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Abstract. In the present paper we study the extended generalized φ-recurrent α-Kenmotsu
manifolds and discuss its different geometric properties. Among the results established here it is
shown that an extended generalized φ-recurrent α-Kenmotsu manifold is an Einstein manifold
and the curvature tensor have also been calculated. Finally an example of extended generalized
φ-recurrent α-Kenmotsu manifolds have been constructed.

1 Introduction

A differentiable manifold M of dimension (2n + 1) is said to have an almost contact structure
if the structural group of its tangent bundle reduces to U(n) × 1, ([1], [19]) equivalently an
almost contact structure is given by a triplet (φ, ξ, η) satisfying certain conditions (see Section
2). Many different type of almost contact structures are defined in the literature (Cosymplec-
tic, almost Cosymplectic, Sasakian, Qusi-Sasakian, α-Kenmotsu, almost α-Kenmotsu,(see [8],
[10], [11],[18]). These manifolds appear for the first time in [9], where they have been locally
classified.

In 1977, Takahashi [17] introduced the notion of local φ-symmetry on Sasakian manifold.
Generalizing the notion of local φ-symmetry of Takahashi [17], U. C. De, et al.([3], [4]) in-
troduced the notion of φ-recurrent Sasakian manifolds and the notion of φ-recurrent Kenmotsu
manifolds. In ([14], [15], [16]) Shaikh et al. also studied the locally φ-symmetry LP -Sasakian
and locally φ-recurrent (LCS)n-manifolds. Firstly, the notion of generalized recurrent manifold
has been introduced by Dubey[7] and after studied by De and Guha[5]. Then again the notion of
generalized Ricci-recurrent manifolds has been studied by De et al.[6].

A Riemannina manifold (Mn, g), n ≥ 2-is called generalized recurrent if its curvature tensor
R satisfies the condition

(1.1) ∇R = A⊗R+B ⊗G,

where A and B are two non-vanishing 1-forms defined by A(∗) = g(∗, λ1) and B(∗) =
g(∗, λ2) and the tensor G is defined by

(1.2) G(X,Y )Z = g(Y,Z)X − g(X,Z)Y

for all X,Y, Z ∈ χ(M), where χ(M) being the Lie algebra of smooth vector fields. Here λ1 and
λ2 are vector fields associated with 1-form A and B respectively. If the 1-form B vanishes, then
(1, 1) tensor field turns into the notion of recurrent manifold.

A Riemannina manifold (Mn, g), n ≥ 2, is called generalized Ricci-recurrent [6] if its Ricci
tensor of type (0, 2) satisfies the condition

(1.3). ∇S = A⊗ S +B ⊗ g.

In particular if B = 0, then (1.3) reduces to the notion of Ricci-recurrent manifolds [6].
Moreover, Özgür[9] studied generalized recurrent Kenmotsu manifolds and after that Basari

and Murathan [2], introduced the notion of generalized φ-recurent Kenmotsu manifold. Extend-
ing the notion of Basari and Murathan [2] Shaikh et al. ([16], [13]) introduced the notion of
extended generalized φ-recurrent β-Kenmotsu and LP -Sasakian manifolds. Recently Parakasha
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[12] also studied the extended generalized φ-recurrent Sasakian manifolds. In [11], Öztürk, Ak-
tan and Murathan studied α-Kenmotsu and generalized recurrent α-Kenmotsu manifolds. Moti-
vated by the above studies, in this article we plan to study the extended generalized φ-recurrent
α-Kenmostsu manifolds.

The present paper is organized as follows: Section 2 explores the some preliminaries about α-
Kenmotsu manifolds. In Section 3 we discuss the extended generalized φ-recurrent α-Kenmotsu
manifold and we obtain necessary and sufficient condition for such a manifold to be genralized
Ricci-recurrent. Further we shown that an extended generalized φ-recurrent α-Kenmotsu mani-
fold is Einstien manifold and also obtain curvature tensor R. In the last section the existence of
an extended generalized φ-recurrent α-Kenmotsu manifold is ensured by an example.

