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Abstract In this paper, we investigate the Finsler-Randers cosmological model. Then, to
find the solution of this modified models with help of corresponding scalar factor. Further, we
analyzed the behavior of such models like Einstein theory and scalar-tensor theory.

1 Introduction

The geometrical dark energy models acts as an important alternative to the scalar-field dark en-
ergy models, since they can explain the accelerated expansion of the universe. Such an approach
is an attempt to evade coincidence and cosmological constant problems of the standard ΛCDM
model. In this frame work, one may consider that the dynamical effects attributed to dark energy
can resembled by the effects of a non standard gravity theory implying that the present acceler-
ating stage of the universe can be driven only by cold dark matter, under a modification of the
nature of gravity.

In [17], the author G. Randers introduced the Finsle-Randers cosmological model. In general,
metrical extensions of Riemannions geometry can provide a Finslerian geometrical structure in
a manifold which leads to generalized gravitational field theories. There are rapid developments
of applications of Finsler geometry in its FR context, mainly in the topics of general relativity,
astrophysics and cosmology ([17]-[1]). Then the authors P. C. Stavrinos, A. Koretsis and M.
Stathakopoulos [19] were found the FR field equations provide a Hubble parameter that contains
a extra geometrical term which can be used as a possibilities for dark energy.

The spatially homogeneous cosmological models allow extension of cosmological investiga-
tion to distorting and rotating universe, giving estimates of effects of anisotropy on primordial
element production and on the measured CMBR spectrum anisotropy [8]. Apart from the au-
thors Hawking S. W. and Ellis G. F. R [10] were gave the observational reasons, there are various
theoretical considerations that have motivated the study of anisotropic cosmologies.

There exists wide class of anisotropic cosmological models which are often studied in cos-
mology [15]. There are theoretical arguments that sustain the existence of an anisotropic case in
[13]. Also, anisotropic cosmological models to avoid the assuption of specific initial conditions
in FRW models. The universe could also be characterized by irregular expansion mechanism.
Therefore, it would be useful to explore cosmological models in which anisotropies existing at
early stage of expansion are damped out in the course of evolution [9].

In [19], the authors P. C. Stavrinos, et al...have studied the Friedman-like Robertson-walker
model in generalized metric space time with weak anisotropy. Recently, the authors Basilakos
and P. C. Stavrinos [4] were studied the cosmological equivalence between the Finsler-Randers
space time and the DGP gravity model.
Bases on these, we propose to study the evolution of the universe with in the frame work of
Finsler-Randers cosmology. In this paper, we study the Friedman-like Robertson-walker model
in the Finsler- Randers cosmology.
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2 Einstein theory of Finsler-Randers cosmological model

The energy conditions of general relativity permit one to deduce very powerful and general the-
orems about the behavior of strong gravitational fields and cosmological geometries. However,
in this section we investigate the Finsler -Randers cosmological model and then discussed the
energy conditions to such model.

The FR cosmic scenario is based on the Finalerian geometry which extends the Riemannian
geometry. Notice that a Riemannian geometry is also a particular case of Finslerian. Here, we
discuss only the main features of the theory (see [18], [3], [20]). Generally, a Finsler space is
derived from a generating function F (x, y) on the tangent bundle TM of a manifold M . The
generating function F is differentiable on TM0 = TM\{0} and continuous on the zero cross
section. The function F is also positively homogeneous of degree one in y. In other words, F
introduces a structure on the space-time manifold M is called Finsler space time. In the case of
a FR space-time is

F (x, y) =
√
aij(x)yiyj + bi(x)y

i, (2.1)

where aij are component of a Riemannian metric and bi = (b0, 0, 0, 0) is weak primordial vector
field with |bi| << 1. Now, the Finslerian metric tensor gij is constructed by Hessian of F

2

2

gij =
1
2
∂2F 2

∂yi∂yj
. (2.2)

The Cartan tensor Cijk = 1
2
∂gij
∂yk

= 1
2

∂3F 2

∂yi∂yj∂yk
is a significant ingredient of the Finsler geometry.

