# CESÀRO MEANS OF GENERALIZED MITTAG-LEFFLER'S EXPANSIONS

## Adnan G. AlAmoush

Communicated by S. P. Goyal

MSC Subj. Class: 30C45

Keywords and phrases: univalent function; Hypergeometric functions; Mittag Leffler's function; Cesàro means; convolution product.

**Abstract** The polynomial approximants which retain the zero free property of a given analytic functions in the unit disk  $U = \{z \in C : |z| < 1\}$  of the form

$$\begin{array}{l} {}^{\gamma,\delta}_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{(\gamma)_{k\delta}}{k!\Gamma(\beta+\alpha k)} z^k, \\ \\ \alpha,\beta \in C, R(\alpha) > 0, R(\beta) > 0, R(\delta) > 0, z \in C \end{array}$$

is found. Cesàro means of order  $\mu$  by the convolution method of geometric function retain the zero free property of the derivatives of bounded convex functions in the unit disk. Also other properties are established.

## 1 Introduction

The function

$$\psi_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(1+\alpha k)}, \alpha \in C, R(\alpha) > 0, R(\beta) > 0, z \in C$$

$$\tag{1.1}$$

was introduced by [1] and was investigated systimatically by several other authors (for detail, see [2]). The Mittag-Leffler's function is the direct generalisation of the exponential function to which it reduces for  $\alpha = 1$ .

Wiman [2] studied the generalisation of  $\psi_{\alpha,\beta}(z)$ , that is given by

$$\psi_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta + \alpha k)}, \alpha, \beta \in C, R(\alpha) > 0, R(\beta) > 0, z \in C$$
(1.2)

has properties very similar to those of Mittag-Leffler's function  $\psi_{\alpha}(z)$ .

In 1971, Prabhakar [3] introduced the function in the form  $\psi_{\alpha,\beta}^{\gamma}(z)$  in the following form

$${}_{\alpha,\beta}^{\gamma}(z) = \sum_{k=0}^{\infty} \frac{(\gamma)_k z^k}{k! \Gamma(\beta + \alpha k)}, \alpha, \beta \in C, R(\alpha) > 0, R(\beta) > 0, z \in C.$$

$$(1.3)$$

Saigo and Kilbas [4] and Raina [5] investigated several properties and applications of (1.1)-(1.3). The function defined by (1.2) gives a generalization of (1.1). This generalization was studied by Wiman [2], Agarwal [6], and others.

Let D denote the open unit disk in C. It is well known that outer functions are zero-free on the unit disk. Outer functions, which play an important role in  $H_p$  theory to find a suitable finite (polynomial) approximation for the outer infinite series f so that the approximate reduces the zero-free property of f, arise in the characteristic equation which determines the stability of certain nonlinear systems of differential equations. Recall that an outer function is a function  $f \in H_p$  of the form

$$f(z) = e^{i\gamma} e^{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1+e^{it}z}{1-e^{it}z} \log \psi(t) dt}$$

where  $\psi(t) \geq 0$ ,  $\log \psi(t)$  is in  $L^1$  and  $\psi(t)$  is in  $L^p$ . See [6] for the definitions and classical properties of outer functions. Since any function f in  $H^1$  which has 1/f in  $H^1$  is an outer function, then typical examples of outer functions can be generated by functions of the form  $\prod_{k=1}^n (1-e^{i\theta_k}z)^{\alpha_k}$  for  $-1 < \alpha_k < 1$ .

By using convolution methods that the classical Cesàro means, retains the zero-free property of the derivatives of bounded convex functions in the unit disk and play an important role in geometric function theory (see [6], [7], [8], [9], [10]).