2 Preliminaries

Let M be a real (2n + 1)-dimensional C∞-manifold and χ(M) the Lie algebra of C∞-vector
fields on M . An almost contact structure on M is defined by (1, 1)-tensor field φ, a vector ξ and
1-form η on M such that for any point p ∈M , we have

(2.1) φp
2 = −I + ηp⊗ξp, φp(ξp) = 0, ηpφp = 0, ηp(ξp) = 1,

where I denotes the identity transformation of the tangent space at a point p. Manifolds
equipped with an almost contact structure are called almost contact manifolds.

A Riemannian manifold M with metric tensor g and with a triplet (φ, ξ, η) such that

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y )

and

(2.3) g(ξ,X) = η(X)

is an almost contact metric manifold. Then M is said to have (φ, ξ, η, g)-structure.
An almost contact metric manifold M is said to be contact metric manifold. M is said to be

α-Kenmotsu if dη = 0 and dΦ = 2αη ∧Φ, α being a non-zero real number constant, where the
2-from Φ is define as

(2.4) Φ(X,Y ) = g(φX, Y ).

We know that an almost contact metric manifold M is said to be normal if the Nijenhuis
torsion tensor

Nφ(X,Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2[X,Y ] + 2dη(X,Y )ξ,

vanishes for any X,Y ∈ χ(M). Remarking that a normal almost α-Kenmotsu manifold is said
to be α-Kenmotsu manifold (α) 6= 0) [8].

Moreover, if the manifold M satisfies the following relations:

(2.5) (∇Xφ)(Y ) = −α[g(X,φY )ξ + η(Y )φX],

and

(2.6) ∇Xξ = −αφ2X,

then, (M2n+1, φ, ξ, η, g) is called α-Kenmotsu manifold ([1], [8]), where∇ denotes the Rieman-
nian connection of g.
On an α-Kenmotsu manifold M , the following relations hold ([8], [19]).

(2.7) (∇Xη)Y = αg(φX, φY ),

(2.8) R(X,Y )ξ = α2[η(X)Y − η(Y )X],
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(2.9) R(ξ,X)Y = α2[−g(X,Y )ξ + η(Y )X],

(2.10) S(X, ξ) = −2nα2η(X),

(2.11) R(ξ,X)ξ = α2[X − η(X)ξ] = −α2φ2X,

(2.12) g(R(ξ,X)Y, ξ) = α2[−g(X,Y ) + η(X)η(Y )],

(2, 13) η(R(X,Y )Z) = α2[−g(X,Z)η(Y )− g(Y, Z)η(X)]

for all X,Y, Z ∈ χ(M).
Since g(QX,Y ) = S(X,Y ), we have

S(φX, φY ) = g(QφX,φY ),

where Q is the Ricci operator. Using the properties g(X,φY ) = −g(φX, Y ), (2.1) and (2,10),
we obtain

(2.14) S(φX, φY ) = S(X,Y ) + 2nα2η(X)η(Y ).

Also, we have

(2.15) (∇Xη)(Y ) = α[g(X,Y )− η(X)η(Y )]

Now, we can state and prove some basic result in an α-Kenmotsu manifold.

Lemma 2.1. Let (M2n+1, φ, ξ, η, g) be an α-Kenmotsu manifold. Then for any vector fields X ,Y
and Z, the following relation holds

(2.16) (∇WR)(X,Y )ξ = α2[g(φW,φX)Y − g(φW,φY )X] + αR(X,Y )φ2W

for any vector fields X,Y, Z,W ∈ χ(M).

Proof. Using (2.6), (2.7) and (2.8), we can easily obtain (2.16). 2

Lemma 2.2. In a Riemannian manifold (Mn, g) the following relation holds

(2.17) g((∇WR(X,Y )Z,U) = −g((∇WR(X,Y )U,Z)

for any vector fields X,Y, Z,W ∈ χ(M).

Proof. It is easy and obvious and hence we omit the proof. 2

3 Extended generalized φ-recurrent α-Kenmotsu manifold

Definition 3.1. An α-Kenmotsu manifold (M2n+1, φ, ξ, η, g) , n≥1, is said to be an extended
generalized φ-recurrent α-Kenmotsu manifold if its curvature tensor R satisfies the following
relation

(3.1) φ2((∇WR(X,Y )Z) = A(W )φ2(R(X,Y )Z) +B(W )φ2(G(X,Y )Z)

for any vector fields X,Y, Z,W ∈ χ(M), where A and B are two non-vanishing 1-form such
that A(X) = g(X,λ1) and B(X) = g(X,λ2). Here λ1, λ2 are vector fields associated with
1-forms A and B recpectively.