It indeed, the authors P. C. Stavrinos et al..[19] has been found that b0 = 2C000.
The Finsler-Randers field equation is given by

Rij −
1
2
gijT = −8πG

c4 Tij , (2.3)

where Rij is Ricci tensor, Tij is the energy momentum tensor and T is the trace of energy
momentum tensor. Modelling the expanding universe as Finslerian perfect fluid that induces
radiation and matter with four velocity Ui for comoving observers, we have

Tij = −pgij + (ρ+ p)UiUj , (2.4)

where ρ and p are the total energy density and pressure of the cosmic fluid respectively.
Thus, the energy momentum tensor becomes

Tij = diag(ρ,−pg11,−pg22,−pg33). (2.5)

In view of ([12], [6], [2]), we use the weak, dominant and strong energy conditions in the context
of Finslerian cosmology for our model as: T 0

0 = ρ, T 1
1 = T 2

2 = T 3
3 = −p in the locally

Minkowski frame. Obviously the roots of matrix equation is

|Tij − rgij | = diag((ρ− r), (r + p), (r + p), (r + p)). (2.6)

It gives the eigne values r for the energy momentum tensor as r0 = ρ and r1 = r2 = r3 = −p.
The energy conditions for our model are as follows:

(i) Null energy condition (NEC);
ρ+ p ≥ 0. (2.7)

(ii) Weak energy condition (WEC);

r0 ≥ 0⇒ ρ ≥ 0, r0 − ri ≥ 0⇒ ρ+ p ≥ 0. (2.8)

(iii) Strong energy condition (SEC);

r0 −
∑

ri ≥ 0⇒ ρ+ 3p ≥ 0 and ρ+ p ≥ 0. (2.9)
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(iv) Dominant energy condition (DEC);

r0 ≥ 0⇒ ρ ≥ 0, −r0 ≤ −ri ≤ r0 ⇒ ρ± p ≥ 0. (2.10)

In the context of a FRW metric is

aij = diag

(
1,− a2

1− kr2 ,−a
2r2,−a2r2 sin2 θ

)
, (2.11)

where a is a function of time t only and k is the curvature parameter having the values −1, 0, +1
for open, flat and closed models respectively.
The non-zero components of the Ricci tensors are

R00 = 3
(
ä

a
− 3ȧ

4a
u̇0

)
, (2.12)

and

Rii = −

(
aä+ 2ȧ2 + 2k + 11

4 aȧu̇0

∆ii

)
, (2.13)

where ∆11 = 1− kr2, ∆22 = r2 and ∆33 = r2 sin2 θ.
From gravitational FR field equation (2.1) for comoving observers then the FRW Einstein field
equations are

ä

a
+

3ȧ
4a
Zt = −

4πG
3

(ρ+ 3p), (2.14)

and
ä

a
+ 2(

ȧ

a
)2 + 2(

k

a2 ) +
11ȧ
4a

Zt = 4πG(ρ− p), (2.15)

where over the dot denotes the derivative with respect to the cosmic time t and Zt = b0 < 0 [19].
Then, from equations (2.2) and (2.3) we get;

H2 +
k

a2 +HZt =
8πG

3
ρ. (2.16)

The equation (2.16) is the modified Friedamann equation , in this the extra term H(t)Zt shows
the affects of the dynamics of the universe. If we consider b0 = 0 or (C000 = 0) which implies
that Zt = 0, then the field equations (2.14) and (2.15) reduces to the nominal Einstein equations,
it solution of which is usual Friedaman equation.

