γ̇. Here, . denotes differentiation
with respect to the arc length.

(b) γ is of osculating order 2, if,there exist two orthonormal vector fields T (= γ̇), N and a
non-negative function κ (curvature) along γ such that ∇TT = κN, ∇TN = −κT.

(c) γ is of osculating order 3, if, there exist three orthonormal vectors T = (γ̇), N,B and two
non-negative function κ(curvature) and τ (torsion) along γ such that

∇TT = κN, (2.12)

∇TN = −κT + τB, (2.13)

∇TB = −τN, (2.14)

Where T = γ̇ and {T,N,B}is the Frenet frame κ and τ are the curvature and torsion of the
curve. With respect to Levi-Civita connection, a Frenet curve of osculating order 3 is called a
Geodesic if κ = 0. It is called a circle if κ is a positive constant and τ = 0. The curve is called
a helix in M if κ and τ both are positive constants and the curve is called a generalized Helix if
κ
τ = constant.

A Frenet curve γ in an almost contact metric manifold is said to be a Legendre curve or
almost contact curve if it is an integral curve of the contact distribution D = kerη. Formally, it is
said that a Frenet curve γ in an almost contact metric manifold is a Legendre curve if and only if
η(γ̇) = 0 and g(γ̇, γ̇) = 1. For more details we refer [13].

3 SLANT CURVES IN LORENTZIAN TRANS-SASAKIAN MANIFOLDS

Definition 3.1. A unit speed curve γ in an almost contact metric manifold M(φ, ξ, η, g) is said
to be slant if its tangent vector field makes constant angle θ with ξ i.e., η(γ̇) = cos θ is constant
alonge γ.

By definition, slant curves with constant angle π
2 are called almost Legendre curves or almost

contact curves.
Consider a slant curve γ on a Lorentzian trans-Sasakian manifold. We get by definition

g(T, ξ) = cos θ,

where θ is a constant. Differentiating both side with respect to T we get

∇T g(T, ξ)− g(∇TT, ξ)− g(T,∇T ξ) = 0. (3.1)

Using (2.5) in the above equation we get,

−κη(N) + β + cos2 θ = 0, (3.2)

where {T,N,B} is a Frenet frame with T = γ̇. From above we get

κη(N) = cos2 θ + β. (3.3)

In particular, let θ = π
2 , i.e., the curve is Legendre curve, then we get β = 0. Therefore, we can

conclude the following:

Theorem 3.1. If a three-dimensional Lorentzian trans-Sasakian manifold of type (α, β) admits
a Legendre curve, then the manifold is not β-Kenmotsu manifolds.

In particular, let θ 6= 0, then κ = cos2 θ+β
κ(N) . Thus we obtain the following:
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Theorem 3.2. On a three-dimensional Lorentzian trans-Sasakian manifold of type (α,−1), the
integral curve of Reeb vector field is a geodesic.

We also obtain the following:

Theorem 3.3. On a three-dimensional trans-Sasakian manifold of type (α, 0), a proper (0 < θ <
π
2 ) slant curve is of positive curvature.

Remark 3.4. The curvature of a slant curve on a Lorentzian trans-Sasakian manifold of type
(α, β) is independent of α.

4 BIHARMONIC LEGENDRE CURVES ON LORENTZIAN
TRANS-SASAKIAN MANIFOLDS

Definition 4.1. A unit speed smooth curve γ on a Lorentzian trans-Sasakian manifold is called a
Legendre curve [2] if it satisfies η(γ̇) = 0.

Definition 4.2. A Legendre curve γ on a three-dimensional Lorentzian trans-Sasakian manifold
will be called biharmonic [13] if it satisfies

∇3
TT − κR(N,T )T = 0, (4.1)

where T = γ̇.

Let us consider a Legendre curve γ. Let T be the unit tangent vector field of the Legendre
curve. To maintain orientation let T, ξ, φT be a orthonormal right handed system where φT =
−B,φB = T . It is to be mentioned that such assumption is compatible with almost contact
structure. We take {T, ξ, φT} as Frenet frame.

