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Abstract The polynomial approximants which retain the zero free property of a given ana-
lytic functions in the unit disk U = {z € C': |z| < 1} of the form

( ) Zk =0 kvrﬂy fr‘;k)zk,
a,e€C,R(a) >0,R(B)>0,R(6) >0,z C

is found. Cesaro means of order p by the convolution method of geometric function retain the
zero free property of the derivatives of bounded convex functions in the unit disk. Also other
properties are established.

1 Introduction

The function

=y 5 aeCR(a)>0,R(B)>0z:€eC 11
gf(l—i-ak) o €C, Rla) > 0,R(8) > 0.2 € 1.1

was introduced by [1] and was investigated systimatically by several other authors (for detail,
see [2]). The Mittag-Leffler’s function is the direct generalisation of the exponential function to
which it reduces for o = 1.

Wiman [2] studied the generalisation of ¢, g(z), that is given by

k
Vo p(z Zr5+ St ,a,€C R(a)>0,R(3)>0,zeC (1.2)

has properties very similar to those of Mittag-Leffler’s function 1), (z).

In 1971, Prabhakar [3] introduced the function in the form 7,/1(1 B(Z) in the following form

Zkll"ﬁ+ ak)’ a,B € C,R(a) > 0,R(8) > 0,2 € C. (1.3)

Saigo and Kilbas [4] and Raina [5] investigated several properties and applications of (1.1)-
(1.3). The function defined by (1.2) gives a generalization of (1.1). This generalization was
studied by Wiman [2], Agarwal [6], and others.

Let D denote the open unit disk in C. It is well known that outer functions are zero-free
on the unit disk. Outer functions, which play an important role in H, theory to find a suitable
finite (polynomial) approximation for the outer infinite series f so that the approximate reduces
the zero-free property of f, arise in the characteristic equation which determines the stability of
certain nonlinear systems of differential equations. Recall that an outer function is a function
f € H, of the form
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. 1 dtett
f(2) = eMe ST 5 log (t)dt

where 9(t) > 0, log+(¢) is in L' and «(¢) is in LP. See [6] for the definitions and classical
properties of outer functions. Since any function f in H' which has 1/f in H' is an outer
function, then typical examples of outer functions can be generated by functions of the form
IThe (1 — e z)ox for —1 < oy < 1.

By using convolution methods that the classical Cesaro means, retains the zero-free property
of the derivatives of bounded convex functions in the unit disk and play an important role in
geometric function theory (see [6], [7], [8], [9], [10]).

Recently, Shukla and Prajapati [11], investigated and studied the following function
) =3 IME;)%,Z’“,&,B € C,R(a) >0,R(8) >0,R(0) >0,z C (1.4
k=0

with
0 < (Vs <T(B+ ak).
Where ()53, is the Pochhammer symbol defined by (7)sx = F<g<+;;k). whenever I'(v) is defined,

(7)o = 1, v #0. It is an entire function of order p = R[(a)]~! and type o = %R[(a)R(“)]*p. It
is a special case of Wright’s generalized hypergeometric functions, Wright ([12], [13]) as well
as the H-function (see in detail [14] ) . Some special cases of this function are enumerated
below

Z:lﬁ(z) = Zzﬁ('z)ﬂ/}a,]('z) = w}x(z)v
85(2) = ¥h 5(2) = das(2),
]I]I(z) = 1.1(2),91(2) = €*,12(2%) = cosh(z).

Lemma 1.1. [8] Let 0 < o < B. if B > 2 0or a + B > 3, then the function of the form
f(z) =37 Eg;: 2F1 is convex.

Lemma 1.2. [15] Assume that a; = 1 and a, >0 for k > 0 such that ay, is a convex decreasing
sequence i.e.:

ar — 2ap4+1 + ap2 > 0 and apy1 — agq2 > 0.
Then
Ry a1y > L2 eU.

We denote by S*, C, Q5* and QC the subclasses of A consisting of functions which are, respec-
tively, starlike in U, convex in U, close-to-convex and quasi-convex in U Thus by definition, we
have

S i={peA:R(ZE) > 0,2 €U},

Ci={ped:R1I+2)>0z2eU},

QS*:={veA:3ge S stR(ZLE) >0,z €U},

and

QC:={peA:3ge CstRELE) >0,z €U,

It is easily observed from the above definitions that

Y(z) € C &z € 8* (1.5)
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(z) € QC = 2y € QS*. (1.6)
Note that ¢ € Q.S™ if and only if there exists a function g € S* such that:
2/ (2) = g(2)p(2) (1.7)
where p(z) € P, the class of all analytic functions of the form
p(z) =1+p +2+p2?+ ..., withp(0) = 1.

Let be given two functions v, g € A, s.that:

( ) Ek 0 k'F [3+ak) 2k

and
9(2) = 3520 7r ﬁ+ak)zk'
Then their convolution or Hadamard product ¢ (z) * g(z) is defined by:
w( ) ( ) Zk =0 k;k:[l—lﬁngr)(i;i)] k.