Recently, Shukla and Prajapati [11], investigated and studied the following function

$$\sum_{k=0}^{\gamma,\delta} \frac{(\gamma)_{k\delta}}{k!\Gamma(\beta+\alpha k)} z^k, \alpha, \beta \in C, R(\alpha) > 0, R(\beta) > 0, R(\delta) > 0, z \in C$$
 (1.4)

with

$$0 < (\gamma)_{k\delta} \le \Gamma(\beta + \alpha k).$$

Where  $(\gamma)_{\delta k}$  is the Pochhammer symbol defined by  $(\gamma)_{\delta k} = \frac{\Gamma(\gamma + \delta k)}{\Gamma(\gamma)}$ . whenever  $\Gamma(\gamma)$  is defined,  $(\gamma)_0 = 1, \gamma \neq 0$ . It is an entire function of order  $\rho = R[(\alpha)]^{-1}$  and type  $\sigma = \frac{1}{\rho}R[(\alpha)^{R(\alpha)}]^{-\rho}$ . It is a special case of Wright's generalized hypergeometric functions, Wright ([12], [13]) as well as the H-function (see in detail [14]). Some special cases of this function are enumerated

**Lemma 1.1.** [8] Let  $0 < \alpha \le \beta$ . if  $\beta \ge 2$  or  $\alpha + \beta \ge 3$ , then the function of the form  $f(z) = \sum_{k=0}^{\infty} \frac{(\alpha)_k}{(\beta)_k} z^{k+1}$  is convex.

**Lemma 1.2.** [15] Assume that  $a_1 = 1$  and  $a_k \ge 0$  for  $k \ge 0$  such that  $a_k$  is a convex decreasing sequence i.e.:

$$a_k - 2a_{k+1} + a_{k+2} \ge 0$$
 and  $a_{k+1} - a_{k+2} \ge 0$ .

Then

$$R\{\sum_{k=1}^{\infty} a_k z^{k-1}\} > \frac{1}{2}, z \in U.$$

We denote by  $S^*$ , C,  $QS^*$  and QC the subclasses of A consisting of functions which are, respectively, starlike in U, convex in U, close-to-convex and quasi-convex in U Thus by definition, we have

$$\begin{split} S^* := \{ \psi \in A : R(\frac{z\psi'(z)}{\psi(z)}) > 0, z \in U \}, \\ C := \{ \psi \in A : R(1 + \frac{z\psi''(z)}{\psi'(z)}) > 0, z \in U \}, \\ QS^* := \{ \psi \in A : \exists g \in S^* s.t. R(\frac{z\psi'(z)}{g(z)}) > 0, z \in U \}, \end{split}$$

and

$$QC:=\{\psi\in A: \exists g\in Cs.t. R(\tfrac{(z\psi'(z))'}{g'(z)})>0, z\in U\}.$$

It is easily observed from the above definitions that

$$\psi(z) \in C \Leftrightarrow z\psi' \in S^* \tag{1.5}$$

$$\psi(z) \in QC \Leftrightarrow z\psi' \in QS^*. \tag{1.6}$$

Note that  $\psi \in QS^*$  if and only if there exists a function  $g \in S^*$  such that:

$$z\varphi'(z) = g(z)p(z) \tag{1.7}$$

where  $p(z) \in P$ , the class of all analytic functions of the form

$$p(z) = 1 + p_1 + z + p_2 z^2 + \dots$$
, with  $p(0) = 1$ .

Let be given two functions  $\psi, g \in A$ , s.that:

$$\psi(z) = \sum_{k=0}^{\infty} \frac{(\gamma)_{k\delta}}{k!\Gamma(\beta + \alpha k)} z^k$$

and

$$g(z) = \sum_{k=0}^{\infty} \frac{(\varrho)_{k\delta}}{k!\Gamma(\beta + \alpha k)} z^k.$$

Then their convolution or Hadamard product  $\psi(z) * g(z)$  is defined by:

$$\psi(z) * g(z) = \sum_{k=0}^{\infty} \frac{(\gamma)_{k\delta}(\varrho)_{k\delta}}{k!k! [\Gamma(\beta + \alpha k)]^2} z^k.$$

We can verify the following result for  $f \in A$  and takes the form (1).

**Lemma 1.3.** [9] (i) If  $\psi \in C$  and  $g \in S^*$ , then  $\psi * g \in S^*$  (ii) If  $\psi \in C$  and  $g \in S^*$ ,  $p \in P$  with p(0) = 1, then  $\psi * gp = (\psi * g)p_1$ 

where  $p_1(U) \subset \text{close convex hull of } p(U)$ .