Then the equation (4.1) reduces to the following:

∇3
TT − κR(N,T )T = 0. (4.2)

By Serret-Frenet formula we get

∇3
TT = −3κκ′T + (κ′′ − κ3 − κτ 2)N + (2τκ′ + κτ ′)B. (4.3)

For Legendre curve η(T ) = 0, η(N) = 0, because we have considered the Frenet frame
T,N = φT,B = φT. Using these facts in (2.7) we get, after simplification

R(ξ, T )T = (α2 + β2)ξ + ψ(ξα)ξ − (−Tβ + (φT )α− ψ(Tα))T. (4.4)

Now in the view of (4.3) and (4.4), it follows that

∇3
TT − κR(ξ, T )T =κ(−3κ′ − Tβ + (φT )α− ψ(Tα)T

+(κ′′ − κ3 − κτ 2 − κ(α2 + β2)− κψ(ξα))ξ
+(2τκ′ + κτ ′)B.

(4.5)

From the first component we get

κ = 0, or, −3κ′ − Tβ + (φT )α− ψ(Tα) = 0. (4.6)

From second component we get

κ′′ − κ3 − κτ 2 − κ(α2 + β2)− κψ(ξα) = 0. (4.7)

And from the third component we get

2τκ′ + κτ ′ = 0 (4.8)

If κ 6= 0 and α, β are constants, then from (4.7) and (4.8) we get

κ = ±
√

2τ. (4.9)

Hence we are in position to state the following:

Theorem 4.3. In a three-dimensional Lorentzian trans-Sasakian manifold of type (α, β) a bihar-
monic almost contact (Legendre) curve is a geodesic or a helix where α, β are constants.
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5 C-LOXODROME AND C-PARALLEL IN LORENTZIAN
TRANS-SASAKIAN MANIFOLDS

Definition 5.1. A unit speed curve γ in a Lorentzian trans-Sasakian manifold is said to be a
C-loxodrome if it satisfies [6]

∇TT = rη(T )φT. (5.1)
Here r is a constant. In a Lorentzian trans-Sasakian manifold we have for C-loxodrome

η(T )′ = β(1− (η(T ))2) (5.2)

Then we can state the following:

Theorem 5.2. In a three-dimensional Lorentzian trans-Sasakian manifold of type (α, β), the
contact angle is not necessarily constant. It is so if β = 0.

Definition 5.3. Let γ be a unit speed curve in an almost contact metric 3-manifold. Then γ is
said to have C-parallel mean curvature vector field if

g(∇TH,X) = 0, (5.3)

for all X ∈ TM orthogonal to ξ.

Also we can say that γ has C-parallel mean curvature vector field if and only if there exist a
differentiable function λ such that

∇TH = λξ. (5.4)
Putting H = ∇TT and if {T,N,B} is a Frenet frame then (5.4) implies

−κ2T + κ′N + κτB = λξ. (5.5)

Taking inner product of the above equation with T,N,B respectively we get

η(T ) = −1
λ
κ2, (5.6)

η(N) =
1
λ
κ′, (5.7)

η(B) =
1
λ
κτ. (5.8)

But for a slant curves with constant slant angle θ, η(T ) = cos θ, hence from (5.6) we get

κ2 = −λ cos θ. (5.9)

By virtue of (2.5), (5.7), (5.9) and (∇T g)(T, ξ) = 0 it follows after simplification that

κ′

κ
cos θ − β + β cos2 θ = 0. (5.10)

If β = 0, θ = 0, it follows that κ = constant, (κ 6= 0). So, we state

Theorem 5.4. The curvature κ of a C-parallel Reeb flow in a three-dimensional trans-Sasakian
manifold of type (α, 0) is a constant.

By virtue of (5.5) it follows that ξ ∈ span{T,N,B}. So we can write

ξ = cos θT + sin θ(cosΨN + sinΨB), (5.11)

where Ψ is the angle function between N and the orthogonal projection of ξ on to span{N,B}.
Taking inner product of ξ with N and B respectively, and using (5.11), (5.9) and the Theorem
5.4. we find

cosΨ = 0, sinΨ = −τ cot θ
κ

. (5.12)

Hence from above we get
τ 2 = κ2 tan θ. (5.13)

For the Reeb flow θ = 0. So by virtue of (5.13) and the Theorem 5.4. we state the following:

Theorem 5.5. The Reeb flow on a three-dimensional Lorentzian trans-Sasakian manifold of type
(α, 0) is a circle.
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6 Example

In this section we like to construct an example of a three-dimensional Lorentzian trans-Sasakian
manifold and then Legendre curve on it. Let us consider a 3-dimensional manifold M =
{(x, y, z) ∈ R3 : z 6= 0}, where (x, y, z) are the standard coordinates in R3.