We can verify the following result for f € A and takes the form (1).

Lemma 1.3. [9] (:)I fv) € Cand g € S*, then ) x g € S*
(i) Ifp € Cand g € S*, p e Pwithp(0) =1, then ¢ x gp = (¢ x g)p1

where p;(U) C close convex hull of p(U).

2 CESARO APPROXIMANTS FOR OUTER FUNCTIONS

The Cesaro sums of order p where 1 € N U {0} of series of the form (1.1) can be defined as

( n—k+p
" n—=k N
o (z,9) = ol x¥(2) = X4 ( —— ) k!l"({/ﬁ>+(;k) 2

n
where ( ; ) = W—'ﬁ)' We have the following result:
Theorem 2.1. Let tv € A be convex in U. Then the Cesaro means ot*(z,v), z € U of order

w> 1, of Y/'(2) are zero-free on U for all k.

Proof. In view of Lemma 1.1, the analytic function f of the form (1) is convex in U if I'(3 4+
ak) >2orT(B+ ak) + (7)ks = 3. where 0 < (7)rs < T'(8 + k).

Let o(z) = 32,_o(1 4+ k)z**! be defined such that:

2 (2) = p(z) xp(2) =, _ 0%%“
Then

oh(z,9") = oh(z) x ' (2)

— zon2¢(2)

z

_ zobw(e)re(z)

z
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— (zon)'=(z)
In view of Lemma 1.3, the relation (1.4) and the fact that is zo# convex yield that there exists
a function g € S*, and p € P with p(0) = 1 such that
_ (zal)'=p(z) _ gp(2)*¢(2)

We know that R(p;(z)) > 0 and that ¢)(2)*g(z) = 0 if and only if z = 0. Hence, ¢/ (z, ') #
0 and the proof is complete.

lg(2)*¥(2)]pi(2) £ 0.

Corollary 2.2. If f(U) is bounded convex domain, then the Cesaro means ot (z), z € U for the
outer function ¢’ (z) are zero-free on U for all k.

Proof. It comes from the fact that the derivatives of bounded convex functions are outer function
[16]. The next result shows the upper and lower bound for o#(z,’).

Theorem 2.3. Ler € A, Assume that 0 < (v)gs < I'(8 + ak) with T(8 + ak) > 2 or
[(B+ ak)+ (Y)rs = 3. Then

Lzl <ol (z,¢) <n(n+1),n>1,2 €U,z #0.

Proof. Under the conditions of the theorem, we have that f is convex Lemma 1.1, then in virtue
of Theorem 2.1, we obtain that

al(z,¢') # 0, thus |0¥(z,')] > 0. Now by applying Lemma 1.2, on ¢#(z,1’) # 0, and
using the fact that R(z) < |z| and since:

k—n+p . k‘!(k‘—n+u)!
( k—n >_(kn)!(k+,m§1 @1

forp>1land k =1,2,3,...,n yield

% < R(of(Zﬂ//)) < IUZL(?‘UJ')\ |2l >0and z € U.

72 I
(n—k:Jru)
n—k (Vrs k|

ot (z,9")| = [ (2) * ol (2)] = |ZZ=o(k+ 1) ( n+ ) RIT(B+ak) ©

n

For the other side, we pose that

(n—k—i—u)
n—k Vks

n (Vi
<D kolk+1) —— R et |2
n

"]

n—k+p

< Yook +1) (nk

. (ks
n+ KT (B+ak)
n

< Dk—olk+1) <k(k+1)
when k — n: Hence the proof.

Theorem 2.4. Let 1) € Aand 0 < ()5 < T(8 + ak) . Then:
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lim,, 00 0%(2,¢) = = zk’/\>1 zeU.

Proof. By the assumption and the fact (1.7), we obtain

‘ on(2,0) -z
( n—k+p
_ " n—Fk )es kel _ < ()\>‘k Lk
= n+ ET(B+ak) =0 F!
n

(n—k—l—u)
n—k (Vs

8 — (A Zk+l_ 00_ A ZkJrl
k=0 ( —— ) foram — Akl 2 ken 1Ak

’Zk n+1 k' Ic 1 k'

=0, as n — oo.

3 BOUNDED TURNING OF c#(z, )

For 0 < v < 1, let B(v) denote the class of functions f of the form (1.1) so that R(¢)') > v in
U. The functions in B(v) are called functions of bounded turning (see [17]). By the Nashiro-
Warschowski Theorem, the functions in B(v) are univalent and also close-to-convex in U. In
the sequel we need to the following results.

Lemma 3.1. [I8] For f € U we have

R{ i:lszfz} > 3L (2 €U).

Lemma 3.2. [19] Let P(z) be analytic in U; such that P(0) = 1; and R(P(z)) > Y in U. For
Sfunctions Q) analytic in U the convolution function P x () takes values in the convex hull of the
image on U under Q.