Here, the solution of which two cases aries to the two different physically variable cosmolo-
gies, which have physical interests to describe the decelerating and accelerating phases of uni-
verse.
Case 1:de Sittere solution
It is well known in cosmology because the current epoch, where in the universe expansion is be-
ing accelerated, can be described approximately. This kind of solution consists of an exponential
expansion of the scalar factor, which yields a constant Hubble parameter.
From [1], we use the scalar factor as: a = ceσt, where c and σ are constants. For σ2 > 0, it gives
an accelerating universe. Using this scalar factor, the Hubble parameter becomes

H(t) =
ȧ

a
=
σceσt

ceσt
= σ. (2.17)

From this, using (2.4) and (2.5) we obtain the energy density as

ρ =
3

8πG

(
σ2 + σZt +

k

c2e2σt

)
. (2.18)

With the scalar factor and from equations (2.2) and (2.6), we get the pressure as

p = − 3σ2

8πG
− 5

16πG
σZt −

k

8πGc2e2σt . (2.19)
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The vales of ρ and p in (2.18) and (2.19), we obtain

ρ+ p =
σZt

16πG
+

k

4πGc2e2σt , (2.20)

and

ρ− p = 3σ2

4πG
+

11σZt
16πG

+
k

2πGc2e2σt . (2.21)

Again, from (2.18) and (2.19), one can get

ρ+ 3p = − 3σ2

4πG
− 9

16πG
σZt. (2.22)

Here, notice that if Zt = 0 the equation (2.16) reduces to standard Friedmann equation. By
above observations says that the universe is anisotropic at early stage and becomes isotropic at
late time. If the physically variable choices of Zt < 0, it arise two different scenario as: (a)
Zt = −e−t and (b) Zt = −t−n.
(a) If Zt = −e−t:
Substituting the values of Zt in (2.18) and (2.19), we can determine ρ and p respectively as

ρ =
3

8πG

(
σ2 − σe−t + k

c2e2σt

)
. (2.23)

p =
5σe−t

16πG
− 3σ2

8πG
− k

8πGc2e2σt . (2.24)

Add and subtract above equations, we get

ρ+ p = − σe−t

16πG
+

k

2πGc2e2σt . (2.25)

and

ρ− p = 3σ2

4πG
− 11σe−t

16πG
+

k

2πGc2e2σt . (2.26)

Again, from equations (2.23) and (2.24) in condition (2.9), one can easily obtain

ρ+ 3p = − 3σ2

4πG
+

9σe−t

16πG
. (2.27)

We observed the equations (2.23) to (2.27), the null energy condition is satisfied if

c2 ≤ 4k
σe(2σ+1)t = N1.

The weak energy condition is satisfied for

c2 ≤ min
{

k

e2σt(σe−t − σ2)
,

4k
σe(2σ+1)t

}
= N2.

The dominant energy condition is satisfied if

c2 ≤ min
{

k

e2σt(σe−t − σ2)
,

4k
σe(2σ+1)t ,

8k
e2σt(11σe−t − 12σ2)

}
= N3

and strong energy condition is satisfied if 0 < σ ≤ 3
4et .

From these observations that, for any value of t, NEC, WEC and DEC are satisfied in this case
if c2 ≤ min{N1, N2, N3}, whereas SEC is satisfied in this model if 0 < σ ≤ 3

4et . However, we
also observed that for large cosmic time t, SEC, WEC and DEC are satisfied, whereas SEC is
violated, which is responsible for current accelerated expansion of universe.
(b) If Zt = −t−n:
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Substituting the value of Zt in equations (2.18) and (2.19), we can determine ρ and p respectively
as;

ρ =
3

8πG

(
σ2 − σ

tn
+

k

c2e2σt

)
, (2.28)

and

p =
5σ

16πGtn
− 3σ2

8πG
− k

8πGc2e2σt . (2.29)

Add and subtract the equation (2.28) and (2.29), we obtain

ρ+ p = − σt
−n

16πG
+

k

4πGc2e2σt (2.30)

and

ρ− p = 3σ2

4πG
− 11σt−n

16πG
+

k

2πGc2e2σt . (2.31)

Again, from equations (2.28) and (2.29) in condition (2.9), we have

ρ+ 3p =
9σt−n

16πG
− 3σ2

4πG
. (2.32)

We observed the equations (2.28) to (2.32), the null energy condition is satisfied if

c2 ≤ 4k
σe2σttn

= T1.