Theorem 3.1. An extended generalized φ-recurrent α-Kenmotsu manifold (M2n+1, φ, ξ, η, g) ,
n≥1, is generalized Ricci-recurrent if and only if the sum of associated 1-froms A and B is zero.
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Proof.Let us consider an extended generalized φ-recurrent α-Kenmotsu manifold. Then using
(2.1), in (3.1), we have

(3.2) −(∇WR)(X,Y )Z + η(∇WR(X,Y )Z)ξ

= A(W )[−R(X,Y )Z + η(R(X,Y )Z)ξ]

+B(W )[−G(X,Y )Z + η(G(X,Y )Z)ξ],

from which it follows that

(3.3) −g((∇WR(X,Y )Z,U) + η((∇WR(X,Y )Z)η(U))

= A(W )[−g(R(X,Y )Z,U) + η((R(X,Y )Z)η(U)]

+B(W )[−g(G(X,Y )Z,U) + η((G(X,Y )Z)η(U)].

Let ei : i = 1, 2, ......, 2n+ 1, be an orthonormal basis of the tangent space at any point of mani-
fold M .
Setting X = U = ei in (3.3) and taking summation over i, 1 ≤ i ≤ 2n+ 1, and then using (1.2),
we get

(3.4) −(∇WS)(Y, Z) + g((∇WR)(ξ, Y )Z, ξ)

= A(W )[−S(Y,Z) + η(R(ξ, Y )Z)]

+B(W )[−(2n− 1)g(Y, Z)− η(Y )η(Z)].

Using (2.8) , (2.16) and (2.17), we have

(3.5) g((∇WR)(ξ, Y )Z, ξ) = 0.

By the virtue of (2.9) and (3.5), it follows from (3.4) that

(3.6) (∇WS)(Y,Z) = A(W )S(Y,Z)

+ [(2n− 1)B(W )−A(W )]g(Y,Z)

+ [A(W ) +B(W )η(Y )η(Z)].

If A(W ) + B(W ) = (A+ B)(W ) = 0, that is, the sum of associated 1-forms A and B is zero,
then (3.6) reduces to

(3.7) ∇S = A⊗ S + ψ ⊗ g,

where ψ(W ) = 2nB(W ) for all W ∈ χ(M).
2

Theorem 3.2. An extended generalized φ-recurrent α-Kenmotsu manifold (M2n+1, φ, ξ, η, g)
, n≥1, is an Einstein manifold. Moreover the associated 1-forms A and B are related by
A+B = 0.

Proof. Setting Z = ξ in (3.6) , using (2.3) and (2.10), we obtain

(3.8) (∇WS)(Y, ξ) = 2nA(W ) +B(W )η(Y ).

Also, we have

(3.9) (∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).

Using (2.7) and (2.10) in (3.9), we get

(3.10) (∇WS)(Y, ξ) = −2nα3g(φW,φY )− S(Y,−αφ2W ).
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By (3.8) and (3.10) we have

(3.11) −2nα3g(φW,φY )− S(−αφ2W,Y ) = 2nA(W ) +B(W )η(Y ).

Again setting Y = ξ in (3.11), we get

(3.12) A(W ) +B(W ) = 0, for all W ∈ χ(M).

By taking account of (3.12) in (3.11), we have

(3.13) αS(φ2W,Y ) = −2nα3g(φW, Y )

Further, using (2.1) and (2.2), we get

(3.13) αS(W,Y ) = −2nα3g(W,Y ).

or

(3.14) S(W,Y ) = −2nα2g(W,Y ).

From (3.12) and (3.14), the theorem follows.

It is known that an α-Kenmotsu manifold is Ricci-semi symmetric if and only if it is an Ein-
stein manifold. From Theorem (3.2), we have the following.
2

Corollary 3.1. An extended generalized φ-recurrent α-Kenmotsu manifold (M2n+1, φ, ξ, η, g) ,
n≥1, is Ricci-semi symmetric.

Theorem 3.2. In an extended generalized φ-recurrent α-Kenmotsu manifold (M2n+1, φ, ξ, η, g),
the eigen value of Ricci tensor S corresponding to the eigen vector λ1 is

r − 2nα2(2n− 1)
2

.