Theorem 3.3. Let g(z) € H the class of normalized function takes the form R {37, apz*} , (z €

U). Denoted by wy, = % > 1 suchthat vy = 1, if 3 <v < 1 and g(z) € B(v), then

ot(z,)g(2) € B( 3(n+u)!;((7¢::))!!n!(l—v) )

Proof. Let g(z) € B(v) thatis

R(¢'(2)) >v,0<v<1,zel).
Implies
R{1+ >0 kapzF 1} > v > 1
Now for § < v < 1 we have
R{l + >, %akzk’l} >R{1+Y 2, kapzF1h > v > L

It is clear
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k—1
{1+2Fﬂ+ak v 7 }>

Applying the convolution properties of power series to [c#(z,1)g(z)]’, we may

3.1)

| —

[0 (2,9)g(2)]" =

n—(k—l)—l—,u)
n—(k—1) k()

\V)ks
n+u [(B+ak)
n

n—(k-1)+p
n—(k—1)

(")

= P(2) % Q(z). (3.2)

In virtue of Lemma 1.2 and for j = n — 1; we receive

" gkl -1

R{izkl} zR{i 15111} (3.4)

=1+ Zio_z(

— 4 T, s a1 [T, ) (1= v)2+1)

since

and in view of (3.2),

R{sz“} > %1 (3.5)

Thus when n — k, a computation gives

RQE)=R{1+ T2, "(nﬁul))

k—1

—(k—1)+u)
(1 -v)z

n

>( 3(n+p);!((:;i;!!n!(lfv) )

On the other hand, the power series

P(z) = { + 3 ZFﬂi(xk) e 1},(z€U).

Therefore, by Lemma 3.2, we have
R{P(z)} = {1+zk ) T ket 1} > (zev).

R{[of(z,0)g(=))'} > ( 2nlipeelon ) ;¢ v),

This completes the proof of Theorem 3.3.
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Corollary 3.4. Let the assumptions of Theorem 3.3 hold. Then for

(n—(k—1)+u)
n—(k—1) o

")

,oh(z,0)g(2) € B(35®).

References

(1]
(2]

(3]

(4]

(5]

(6]
(7]
(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

G. M. Mittag-Leffler, Sur la nouvelle fonction E, (z), C. R. Acad. Sci. Paris, 137 554-558 (1903).

A. Wiman, Uber den fundamental Satz in der Theorie der Funktionen E,(z), Acta Math. 29 191-201
(1905).

T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler, Yokohana. Math. J., 19
7-15 (1971).

M. Saigo, A. A. Kilbas, On Mittag-Leffler type function and applications, Int. Trans. Spec. Funs., T 97—
112 (1998).

R. K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operators, East.
Asian. Math. J., 21 (2) 191-203 (2005).

R. P. Agarwal, A product d’ume note de M. pierre Humbert, C.R. Acad. Sci. Paris, 236 2031-2032 (1953).
P. L. Duren Univalent Functions, Springer-Verlag, Berlin, 1983.
St. Ruscheweyh, Geometric properties of Cesaro means, Results Math., 22 739-748 (1992).

St. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de’l Universit’e de Montr’eal,
Montr’eal. 1982.

M. Darus , R. W. Ibrahim, On Cesaro Means of Order p for Outer Functions, Int. Jour. of Nonlinear Sci.,
9 (4) 455-460 (2010).

A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math
Anal and Appl., 336 797-811 (2007).

E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math.
Soc., 10 286-293 (1935).

E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math.
Soc., 46 389-408 (1940).

M. M. Arak, K. S. Ram, and J. H. Hans, The H-function: Theory and Applications, 0.1007/978-1-4419-
0916-9, (2007).

St. Ruscheweyh, L. Salinas, Subordination by Cesdro means, Complex Var. Theory Appl., 21 279-285
(1993).

R.W. Barnard, J. Cima, and K. Pearce, Cesdro sum approximation of outer functions, Ann. Univ. Maria
Curie-Sklodowska Sect., A52 (1) 1-7 (1998).

B. Muckenhoupt, D. W. Webb, Two-weight norm inequalities for Cesdro means of Laguerre expansions,
Trans.Amer. Math. Soc., 353 (3) 1119-1149 (2001).

J. M. Jahangiri, K. Farahmand, Partial sums of functions of bounded turning, J. Inequal. Pure and Appl.
Math., 4(4) Art. 79 1-3 (2003).

A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washington, New
Jersey. 1983.

Author information

Adnan G. AlAmoush, Faculty of Science, Taibah University, Saudi Arabia, www.taibahu.edu.sa.

E-mail: adnan-omoush@yahoo . com

Received: August 29, 2018.
Accepted: December 13, 2018.



	1 Introduction
	2 CESÀRO APPROXIMANTS FOR OUTER FUNCTIONS
	3 BOUNDED TURNING OF n(z,)