Let e1 = z ∂
∂x , e2 = z ∂

∂y and e3 = z ∂
∂z , which are linearly independent vector fields at each

point of M. Let g be a Riemannian metric define by
g(e1, e2) = g(e2, e3) = g(e1, e3) = 0, g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1.

Let η be 1-form defined by η(Z) = g(Z, e3), for any Z ∈ TM and φ be the tensor field of type
(1, 1) defined by φe1 = −e2, φe2 = −e1, φe3 = 0. Then by applying linearity of φ and g, we
have

η(e3) = −1, φ2Z = Z + η(Z)e3, g(φZ, φU) = g(Z,U) + η(Z)η(U), for any Z,U ∈ TM.
Hence for e3 = ξ, (φ, ξ, η, g) defines a Lorentzian structure on M.
Let ∇ be the Levi-Civita connection with respect to g and R be the curvature tensor of type
(1, 3), then we have

[e1, e2] = 0, [e1, e3] = −e1, [e2, e3] = −e2.
The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) =Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )
−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ])

(6.1)

which known as Koszul′s formula. By using Koszul formula for Levi-Civita connection with
respect to g, we obtain

∇e1e3 = −e1, ∇e2e3 = −e2, ∇e3e3 = 0,
∇e1e2 = 0, ∇e2e2 = −e3, ∇e3e2 = 0,
∇e1e1 = −e3, ∇e2e1 = 0, ∇e3e1 = 0.

From the above we see that the manifold satisfies ∇Xξ = −α(φX) − β(X − η(X)ξ), for
ξ = e3, α = 0 and β = −1. Hence the manifold M(φ, ξ, η, g) is a Lorentzian trans-Sasakian
manifold of type (0,−1).
With the help of the above results it can be verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,
R(e1, e2)e2 = −e1, R(e2, e3)e2 = −e3, R(e1, e3)e2 = 0,
R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = −e3.

Hence the manifold is a Lorentzian trans-Sasakian manifold with constant curvature -1. Now
we give an example of unit speed curves on the manifold.

Example 5.1. Consider a curve γ : I −→ M defined by γ(s) = (0, 0,−s). Hence γ̇1 = 0,
γ̇2 = 0 and γ̇3 = −1,
η(γ̇) = g(γ̇, e3) = g(γ̇1e1 + γ̇2e2 + γ̇3e3, e3) = 1.

g(γ̇, γ̇) =g(γ̇, e3)

=g(γ̇1e1 + γ̇2e2 + γ̇3e3, γ̇1e1 + γ̇2e2 + γ̇3e3)

=γ̇2
1 + γ̇2

2 + γ̇2
3

=γ̇2
3

=1.

(6.2)

Hence the curve is unit speed and it is the flow line of the Reeb vector field ξ. For this curve
∇γ̇ γ̇ = 0. Hence the Reeb flow line is geodesic.

Example 5.2. Consider a curve γ : I −→ M defined by γ(s) = (
√

2
3s,

√
1
3s, 1). Hence

γ̇1 =
√

2
3 , γ̇2 =

√
1
3 and γ̇3 = 0,
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η(γ̇) = g(γ̇, e3) = g(γ̇1e1 + γ̇2e2 + γ̇3e3, e3) = 0.

g(γ̇, γ̇) =g(γ̇, e3)

=g(γ̇1e1 + γ̇2e2 + γ̇3e3, γ̇1e1 + γ̇2e2 + γ̇3e3)

=γ̇2
1 + γ̇2

2 + γ̇2
3

=γ̇2
1 + γ̇2

2

=1.

(6.3)

Hence the curve is Legendre curve. For this curve ∇γ̇ γ̇ = −e3. Hence the curve is not geodesic.

Note. We consider the dimension of the manifolds is three because the dimension of differ-
entiable manifolds is odd, i.e., (2n+ 1).

Acknowledgment. The author is thankful to the referee for his valuable suggestions in the
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