Proof. Changing W ,X ,Y cyclically in (3.3) and adding them, we get by virtue of Bianchi
identity and (3.12) that

(3.15) A(W )[{g(R(X,Y )Z,U)− g(G(X,Y )Z,U)}

+ {η(R(X,Y )Z)− η(G(X,Y )Z)} η(U)]

+A(X)[{g(R(Y,W )Z,U)− g(G(Y,W )Z,U)}

+ {η(R(Y,W )Z)− η(G(Y,W )Z)} η(U)]

+A(Y )[{g(R(W,X)Z,U)− g(G(W,X)Z,U)}

+ {η(R(W,X)Z)− η(G(W,X)Z)} η(U)] = 0.

Setting Y = Z = ei in (3.15) and taking summation over i, 1 ≤ i ≤ 2n+ 1, we get

A(W )[S(X,U)− 2nα2g((X,U)]−A(X)[S(U,W )− 2nα2g((U,W )]

−A(R(W,X)U)−−A(R(W,X)ξ)η(U))−A(X)g(W,U)

+A(W )g(X,U)− {A(X)η(W )−A(W )η(X)} = 0.

Again setting X = U = ei in the above relation and taking summation over i, 1 ≤ i ≤ 2n+ 1,
we have

S(W,λ1) =
r − 2nα2(2n− 1)

2
g(W,λ1).

This proves the theorem.
2
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Theorem 3.4. An α-Kenmotsu manifold (M2n+1, φ, ξ, η, g) , n≥1, is an extended generalized
φ-recurrent, if and only if the following relation holds:

(3.16) (∇WR)(X,Y )Z = α3[{g(φW,φX)g(Y, Z)− g(φW,φY )g(X,Z)}

− αg(R(X,Y )W,Z) + αη(W )g(R(X,Y )Z, ξ)

+A(W )[R(X,Y )Z − η(R(X,Y )Z)ξ)]

+B(W )[G(X,Y )Z − η(G(X,Y )Z, ξ)]

Proof. Using (2.16) and (2.17) in (3.2), we have (3.16). Conversely, applying φ2 on both sides
of (3.16), we get the relation (3.1). 2

Theorem 3.5. In an extended generalized φ-recurrent α-Kenmotsu manifold (M2n+1, φ, ξ, η, g)
, n≥1, the curvature tensor is of the form

(3.17) αR(X,Y )W = α3[g(φW,φX)Y − g(φW,φY )X]

+ α2[(αY )η(W )η(X)−X]η(W )η(Y )]

+ [α2A(W ) +B(W )][−η(X)Y−η(Y )X].

Proof. Setting Z = ξ in (3.2), we get

(3.18) (∇WR)(X,Y )ξ = A(W )R(X,Y )ξ +B(W )G(X,Y )ξ.

By the virtue of (2.8) and (1.2), the above equation gives

(3.19) (∇WR)(X,Y )ξ = α3[g(φW,φX)Y − g(φW,φY )X]

− αR(X,Y )ξ + αη(W )R(X,Y )ξ.

From (2.16) and (3.19), we obtain (3.17).

4 Example of Extended Generalized φ-recurrent α-Kenmotsu manifold

Let us consider the manifold M =
{
(x, y, z) ∈ <3

}
, where (x, y, z) are the standard coordi-

nates in <3. The basis are

e1 = (k1e
−α ∂

∂x
+ k2e

−αz ∂

∂y
), e2 = (k1e

−αz
∂

∂y
− k2e

−αz
∂

∂y
), e3 =

∂

∂z
,

where k2
1 +k2

2 6= 0, α 6= 0 for constant k1, k2 and α. Here {e1, e2, e3} are linearly independent
at each point of M . The Riemannian metric is defined as

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.

Let η be the 1-form defined by η(X) = g(X, e3) for any vector field X on M and φ be the
(1,1) tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then using linearity of g and
φ, we have

φ2X = −X + η(X)e3, η(e3) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y on M .
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we get

[e1, e3] = αe1, [e2, e3] = αe2, [e1, e2] = 0.

Using Koszul’s formula, the Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z])
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− g(Y, [X,Z]) + g(Z, [X,Y ]).