## 2 CESÀRO APPROXIMANTS FOR OUTER FUNCTIONS

The Cesàro sums of order  $\mu$  where  $\mu \in N \cup \{0\}$  of series of the form (1.1) can be defined as

$$\sigma_n^{\mu}(z,\psi) = \sigma_n^{\mu} * \psi(z) = \sum_{k=0}^n \frac{\left(\begin{array}{c} n-k+\mu \\ n-k \end{array}\right)}{\left(\begin{array}{c} n+\mu \\ n \end{array}\right)} \frac{{}_{(\gamma)_{k\delta}}}{{}_{k!\Gamma(\beta+\alpha k)}} z^{k+1}$$

where  $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\alpha!}{\beta!(\alpha-\beta)!}$ . We have the following result:

**Theorem 2.1.** Let  $\psi \in A$  be convex in U. Then the Cesàro means  $\sigma_n^{\mu}(z, \psi)$ ,  $z \in U$  of order  $\mu > 1$ , of  $\psi'(z)$  are zero-free on U for all k.

**Proof.** In view of Lemma 1.1, the analytic function f of the form (1) is convex in U if  $\Gamma(\beta + \alpha k) \ge 2$  or  $\Gamma(\beta + \alpha k) + (\gamma)_{k\delta} \ge 3$ . where  $0 < (\gamma)_{k\delta} \le \Gamma(\beta + \alpha k)$ .

Let  $\varphi(z) = \sum_{k=0}^{\infty} (1+k) z^{k+1}$  be defined such that:

$$z\psi'(z) = \phi(z) * \psi(z) = \sum_{k=0}^{\infty} \frac{(k+1)(\gamma)_{k\delta}}{k!\Gamma(\beta+\alpha k)} z^{k+1}.$$

Then

$$\sigma_n^{\mu}(z, \psi') = \sigma_n^{\mu}(z) * \psi'(z)$$

$$= \frac{z\sigma_n^{\mu} * z\psi'(z)}{z}$$

$$= \frac{z\sigma_n^{\mu} * \psi(z) * \phi(z)}{z}$$

$$=\frac{(z\sigma_n^\mu)'*\psi(z)}{z}.$$

In view of Lemma 1.3, the relation (1.4) and the fact that is  $z\sigma_n^{\mu}$  convex yield that there exists a function  $g \in S^*$ , and  $p \in P$  with p(0) = 1 such that

$$= \tfrac{(z\sigma_n^\mu)'*\psi(z)}{z} = \tfrac{gp(z)*\psi(z)}{z} = \tfrac{[g(z)*\psi(z)]p_1(z)}{z} \neq 0.$$

We know that  $R(p_1(z)) > 0$  and that  $\psi(z) * g(z) = 0$  if and only if z = 0. Hence,  $\sigma_n^{\mu}(z, \psi') \neq 0$  and the proof is complete.

**Corollary 2.2.** If f(U) is bounded convex domain, then the Cesàro means  $\sigma_n^{\mu}(z)$ ,  $z \in U$  for the outer function  $\psi'(z)$  are zero-free on U for all k.

**Proof.** It comes from the fact that the derivatives of bounded convex functions are outer function [16]. The next result shows the upper and lower bound for  $\sigma_n^{\mu}(z, \psi')$ .

**Theorem 2.3.** Let  $\in A$ , Assume that  $0 < (\gamma)_{k\delta} \le \Gamma(\beta + \alpha k)$  with  $\Gamma(\beta + \alpha k) \ge 2$  or  $\Gamma(\beta + \alpha k) + (\gamma)_{k\delta} \ge 3$ . Then

$$\frac{1}{2}|z| < |\sigma_n^{\mu}(z, \psi')| \le n(n+1), n \ge 1, z \in U, z \ne 0.$$

**Proof.** Under the conditions of the theorem, we have that f is convex Lemma 1.1, then in virtue of Theorem 2.1, we obtain that