The weak energy condition is satisfied for

c2 ≤ min
{

k

e2σt(σt−n − σ2)
,

4k
σtne2σt

}
= T2.

The dominant energy condition is satisfied if

c2 ≤ min
{

k

e2σt(σt−n − σ2)
,

4k
σtne2σt ,

8k
e2σt(11σt−n − 12σ2)

}
= T3

and strong energy condition is satisfied if 0 < σ ≤ 3
4tn .

From these observations that, for any value of t, NEC, WEC and DEC are satisfied in this case
if c2 ≤ min{T1, T2, T3}, whereas SEC is satisfied in this model if 0 < σ ≤ 3

4tn . However,
we also observed that for large cosmic time t, SEC, WEC and DEC are satisfied, but SEC is
violated.
Case 2: Power law solution
The power law solutions are very important in the standard cosmology, because this type of solu-
tion provides a frame work for establishing the behavior of more general cosmological solutions
in different histories of our universe, such as radiation dominant, matter dominant, or dark en-
ergy dominators. Let us consider a universe with power law for scalar factor [?] as: a = ctδ,
where c and δ are constants. For δ > 1 it gives an accelerating universe.
Now, the Hubble parameter becomes

H =
ȧ

a
=
cδtδ−1

ctδ
=
δ

t
. (2.33)

From this, using (2.16) and (2.33), the energy density is given by

ρ =
3

8πG

(
δ2

t2
+
δ

t
Zt +

k

c2t2δ

)
. (2.34)

From equations (2.14) and (2.34), the pressure is given by

p =
−3δ2 + 2δ

8πGt2
− 5δ

16πGt
Zt −

k

8πGc2t2δ
. (2.35)
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Add and subtract the equation (2.34) and (2.35), we obtain

ρ+ p =
δ

4πGt2
+

δ

16πGt
Zt +

k

4πGc2t2δ
(2.36)

and

ρ− p = δ(3δ − 1)
4πGt2

+
11δ

16πGt
ZtZt +

k

2πGc2t2δ
. (2.37)

Again, from equations (2.34) and (2.35) in condition (2.9), we have

ρ+ 3p =
3δ(1− δ)

4πGt2
− 9δ

16πGt
Zt. (2.38)

In this case also, we discuss , as same in case 1 two different scenario:
(i) When Zt = −e−t:
Substituting the value of Zt in equations (2.34) and (2.35), we can determine ρ and p respectively
as

ρ =
3

8πG

(
δ2

t2
− δ

tet
+

k

c2t2δ

)
(2.39)

and

p =
2δ − 3δ2

8πGt2
+

5δ
16πGtet

− k

8πGc2t2δ
. (2.40)

From equations (2.39) and (2.40), we obtain

ρ+ p =
δ

4πGt2
− δ

16πGtet
+

k

4πGc2t2δ
(2.41)

and

ρ− p = δ(3δ − 1)
4πGt2

− 11δ
16πGtet

+
k

2πGc2t2δ
. (2.42)

Again, from equations (2.39) and (2.40), we get the condition ρ+ 3p value as:

ρ+ 3p =
3δ(1− δ)

4πGt2
+

9δ
16πGtet

. (2.43)

We observed the equations (2.39) to (2.43), the null energy condition is satisfied if

c2 ≤ 4k
δt(2δ−1)e−t − 4δ2t(2δ−2) = P1.

The weak energy condition is satisfied for

c2 ≤ min
{

k

δt2δ−1e−t − δ2t2δ−2 ,
4k

δt2δ−1e−t − 4δ2t(2δ−2)

}
= P2.