Koszul’s formula yields

∇e1e1 = αe3, ∇e1e2 = −e3, ∇e1e3 = αe1

∇e2e1 = −e3, ∇e2e2 = −αe3, ∇e2e3 = αe2

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0

Thus it can be seen that M is an α-Kenmotsu manifold. Hence by simple calculation we can
obtain the curvature tensor components

R(e1, e2)e1 = α(αe2 − e1), R(e1, e2)e2 = α(e2 − αe1),

R(e1, e2)e3 = 0, R(e1, e3)e = α2e3,

R(e1, e3)e2 = αe3, R(e1, e3)e3 = −α2e1,

R(e2, e3)e1 = αe3, R(e2, e3)e2 = α2e3,

R(e2, e3)e3 = −α2e2

and the components which can be obtained from these symmetry properties. Since {e1, e2, e3}
form a basis of the α-Kenmotsu manifold, any vector field X,Y, Z ∈ χ(M) can be written as

X = a1e1 + b1e2 + c1e3,

Y = a2e1 + b2e2 + c2e3,

Z = a3e1 + b3e2 + c3e3,

noindent where ai, bi, ci ∈ <+ (the set of all positive real numbers), i = 1, 2, 3. Then

(4.1) R(X,Y )Z = α(e2 − αe1)[(a1b2 − a2b1)b3 + 3(a1c2 − a2c1)c3]

+ α(αe2 − e1)[(a1b2 − a2b1)a3 − 3(b1c2 − abc1)b3]

+ α2e3[(a1c2 − a2c1)a3 + (b1c2 − b2c1)b3],

(4.2) G(X,Y )Z = (a2a3 + b2b3 + c2c3)(a1e1 + b1e2 + c1e3)

− (a2a3 + b1b3 + c1c3)(a2e1 + b2e2 + c2e3).

By the virtue of (4.1) we have the following

(4.3) (∇E1R)(X,Y )Z = −2α2(5b1c2 − b2c1)b3e3 − 10α2(a1b2 − a2b1)b3e3

− 2α2e3[5(a1b1 − a2b1)c3 + (5b1 − c2 − b2c1)a3]e2,

(4.4) (∇E2R)(X,Y )Z = −10α3e3[(a1b2 − a2b1)c3 − (a1c2 − a2c1)b3]e1

− 10α3e3((a1c2 − a2c1)a3 + 10α3(a1b2 − a2b1)a3]e3,

(4.5) (∇E3R)(X,Y )Z = 0.

From (4.1) and (4.2), we get

φ2(R(X,Y )Z) = r1e1 + r2e2

and
φ2(G(X,Y )Z) = s1e1 + s2e2,

where
r1 = α(αe2 − e1)[2(a1b2 − a2b1)b3 + (a1c2 − a2c1)c3],

r2 = α(e2 − αe1)[2(a1b2 − a2b1)b3 − (b1c2 − b2c1)c3],
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s1 = a2(b1b3 + c1c3)− a1(b2b3 + c2c3),

s2 = b2(a1a3 + c1c3)− b1(a2a3 + c2c3).

Also from (4.3)-(4.5), we obtain

(4.6) φ2((∇Ei
R)(X,Y )Z) = uie1 + vie2

for i = 1, 2, 3, where

(4.7) u1 = −2α2e3(5b1c2 − b2c1)b3,

v1 = −2α2e3[(5a1b1 − a2b1)c3 + (5b1c2 − b2c1)a3],

u2 = −10α3e3[(a1b2 − a2b1)c3 − (a1c2 − a2c1)b3],

v2 = −10α3e3(a1c2 − a2c1)a3,

u3 = 0, v3 = 0.

Let us consider the 1-forms

(4.8) A(ei) =
s1ui − s2vi
r1s1 − r2s2

and B(ei) =
r1vi − r2ui
r1s1 − r2s2

such that r1s1 − r2s2 6= 0, s1ui − s2vi 6= 0 and r1vi − r2ui 6= 0 for i = 1, 2, 3 from (3.1), we
have

φ2((∇eiR)(X,Y )Z) = A(ei)φ
2(R(X,Y )Z) +B(ei)φ

2(G(X,Y )Z)

for i = 1, 2, 3.
By the virtue of (4.6)-(4.8), it can be easily shown that the manifold satisfies the relation (4.8).
Hence the manifold under consideration is a extended generalized φ-recurrent α-Kenmotsu man-
ifold, which is neither φ-recurrent nor generalized φ-recurrent.
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