 $\sigma_n^{\mu}(z,\psi') \neq 0$ , thus  $|\sigma_n^{\mu}(z,\psi')| > 0$ . Now by applying Lemma 1.2, on  $\sigma_n^{\mu}(z,\psi') \neq 0$ , and using the fact that  $R(z) \leq |z|$  and since:

$$\binom{k-n+\mu}{k-n} = \frac{k!(k-n+\mu)!}{(k-n)!(k+\mu)!} \le 1$$
 (2.1)

for  $\mu \ge 1$  and k = 1, 2, 3, ..., n yield

$$\frac{1}{2} < R(\frac{\sigma_n^{\mu}(z, \psi')}{z}) \le \frac{|\sigma_n^{\mu}(z, \psi')|}{|z|}, |z| > 0 \text{ and } z \in U.$$

For the other side, we pose that

$$\begin{split} |\sigma_n^{\mu}(z,\psi')| &= |\psi'(z) * \sigma_n^{\mu}(z)| = |\sum_{k=0}^n (k+1) \frac{\binom{n-k+\mu}{n-k}}{\binom{n+\mu}{n}} \frac{\frac{(\gamma)_{k\delta}}{k!\Gamma(\beta+\alpha k)}}{z^k|} \\ &\leq \sum_{k=0}^n (k+1) \frac{\binom{n-k+\mu}{n-k}}{\binom{n+\mu}{n}} \frac{\frac{(\gamma)_{k\delta}}{k!\Gamma(\beta+\alpha k)}|z^k|}{k!\Gamma(\beta+\alpha k)} \\ &\leq \sum_{k=0}^n (k+1) \frac{\binom{n-k+\mu}{n-k}}{\binom{n+\mu}{n}} \frac{\frac{(\gamma)_{k\delta}}{k!\Gamma(\beta+\alpha k)}}{k!\Gamma(\beta+\alpha k)} \\ &\leq \sum_{k=0}^n (k+1) \leq k(k+1) \end{split}$$

when  $k \to n$ : Hence the proof.

**Theorem 2.4.** Let  $\psi \in A$  and  $0 < (\gamma)_{k\delta} \le \Gamma(\beta + \alpha k)$ . Then:

$$\lim_{n\to\infty} \sigma_n^{\alpha}(z,\psi) = \frac{z}{(1-z)^{\lambda}}, \lambda > 1, z \in U.$$

**Proof.** By the assumption and the fact (1.7), we obtain

$$\left| \begin{array}{c} \sigma_{n}^{\alpha}(z,\psi) - \frac{z}{(1-z)^{\lambda}} \end{array} \right|$$

$$= \left| \begin{array}{c} \sum_{k=0}^{n} \frac{\left(\begin{array}{c} n-k+\mu \\ n-k \end{array}\right)}{\left(\begin{array}{c} n+\mu \\ n \end{array}\right)} \frac{(\gamma)_{k\delta}}{k!\Gamma(\beta+\alpha k)} z^{k+1} - \sum_{k=0}^{\infty} \frac{(\lambda)_{k}}{k!} z^{k+1} \right|$$

$$= \frac{1}{k!} \left[ \begin{array}{c} \sum_{k=0}^{n} \frac{\left(\begin{array}{c} n-k+\mu \\ n-k \end{array}\right)}{\left(\begin{array}{c} n-k \end{array}\right)} \frac{(\gamma)_{k\delta}}{\Gamma(\beta+\alpha k)} - (\lambda)_{k} \right] z^{k+1} - \sum_{k=n+1}^{\infty} (\lambda)_{k} z^{k+1} \right|$$

$$\leq \left| \sum_{k=n+1}^{\infty} \frac{(\lambda)_{k}}{k!} - \sum_{k=1}^{n} \frac{(\lambda)_{k}}{k!} \right|$$

$$= 0, \text{ as } n \to \infty.$$

## 3 BOUNDED TURNING OF $\sigma_n^{\mu}(z,\psi)$

For 0 < v < 1, let B(v) denote the class of functions f of the form (1.1) so that  $R(\psi') > v$  in U. The functions in B(v) are called functions of bounded turning (see [17]). By the Nashiro-Warschowski Theorem, the functions in B(v) are univalent and also close-to-convex in U. In the sequel we need to the following results.

