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Abstract The object of the present paper is to study some curves on three-dimensional trans-
Sasakian manifolds with Lorentzian metric. Here we study biharmonic almost contact curves
and slant curves on three-dimensional Lorentzian trans-Sasakian manifolds. We also consider
C-loxodrome and C-parallel curves. An example is given.

1 Introduction

After the work of Baikoussis and Blair [1], the study of curves on contact manifolds has become
a popular topic. They have studied Legendre curves on contact three-manifolds. In the study of
contact manifolds, Legendre curves play an important role, e.g., a diffeomorphism of a contact
manifold is a contact transformation if and only if it maps Legendre curves to Legendre curves.
In [2], the authors have studied Legendre curves on Lorentzian Sasakian manifolds. Trans-
Sasakian manifolds form an important class of almost contact manifolds. It generalizes a large
number of contact and almost contact manifolds. Recently, in the paper [4] Lorentzian trans-
Sasakian manifolds was studied. For detailed references on Lorentzian trans-Sasakian manifolds
we refer [4]. Recently, in [6] a large class of almost contact manifolds was studied admitting dif-
ferent types of curves. The present author has studied some curves on trans-Sasakian manifolds
admitting semi-symmetric metric connections [14]. The present paper is organized as followes:

We give the required preliminaries and some basic results in Section 2. Section 3, contains the
study of slant curves on Lorentzian trans-Sasakian manifolds. In Section 4, we study biharmonic
almost contact curves on three-dimensional Lorentzian trans-Sasakian manifolds. Section 5, is
devoted to study C'-loxodrome and C'-parallel slant curves. Finally we construct an example of
three-dimensional Lorentzian trans-Sasakian manifold.

2 Priliminaries

Let M be a (2n + 1)- dimensional connected differentiable manifold together with an almost
contact metric structure (¢,&,7,g), where ¢ is a (1,1) tensor field, ¢ is a vector field, 7 is a
1-form and g is a Lorentzian metric such that

P*(X) =X +n(X)E, 2.1)
o€ =0, neX)=0, np=0, nE)=-1, nX)=g(X,E), 2.2)
90X, 0Y) = g(X,Y) +n(X)n(Y), ¢g(X,0Y)=—g(¢X,Y), (2.3)

(Vx9)Y = a(g(X,Y)E —=n(Y)X) + B(g(oX,Y)E —n(Y)9X), VX, Y eT(M). (24

Then M is called a Lorentzian trans-Sasakian manifold. Also a Lorentzian trans-Sasakian man-
ifold M satifies

Vx§=—a(¢X) - B(X +n(X)E), (2.5)
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(Vxn)Y = ag(¢X,Y) + Bg(¢X, 8Y), (2.6)
where V denotes the operator of covariant differentiation with respect to the Lorentzian metric
g. If a = 0 and 8 € R, the set of real numbers, then the manifold reduces to a Lorentzian
B—Kenmotsu manifold studied by Yaliniz et al [15]. If 8 = 0 and a € R, then the manifold
reduces to a Lorentzian a-Sasakian manifold studied by Yildiz, Turan and Murathan [16]. If
a = 0 and 5 = 1, then the manifold reduces to a Lorentzian Kenmotsu manifold introduced by
Mihai, Oiaga and Rosca [8]. Furthermore, if 5 = 0 and a@ = 1, then the manifold reduces to a
Lorentzian Sasakian manifold studied by Ikawa and Erdogan [7]. Also Lorentzian para contact
manifolds were introduced by Matsumoto [9] and futher studied by the authors [10], [11], [12].
Trans Lorentzian para Sasakian manifolds have been used by Gill and Dube [5].

Lemma 2.1. The Riemannian curvature tensor R in a three-dimensional Lorentzian trans-Sasakian
manifold is given by [4]

R(X,Y)Z =(5 +268 — 2(a* + §7) + 20(Ea — 208))[o(¥, 2)X — g(X, 2)Y]

Y, 2)[(5 + €8 = 3(a? + 8%) — 4aBy)n(X )¢

X)(¢(grad ) — v(grad ) — grad ) ~ (X — (X)) + ¥( X))

X, Z)[(5 + €6 = 3(a® + 5) — 4aB)n(Y )¢

Y)(é(grad ) — (grada) - grad §) = (Y8 = () + w(Ya)el 5,
+[(5 + 88— 3(a® + 5) — 4aB)n(¥)n(2)

+n(Y)(=ZB+ (0Z)a — ¥(Zay))) =n(Z)(Y B — (¢Y )a + (Y a))| X

—[(§ + €8 = 3(a? + 5%) — 4aBu)n(X)n(2))