The dominant energy condition is satisfied if

c2 ≤ min
{

k

δt2δ−1e−t − δ2t2δ−2 ,
4k

δt2δ−1e−t − 4δ2t(2δ−2) ,
8k

11δt2δ−1e−t − 4δ(3δ − 1)t2δ−2

}
= P3

and strong energy condition is satisfied if 1 < δ ≤ 1 + 3t
4et .

From these observations that, for any value of t, NEC, WEC and DEC are satisfied in this case
if c2 ≤ min{P1, P2, P3}, whereas SEC is satisfied in this model if 1 < δ ≤ 1 + 3t

4et . However,
we also observed that for large cosmic time t, SEC, WEC and DEC are satisfied, but SEC is
violated.
(ii) When Zt = −t−n:
Substituting the value of Zt in equations (2.34) and (2.35), we can determine ρ and p respectively
as

ρ =
3

8πG

(
δ2

t2
− δ

tn+1 +
k

c2t2δ

)
(2.44)
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and

p =
2δ − 3δ2

8πGt2
+

5δ
16πGtn+1 −

k

8πGc2t2δ
. (2.45)

From equations (2.44) and (2.45), we obtain

ρ+ p =
δ

4πGt2
− δ

16πGtn+1 +
k

4πGc2t2δ
(2.46)

and

ρ− p = δ(3δ − 1)
4πGt2

− 11δ
16πGtn+1 +

k

2πGc2t2δ
. (2.47)

Again, from equations (2.44) and (2.45), we get the condition ρ+ 3p value as:

ρ+ 3p =
3δ(1− δ)

4πGt2
+

9δ
16πGtn+1 . (2.48)

From equations (2.44) to (2.48), it is observed that the null energy condition is satisfied if

c2 ≤ 4k
δt(2δ−n−1) − δt(2δ−2) =W1.

The weak energy condition is satisfied for

c2 ≤ min
{

k

δt2δ−n−1 − δ2t2δ−2 ,
4k

δt2δ−n−1 − δt(2δ−2)

}
=W2.

The dominant energy condition is satisfied if

c2 ≤ min
{

k

δt2δ−n−1 − δ2t2δ−2 ,
4k

δt2δ−n−1 − δt(2δ−2) ,
8k

11δt2δ−n−1 − 4δ(3δ − 1)t2δ−2

}
=W3

and strong energy condition is satisfied if 1 < δ ≤ 1 + 3
4tn−1 .

From these observations that, for any value of t, NEC, WEC and DEC are satisfied in this case
if c2 ≤ min{W1,W2,W3}, whereas SEC is satisfied in this model if 1 < δ ≤ 1 + 3

4tn−1 . How-
ever, we also observed that for large cosmic time t, SEC, WEC and DEC are satisfied, but SEC
is violated.

3 Scalar-Tensor thoery of Finsler-Randers cosmological model

The field equation of this theory are given by

Gij −
1
2
gijR = −8πGTij + 2

(
φiφj −

1
2
gijφkφ

k

)
, (3.1)

where G is the gravitational constant and φ is the scalar field.
In this theory, field equations are

3
(
H2 +

k

a2 +HZt

)
= 8πGρ+ φ̇2, (3.2)

2
ä

a
+ (

ȧ

a
)2 +

k

a2 +
5
2
HZt = −8πGρ− φ̇2. (3.3)

From equation (3.2) and (3.3), we obtain

3
(
ä

a
+

3ȧ
4a
Zt

)
= −4πG(ρ+ 3p)− 2φ̇2. (3.4)

Here, we discuss two different physically variable cosmologies, which have physical interests to
describe the decelerating and accelerating phases of universe.
Case 1: de Sitter solution
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Let us consider the scalar factor a = ceγt, where γ2 > 0.
Now, the Hubble parameter becomes

H =
ȧ

a
=
γceγt

ceγt
= γ. (3.5)

From equations (3.4) and (3.5), the density is

ρ =
3

8πG

(
γ2 + γZt +

k

c2e2γt −
φ̇2

3

)
. (3.6)