**Lemma 3.1.** [18] For  $f \in U$  we have

$$R\left\{\sum_{k=1}^{j} \frac{z^k}{k+2}\right\} > \frac{-1}{3}, (z \in U).$$

**Lemma 3.2.** [19] Let P(z) be analytic in U; such that P(0) = 1; and  $R(P(z)) > \frac{1}{2}$  in U. For functions Q analytic in U the convolution function P \* Q takes values in the convex hull of the image on U under Q.

**Theorem 3.3.** Let  $g(z) \in H$  the class of normalized function takes the form  $R\left\{\sum_{k=2}^{\infty} a_k z^k\right\}$ ,  $(z \in U)$ . Denoted by  $\omega_k = \frac{(\gamma)_{k\delta}}{\Gamma(\beta + \alpha k)} \ge 1$  such that  $\gamma_1 = 1$ , if  $\frac{1}{2} < v < 1$  and  $g(z) \in B(v)$ , then

$$\sigma_n^{\mu}(z,\psi)g(z) \in B\left(\begin{array}{c} \frac{3(n+\mu)! - (\mu+1)! n! (1-v)}{3(n+\mu)!} \end{array}\right).$$

**Proof.** Let  $g(z) \in B(\nu)$  that is

$$R(g'(z)) > \nu$$
,  $(0 < \upsilon < 1, z \in U)$ .

**Implies** 

$$R\left\{1 + \sum_{k=2}^{\infty} k a_k z^{k-1}\right\} > \upsilon > \frac{1}{2}.$$

Now for  $\frac{1}{2} < v < 1$  we have

$$R\left\{1 + \sum_{k=2}^{\infty} \frac{k}{1-v} a_k z^{k-1}\right\} > R\left\{1 + \sum_{k=2}^{\infty} k a_k z^{k-1}\right\} > v > \frac{1}{2}.$$

It is clear

$$R\left\{1 + \sum_{k=2}^{\infty} \frac{(\gamma)_{k\delta}}{\Gamma(\beta + \alpha k)} \frac{k}{1 - \upsilon} a_k z^{k-1}\right\} > \frac{1}{2}.$$
(3.1)

Applying the convolution properties of power series to  $[\sigma_n^{\mu}(z,\psi)g(z)]'$ , we may

$$\begin{split} &[\sigma_n^{\mu}(z,\psi)g(z)]' = \\ &= 1 + \sum_{k=2}^{\infty} \frac{\left( \begin{array}{c} n - (k-1) + \mu \\ n - (k-1) \end{array} \right)}{\left( \begin{array}{c} n + \mu \\ n \end{array} \right)} \frac{k!(\gamma)_{k\delta}}{\Gamma(\beta + \alpha k)} \\ &= [1 + \sum_{k=2}^{\infty} \frac{(\gamma)_{k\delta}}{\Gamma(\beta + \alpha k)} \frac{k}{1 - v} a_k z^{k-1}] * [\sum_{k=2}^{\infty} \frac{\left( \begin{array}{c} n - (k-1) + \mu \\ n - (k-1) \end{array} \right)}{\left( \begin{array}{c} n + \mu \\ n \end{array} \right)} (1 - v) z^{k-1}] \end{split}$$

$$:= P(z) * Q(z). \tag{3.2}$$

In virtue of Lemma 1.2 and for j = n - 1; we receive

$$R\left\{\sum_{k=2}^{n} \frac{z^{k-1}}{k+1}\right\} > \frac{-1}{3},\tag{3.3}$$

since

$$R\left\{\sum_{k=2}^{n} z^{k-1}\right\} \ge R\left\{\sum_{k=2}^{n} \frac{z^{k-1}}{k+1}\right\},\tag{3.4}$$

and in view of (3.2),

$$R\left\{\sum_{k=2}^{n} z^{k-1}\right\} \ge \frac{-1}{3}.\tag{3.5}$$

Thus when  $n \to k$ , a computation gives

$$R(Q(z)) = R \left\{ 1 + \sum_{k=2}^{\infty} \frac{\binom{n - (k-1) + \mu}{n - (k-1)}}{\binom{n+\mu}{n}} (1 - \nu) z^{k-1} \right\}$$

$$> \left( \frac{3(n+\mu) - !(\mu+1)! n! (1-\nu)}{3(n+\mu)!} \right).$$

On the other hand, the power series

$$P(z) = \left\{ 1 + \sum_{k=2}^{\infty} \frac{(\gamma)_{k\delta}}{\Gamma(\beta + \alpha k)} \frac{k}{1 - v} a_k z^{k-1} \right\}, (z \in U).$$