+n(X) (=28 + (62)a = ¥(Zap)) = n(Z2)(XB = (pX)a + (X a))]Y
+ (208 = £a)lg(¢Y, Z2) X — g(6X, Z)Y],

+9(
+1(
+9(
+1(

where 1) = 23: e;g(gei e;). and ¢, = g(es,e;),¢; = +1. r is the scalar curvature of the
manifold M wit};:rlespect to Levi-Civita connection.
Lemma 2.2. In a Lorentzian trans-Sasakian manifold [4], we have
R(X, V)¢ =(a* + B)(n(Y)X — n(X)Y)
+208(n(Y)oX —n(X)¢Y) (2.8)
+(Ya)oX — (Xa)oY + (YB)9*X — (XB)¢?Y,
where R is the curvature tensor.
Lemma 2.3. For a Lorentzian trans-Sasakian manifold [4], we have
R(6,Y)E = (a* 4 B> — £8)¢*Y + (2a — £a)oY. (2.9)
Lemma 2.4. In a (2n + 1)-dimensional Lorentzian trans-Sasakian manifold [4], we have
S(X,€) =(2n(a® + %) = £8)n(X) + (2n + 1)(XB)
= (6X)a + ¥ (2080 (X) + Xa),

Q¢ =(2n(a” + %) = €B)E + (2n — 1)grad 8
— ¢(grad o) + ¥ (2aBE 4 grad o),

where S is the Ricci curvature and @ is the Ricci operator given by S(X,Y) = g(QX,Y), o =
2n+1
Z 6ig(¢6i;ei)9 and €; = g(ei,ei), €; = :|:1

i=1

(2.10)

@2.11)
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Let M be a 3-dimensional Riemannian manifold. Let v : I — M, I being an interval, be a
curve in M which is parameterized by arc length, and let V., denotes the covariant differentiation
along v with respect to the Levi-Civita connection on M. It is said to that v is a Frenet curve if
one of the following three cases holds:

(a) ~y is of osculating order 1, if, V7T = 0 (geodesic), T' = 7. Here, . denotes differentiation
with respect to the arc length.

(b) v is of osculating order 2, if,there exist two orthonormal vector fields T'(= %), N and a
non-negative function x (curvature) along ~ such that VoT' = kN, Vo N = —xT.

(c) 7 is of osculating order 3, if, there exist three orthonormal vectors T' = (%), N, B and two
non-negative function x(curvature) and 7(torsion) along -y such that

VT = kN, (2.12)
VrN = —kT + 7B, (2.13)
VrB = —7N, (2.14)

Where T = 4 and {7, N, B}is the Frenet frame « and 7 are the curvature and torsion of the
curve. With respect to Levi-Civita connection, a Frenet curve of osculating order 3 is called a
Geodesic if k = 0. It is called a circle if « is a positive constant and 7 = 0. The curve is called
a helix in M if x and 7 both are positive constants and the curve is called a generalized Helix if
% = constant.

A Frenet curve v in an almost contact metric manifold is said to be a Legendre curve or
almost contact curve if it is an integral curve of the contact distribution D = kern. Formally, it is
said that a Frenet curve  in an almost contact metric manifold is a Legendre curve if and only if
n(%) = 0 and g(¥,+) = 1. For more details we refer [13].

3 SLANT CURVES IN LORENTZIAN TRANS-SASAKIAN MANIFOLDS

Definition 3.1. A unit speed curve  in an almost contact metric manifold M (¢, &, 1, g) is said
to be slant if its tangent vector field makes constant angle 6 with ¢ i.e., n(¥) = cos 6 is constant
alonge .

By definition, slant curves with constant angle 7 are called almost Legendre curves or almost
contact curves.

Consider a slant curve - on a Lorentzian trans-Sasakian manifold. We get by definition

9(T,€) = cosb,
where 6 is a constant. Differentiating both side with respect to 7" we get
Vrg(T,€) — g(VrT,€) — g(T,Vr€) = 0. 3.1
Using (2.5) in the above equation we get,
—kn(N) 4+ B +cos? 8 =0, (3.2)
where {T', N, B} is a Frenet frame with 7' = +. From above we get

kn(N) = cos? 6 + . (3.3)

In particular, let = %, i.e., the curve is Legendre curve, then we get 5 = 0. Therefore, we can

conclude the following:

Theorem 3.1. If a three-dimensional Lorentzian trans-Sasakian manifold of type («, 8) admits
a Legendre curve, then the manifold is not 5-Kenmotsu manifolds.