From equation (3.4) and (3.6), we have the pressure as

p = − 3γ2

8πG
− 5γ

16πG
Zt −

k

8πGc2e2γt −
φ̇2

8πG
. (3.7)

Add and subtract the equations (3.6) and (3.7), we have

ρ+ p =
γ

16πG
Zt +

k

4πGc2e2γt −
φ̇2

4πG
(3.8)

and

ρ− p = 3γ2

4πG
+

11γ
16πG

Zt +
k

2πGc2e2γt . (3.9)

Again, from (3.6) and (3.7), we obtain

ρ+ 3p = − 3γ2

4πG
− 9γ

16πG
Zt +

φ̇2

2πG
. (3.10)

Now, we discuss two different physical variable cosmologies as same as in previous section but
here we take the positive quantity of physical variables.
(i) If Zt = et:
Substituting the value of Zt in equations (3.6) and (3.7), we can determine ρ and p respectively
as

ρ =
3

8πG

(
γ2 + γet +

k

c2e2γt −
φ̇2

3

)
. (3.11)

p = − 3γ2

8πG
− 5γ

16πG
et − k

8πGc2e2γt −
φ̇2

8πG
. (3.12)

Add and subtract the equations (3.11) and (3.12), we have

ρ+ p = − γet

16πG
+

k

4πGc2e2γt −
φ̇2

4πG
(3.13)

and

ρ− p = 3γ2

4πG
+

11γ
16πG

et +
k

2πGc2e2γt . (3.14)

Again, from (3.6) and (3.7), we obtain

ρ+ 3p = − 3γ2

4πG
− 9γ

16πG
et − φ̇2

2πG
. (3.15)

We observed the equations (3.11) to (3.15), the null energy condition is satisfied if

c2 ≤ 4k
e2γt(γet + 4φ̇2)

= E1.

The weak energy condition is satisfied for

c2 ≤ min
{

k

e2γt(γet − γ2 + φ̇2/3)
,

4k
e2γt(γet + 4φ̇2)

}
= E2.
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The dominant energy condition is satisfied if

c2 ≤ min
{

k

e2γt(γet − γ2 + φ̇2/3)
,

4k
e2γt(γet + 4φ̇2)

,
8k

e2γt(11γet − 12γ2)

}
= E3

and strong energy condition is satisfied if 0 < φ̇2 ≤ 9γ
8et −

3
2γ

2.
It is observed that, for any value of t, NEC, WEC and DEC are satisfied in this case if c2 ≤
min{E1, E2, E3}, whereas SEC is satisfied in this model if 0 < φ̇2 ≤ 9γ

8et −
3
2γ

2. However,
we also observed that for large cosmic time t, SEC, WEC and DEC are satisfied, but SEC is
violated.
(ii) If Zt = tn:

Substituting the value of Zt in equations (3.6) and (3.7), we can determine ρ and p respectively
as

ρ =
3

8πG

(
γ2 + γtn +

k

c2e2γt −
φ̇2

3

)
. (3.16)

p = − 3γ2

8πG
− 5γ

16πG
tn − k

8πGc2e2γt −
φ̇2

8πG
. (3.17)

Add and subtract the equations (3.11) and (3.12), we have

ρ+ p =
γtn

16πG
+

k

4πGc2e2γt −
φ̇2

4πG
(3.18)

and

ρ− p = 3γ2

4πG
+

11γ
16πG

tn +
k

2πGc2e2γt . (3.19)

Again, from (3.16) and (3.17), one can obtain

ρ+ 3p = − 3γ2

4πG
− 9γ

16πG
tn − φ̇2

2πG
. (3.20)

We observed the equations (3.16) to (3.20), the null energy condition is satisfied if

c2 ≤ 4k
e2γt(γtn + 4φ̇2)

= S1.

The weak energy condition is satisfied for

c2 ≤ min
{

k

e2γt(γtn − γ2 + φ̇2/3)
,

4k
e2γt(γtn + 4φ̇2)

}
= S2.