Therefore, by Lemma 3.2, we have

$$R\{P(z)\} = R\left\{1 + \sum_{k=2}^{\infty} \frac{(\gamma)_{k\delta}}{\Gamma(\beta + \alpha k)} \frac{k}{1 - v} a_k z^{k-1}\right\} > \frac{1}{2}, (z \in U).$$

$$R\{[\sigma_n^{\mu}(z, \psi)g(z)]'\} > \left(\frac{3(n+\mu)!(\mu+1)!n!(1-v)}{3(n+\mu)!}\right), (z \in U).$$

This completes the proof of Theorem 3.3.

**Corollary 3.4.** Let the assumptions of Theorem 3.3 hold. Then for

$$\left\{\begin{array}{c} \left(\begin{array}{c} n-(k-1)+\mu \\ n-(k-1) \end{array}\right) \\ \left(\begin{array}{c} n+\mu \\ n \end{array}\right) \end{array} \to 1\right\}, \sigma_n^{\mu}(z,\psi)g(z) \in B(\frac{2+\upsilon}{3}).$$

## References

- [1] G. M. Mittag-Leffler, Sur la nouvelle fonction  $E_{\alpha}(x)$ , C. R. Acad. Sci. Paris, 137 554–558 (1903).
- [2] A. Wiman, Uber den fundamental Satz in der Theorie der Funktionen  $E_{\alpha}(x)$ , Acta Math. 29 191–201 (1905).
- [3] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler, *Yokohana. Math. J.*, **19** 7–15 (1971).
- [4] M. Saigo, A. A. Kilbas, On Mittag-Leffler type function and applications, *Int. Trans. Spec. Funs.*, 7 97–112 (1998).
- [5] R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, *East. Asian. Math. J.*, **21** (2) 191–203 (2005).
- [6] R. P. Agarwal, A product d'ume note de M. pierre Humbert, C.R. Acad. Sci. Paris, 236 2031–2032 (1953).
- [7] P. L. Duren Univalent Functions, Springer-Verlag, Berlin, 1983.
- [8] St. Ruscheweyh, Geometric properties of Cesáro means, Results Math., 22 739-748 (1992).
- [9] St. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de'l Universit'e de Montr'eal, Montr'eal. 1982.
- [10] M. Darus , R. W. Ibrahim, On Cesaro Means of Order  $\mu$  for Outer Functions, *Int. Jour. of Nonlinear Sci.*, **9 (4)** 455–460 (2010).
- [11] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, *J. Math Anal and Appl.*, **336** 797–811 (2007).
- [12] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, *J. London Math. Soc.*, **10** 286–293 (1935).
- [13] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, *J. London Math. Soc.*, **46** 389–408 (1940).
- [14] M. M. Arak, K. S. Ram, and J. H. Hans, The H-function: Theory and Applications, 0.1007/978-1-4419-0916-9, (2007).
- [15] St. Ruscheweyh, L. Salinas, Subordination by Cesáro means, Complex Var. Theory Appl., 21 279–285 (1993).
- [16] R.W. Barnard, J. Cima, and K. Pearce, Cesáro sum approximation of outer functions, *Ann. Univ. Maria Curie-Sklodowska Sect.*, **A52** (1) 1–7 (1998).
- [17] B. Muckenhoupt, D. W. Webb, Two-weight norm inequalities for Cesáro means of Laguerre expansions, Trans. Amer. Math. Soc., 353 (3) 1119–1149 (2001).
- [18] J. M. Jahangiri, K. Farahmand, Partial sums of functions of bounded turning, J. Inequal. Pure and Appl. Math., 4(4) Art. 79 1–3 (2003).
- [19] A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washington, New Jersey. 1983.

## **Author information**

Adnan G. AlAmoush, Faculty of Science, Taibah University, Saudi Arabia, www.taibahu.edu.sa.

E-mail: adnan-omoush@yahoo.com

Received: August 29, 2018. Accepted: December 13, 2018.