In particular, let 6 # 0, then x = “’i%ﬁ . Thus we obtain the following:
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Theorem 3.2. On a three-dimensional Lorentzian trans-Sasakian manifold of type (a, —1), the
integral curve of Reeb vector field is a geodesic.

We also obtain the following:

Theorem 3.3. On a three-dimensional trans-Sasakian manifold of type («,0), a proper (0 < 6 <
Z) slant curve is of positive curvature.

Remark 3.4. The curvature of a slant curve on a Lorentzian trans-Sasakian manifold of type
(v, B) is independent of a.

4 BIHARMONIC LEGENDRE CURVES ON LORENTZIAN
TRANS-SASAKIAN MANIFOLDS

Definition 4.1. A unit speed smooth curve - on a Lorentzian trans-Sasakian manifold is called a
Legendre curve [2] if it satisfies n(+) = 0.

Definition 4.2. A Legendre curve v on a three-dimensional Lorentzian trans-Sasakian manifold
will be called biharmonic [13] if it satisfies

V3T — kR(N,T)T =0, 4.1
where T' = 4.

Let us consider a Legendre curve . Let T be the unit tangent vector field of the Legendre
curve. To maintain orientation let 7', £, ¢T" be a orthonormal right handed system where ¢7 =
—B,¢B = T. It is to be mentioned that such assumption is compatible with almost contact
structure. We take {7, &, ¢T'} as Frenet frame.

Then the equation (4.1) reduces to the following:

V3T — kR(N,T)T = 0. 4.2)
By Serret-Frenet formula we get
V3T = —3kk/T + (k" — &> — k7*)N + (27K’ + k7')B. 4.3)

For Legendre curve n(T) = 0, n(IN) = 0, because we have considered the Frenet frame
T,N = ¢T, B = ¢T. Using these facts in (2.7) we get, after simplification

R(&,T)T = (o + °)¢ + () — (T8 + (4T)a — (T )T (4.4)
Now in the view of (4.3) and (4.4), it follows that
V3T — kR(E,T)T =k(-3K" —TB + (¢T)or — (Ta)T
(K" = & — k1% — K(0? + %) — Kkp(6a))€ (4.5)
+(27x" + Kk7')B.
From the first component we get
k=0, or, —=3&"-TB+ (¢T)a—(Ta)=0. (4.6)

From second component we get

k' =k =kt — k(a® + %) — ky(€a) = 0. 4.7
And from the third component we get
27k’ + k' =0 4.8)
If x # 0 and «, 3 are constants, then from (4.7) and (4.8) we get
K= +V2r 4.9)

Hence we are in position to state the following:

Theorem 4.3. In a three-dimensional Lorentzian trans-Sasakian manifold of type («, 3) a bihar-
monic almost contact (Legendre) curve is a geodesic or a helix where «, 3 are constants.
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5 C-LOXODROME AND C-PARALLEL IN LORENTZIAN
TRANS-SASAKIAN MANIFOLDS

Definition 5.1. A unit speed curve « in a Lorentzian trans-Sasakian manifold is said to be a
C'-loxodrome if it satisfies [6]

VT =rn(T)¢T. 5.1
Here r is a constant. In a Lorentzian trans-Sasakian manifold we have for C-loxodrome
n(T) = B(1 = (n(T))?) (5.2)

Then we can state the following:

Theorem 5.2. In a three-dimensional Lorentzian trans-Sasakian manifold of type (o, ), the
contact angle is not necessarily constant. It is so if 5 = 0.

Definition 5.3. Let y be a unit speed curve in an almost contact metric 3-manifold. Then + is
said to have C-parallel mean curvature vector field if

9(VrH,X) =0, (5.3)
for all X € T'M orthogonal to &.

Also we can say that v has C'-parallel mean curvature vector field if and only if there exist a
differentiable function A such that

VrH = ). (54
Putting H = V7T and if {T, N, B} is a Frenet frame then (5.4) implies
—k*T 4+ k'N 4+ k7B = . (5.5)

Taking inner product of the above equation with T, N, B respectively we get
1,

n(T) =+, (5.6)
1

n(N) = X“/’ (5.7)

n(B) = %m—. (5.8)

But for a slant curves with constant slant angle 6, n(T') = cos , hence from (5.6) we get
Kk? = —Acosf. (5.9
By virtue of (2.5), (5.7),(5.9) and (V7g)(T, &) = 0 it follows after simplification that

!/

% cos — B+ Beostl = 0. (5.10)
K

If 3 =0,0 = 0, it follows that x = constant, (x # 0). So, we state

Theorem 5.4. The curvature « of a C-parallel Reeb flow in a three-dimensional trans-Sasakian
manifold of type («,0) is a constant.