The dominant energy condition is satisfied if

c2 ≤ min
{

k

e2γt(γtn − γ2 + φ̇2/3)
,

4k
e2γt(γtn + 4φ̇2)

,
8k

e2γt(11γtn − 12γ2)

}
= S3

and strong energy condition is satisfied if 0 < φ̇2 ≤ 9γ
8tn −

3
2γ

2.
It is observed that, for any value of t, NEC, WEC and DEC are satisfied in this case if c2 ≤
min{S1, S2, S3}, whereas SEC is satisfied in this model if 0 < φ̇2 ≤ 9γ

8tn −
3
2γ

2. However, we
also observed that for large cosmic time t, SEC, WEC and DEC are satisfied, but SEC is violated.

Case 2: Power-law solution
Let us consider the scalar factor a = ceδ, where δ > 0.
Now, the Hubble parameter becomes

H =
ȧ

a
=
cδtδ−1

ctδ
=
δ

t
. (3.21)
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From equations (3.4) and (3.21), the density is

ρ =
3

8πG

(
δ2

t2
+
δ

t
Zt +

k

c2t2δ
− φ̇2

3

)
. (3.22)

From equations (3.4) and (3.22), the pressure is given by

p =
−3δ2 + 2δ

8πGt2
− 5δ

16πGt
Zt −

k

8πGc2t2δ
− φ̇2

8πG
. (3.23)

Add and subtract the equation (3.22) and (3.23), we obtain

ρ+ p =
δ

4πGt2
+

δ

16πGt
Zt +

k

4πGc2t2δ
− φ̇2

4πG
(3.24)

and

ρ− p = δ(3δ − 1)
4πGt2

+
11δ

16πGt
Zt +

k

2πGc2t2δ
. (3.25)

Again, from equations (3.22) and (3.23) in condition (2.9), we have

ρ+ 3p =
3δ(1− δ)

4πGt2
− 9δ

16πGt
Zt −

φ̇2

2πG
. (3.26)

In this case also, we discuss , as same in case 1 two different scenario:
(i) When Zt = et:
Substituting the value of Zt in equations (3.22) and (3.23), we can determine ρ and p respectively
as

ρ =
3

8πG

(
δ2

t2
− δ

t
et +

k

c2t2δ
− φ̇2

3

)
(3.27)

and

p =
2δ − 3δ2

8πGt2
− 5δ

16πGt
et − k

8πGc2t2δ
− φ̇2

8πG
. (3.28)

From equations (3.27) and (3.28), we obtain

ρ+ p =
2δ

8πGt2
− δ

16πGt
et +

k

4πGc2t2δ
− φ̇2

4πG
(3.29)

and

ρ− p = δ(3δ − 1)
4πGt2

+
11δ

16πGtet
+

k

4πGc2t2δ
. (3.30)

Again, from equations (3.27) and (3.28), we get the condition ρ+ 3p value as:

ρ+ 3p =
3δ(2− δ)

8πGt2
− 9δ

16πGt
et − φ̇2

2πG
. (3.31)

We observed the equations (3.27) to (3.31), the null energy condition is satisfied if

c2 ≤ 4k
δt(2δ−1)et − 4δ2t(2δ−2) + 4φ̇2t2δ

= C1.

The weak energy condition is satisfied for

c2 ≤ min
{

k

δt2δ−1et − δ2t2δ−2 + t2δφ̇2/3
,

4k
δt2δ−1et − 4δ2t(2δ−2) + 4φ̇φ2t2δ

}
= C2.

The dominant energy condition is satisfied if

c2 ≤ min

{
k

δt2δ−1et − δ2t2δ−2 + t2δφ̇2/3
,

4k
δt2δ−1et − 4δ2t(2δ−2) + 4φ̇2t2δ

}
,{

8k
11δt2δ−1et − 4δ(3δ − 1)t2δ−2

}
= C3
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and strong energy condition is satisfied if 0 < φ̇2 ≤ 3δ(1−δ)
t2 + 9δ

8tet .
From these observations that, for any value of t, NEC, WEC and DEC are satisfied in this case
if c2 ≤ min{C1, C2, C3}, whereas SEC is satisfied in this model if 0 < φ̇2 ≤ 3δ(1−δ)

t2 + 9δ
8tet .