By virtue of (5.5) it follows that £ € span{T, N, B}. So we can write
& =cos 0T +sinf(cosWN + sin¥B), (5.11)

where ¥ is the angle function between N and the orthogonal projection of £ on to span{N, B}.
Taking inner product of £ with N and B respectively, and using (5.11), (5.9) and the Theorem

5.4. we find

cos¥ = 0, sinW:—TC:te. (5.12)

Hence from above we get
7 = K’ tan . (5.13)

For the Reeb flow 8 = 0. So by virtue of (5.13) and the Theorem 5.4. we state the following:

Theorem 5.5. The Reeb flow on a three-dimensional Lorentzian trans-Sasakian manifold of type
(,0) is a circle.
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6 Example

In this section we like to construct an example of a three-dimensional Lorentzian trans-Sasakian
manifold and then Legendre curve on it. Let us consider a 3-dimensional manifold M =
{(z,y,2) € R®: z # 0}, where (z,y, 2) are the standard coordinates in R>.

Lete; = z%, ey = Za% and e3 = z%, which are linearly independent vector fields at each
point of M. Let g be a Riemannian metric define by

gler,e2) = g(ez, e3) = g(er, e3) = 0, gler, e1) = glez, e2) = 1, g(e3, e3) = —1.
Let 1 be 1-form defined by 1(Z) = g(Z, e3), for any Z € T M and ¢ be the tensor field of type
(1,1) defined by ¢e; = —ep, ez = —eq, pez = 0. Then by applying linearity of ¢ and g, we
have

n(es) = =1, ¢*Z = Z +n(2)es, g(6Z,0U) = g(Z,U) + n(Z)n(U), for any Z,U € T M.
Hence for e3 = £, (¢, &, n, g) defines a Lorentzian structure on M.
Let V be the Levi-Civita connection with respect to g and R be the curvature tensor of type
(1,3), then we have

[61,62] = 0, [61,63] = —€q, [62,63] == —€7.
The Riemannian connection V of the metric g is given by

29(VxY,Z)=Xg(Y,Z2)+Yyg(Z,X) - Zg(X,Y)

(6.1)
—g(X, [Y, Z]) - g(Y, [X> Z]) +9(Z7 [X7 Y])

which known as Koszul’s formula. By using Koszul formula for Levi-Civita connection with
respect to g, we obtain

Ve e3 = —eq, Vesez = —ea, Vee3 =0,
Ve e2 =0, Ve, €20 = —e3, Ve,e2 =0,
Velel = —€3, VEzel = O, V63€1 =0.

From the above we see that the manifold satisfies Vx& = —a(¢pX) — (X — n(X)E), for
& =e3, «a=0and B = —1. Hence the manifold M (¢, £,n, g) is a Lorentzian trans-Sasakian
manifold of type (0, —1).
With the help of the above results it can be verified that

R(e1, e2)e3 = 0, R(ez,e3)es = —ey, R(e1, e3)e3 = —ey,
R(e,ex)er = —ey, R(ez, e3)er = —es, R(ei,e3)er =0,
R(e1,e2)er = ea, R(ez,e3)e; =0, R(er,e3)e; = —e;.

Hence the manifold is a Lorentzian trans-Sasakian manifold with constant curvature -1. Now
we give an example of unit speed curves on the manifold.

Example 5.1. Consider a curve v : I — M defined by v(s) = (0,0, —s). Hence 7, = 0,
72 =0andv; = —1,
n(¥) = g(3,e3) = g(hier + V2e2 + Vae3,e3) = 1.

9(¥: %) =9(7, €3)
=g(V1e1 +72e2 + V3e3,71€1 + V22 + Y3€3)
=7+ +7 6.2)
—3
=1.

Hence the curve is unit speed and it is the flow line of the Reeb vector field £. For this curve
V5% = 0. Hence the Reeb flow line is geodesic.

Example 5.2. Consider a curve v : I — M defined by ~(s) = (\/gs, \@s, 1). Hence

’};1:\/2,’}}2:\/;311(1’73:0,
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n(¥) = g(¥,e3) = g(V1e1 + €2 + Y3e3,e3) = 0.
9(¥,9) =g(¥,e3)
=g(y1e1 + Y2e2 + Y3e3,91€1 + Yae2 + V3€3)

=11 +7 + % 6.3)
=1+
=I.

Hence the curve is Legendre curve. For this curve V54 = —e3. Hence the curve is not geodesic.

Note. We consider the dimension of the manifolds is three because the dimension of differ-
entiable manifolds is odd, i.e., (2n + 1).

Acknowledgment. The author is thankful to the referee for his valuable suggestions in the
improvement of the paper.
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