However, we also observed that for large cosmic time t, SEC, WEC and DEC are satisfied, but
SEC is violated.
(ii) When Zt = tn:
Substituting the value of Zt in equations (3.22) and (3.23), we can determine ρ and p respectively
as

ρ =
3

8πG

(
δ2

t2
− δ

t
tn +

k

c2t2δ
− φ̇2

3

)
(3.32)

and

p =
2δ − 3δ2

8πGt2
− 5δ

16πG
tn−1 − k

8πGc2t2δ
−− φ̇2

8πG
. (3.33)

From equations (3.32) and (3.33), we obtain

ρ+ p =
δ

4πGt
+

δ

16πG
tn−1 +

k

4πGc2t2δ
−− φ̇2

4πG
(3.34)

and

ρ− p = δ(3δ − 1)
4πGt2

+
11δ

16πG
tn−1 +

k

2πGc2t2δ
. (3.35)

Again, from equations (3.32) and (3.33), we get the condition ρ+ 3p value as:

ρ+ 3p =
3δ(1− δ)

4πGt2
− 9δ

16πG
tn−1 −− φ̇2

2πG
. (3.36)

From equations (3.32) to (3.36), it is observed that the null energy condition is satisfied if

c2 ≤ 4k
δt(2δ−n−1) − 4δt(2δ−2) + 4φ̇2t2δ

= L1.

The weak energy condition is satisfied for

c2 ≤ min
{

k

δt2δ−n−1 − δ2t2δ−2 + t2δφ̇2/3
,

4k
δt2δ−n−1 − 4δ2t(2δ−2) + 4φ̇2t2δ

}
= L2.

The dominant energy condition is satisfied if

c2 ≤ min

{
k

δt2δ−n−1 − δ2t2δ−2 + t2δφ̇2/3
,

4k
δt2δ−n−1 − 4δ2t(2δ−2) + 4φ̇2t2δ

}
,{

8k
11δt2δ−n−1 − 4δ(3δ − 1)t2δ−2

}
= L3

and strong energy condition is satisfied if 0 < φ̇2 ≤ 3δ(1−δ)
2t2 + 9δ

8t1−n .
From these observations that, for any value of t, NEC, WEC and DEC are satisfied in this case
if c2 ≤ min{L1, L2, L3}, whereas SEC is satisfied in this model if 0 < φ̇2 ≤ 3δ(1−δ)

t2 + 9δ
8tet .

However, we also observed that for large cosmic time t, SEC, WEC and DEC are satisfied, but
SEC is violated.

4 Conclusion

In Present paper, we have investigated the Finsler-Randers cosmological models in modified
theories of gravity. Then, obtained the solution with the corresponding models of scalar fac-
tor . Further, we studied the behavior of model in Einstein theory and scalar tensor theory by
considering the physical variables Zt = −e−t, Zt = −t−n and this positive variables. With
obtained solutions, we have also discussed null energy condition (NEC),Weak energy condition
(WEC), dominant energy condition (DEC) and Strong energy condition (SEC) and find under
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what conditions our FR cosmological model is physically stable in different modify theories of
gravitation. It is seen that all energy conditions are satisfied for some suitable value of constant
but for large cosmic time t, NEC, WEC and DEC are satisfied but SEC is violated in all modify
gravity theories, which is responsible for current accelerated expansion of Universe. At t → ∞
we obtained Zt = 0, Finsler-Randers cosmological model tend to Friedman Robertson-Walker
model. The model represents an expanding Universe, which approaches isotropy for large values
of t. The results of this paper are in favor of the observational features of the Universe.
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