Deformations of Nearly *C***-manifolds**

Yavuz Selim Balkan and Nesip Aktan

Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 53D10, 53C15; Secondary 53C25, 53C35.

Keywords and phrases: Framed manifolds, nearly C-manifolds, constant Φ -sectional curvature, D-conformal transformations.

Abstract. A study of nearly C-manifold has been made. Using some suitable D conformal transformations, the deformation of the characteristic structure of nearly C-manifold has been investigated and it is seen that the characteristic structures are invariant under D conformal transformations. Necessary and sufficient conditions for the main and deformed manifolds have also been obtained.

1 Introduction

D-conformal transformations are very useful tools in differential geometry, particularly in manifold theory. In 1968, Tanno defined D-homothetic transformations which are special classes of D-conformal transformations [15] He used them to get Betti numbers of certain contact Riemannian manifolds [14]. On the other hand, D-conformal transformations are used to define new classes of manifolds from existed manifolds. While Jamssens and Vanhecke introduced almost α -Kenmotsu manifolds in 1981 [8], Kim and Pak defined almost α -cosymplectic manifolds by defining suitable D-conformal transformations [9].

In the present paper, we consider a class of D-conformal transformations which is defined by [11] on nearly C-manifolds (which were introduced by Balkan and Aktan in 2016 [1]). Section 2 contains few known definitions and results that are required for further investigation. Nearly C-manifolds have been studied in section 3 and finally the effect of D-conformal transformation on nearly C-manifold has been considered. A nearly C-manifold is not a C-manifold and it is a class of globally framed f-manifolds analogue to nearly Kähler manifolds [6].

The notion of globally framed manifold or globally framed f-manifold, which is generalization of complex and contact manifolds, was introduced by Nakagawa in 1966 [10]. Then, Blair defined three classes of globally framed manifolds, called K-manifold, S-manifold and C-manifold [2]. Many researchers studied on these manifolds. Falcitelli and Pastore introduced almost Kenmotsu f-manifolds in 2007 [3]. In 2014, Öztürk et al. defined almost α -cosymplectic f-manifolds, which are generalization of almost C-manifolds and almost Kenmotsu f-manifolds [12].

2 Preliminaries

Let M be (2n+s)-dimensional manifold and φ is a non-null $(1,\ 1)$ tensor field on M. If φ satisfies

$$\varphi^3 + \varphi = 0, \tag{2.1}$$

then φ is called an f-structure and M is called f-manifold [16]. If $rank\varphi=2n$, namely s=0, φ is called almost complex structure and if $rank\varphi=2n+1$, namely s=1, then φ reduces an almost contact structure [5]. $rank\varphi$ is always constant [13].

On an f-manifold M, P_1 and P_2 operators are defined by

$$P_1 = -\varphi^2, \quad P_2 = \varphi^2 + I,$$
 (2.2)

which satisfy

$$P_1 + P_2 = I,$$
 $P_1^2 = P_1,$ $P_2^2 = P_2,$ $\varphi P_1 = P_1 \varphi = \varphi,$ $P_2 \varphi = \varphi P_2 = 0.$ (2.3)

These properties show that P_1 and P_2 are complement projection operators. There are D and D^{\perp} distributions with respect to P_1 and P_2 operators, respectively [17]. Also, dim (D) = 2n and dim $(D^{\perp}) = s$.

Let M be (2n+s)-dimensional f-manifold and φ is a (1, 1) tensor field, ξ_i is vector field and η^i is 1-form for each $1 \le i \le s$ on M, respectively. If (φ, ξ_i, η^i) satisfy

$$\eta^{j}\left(\xi_{i}\right) = \delta_{i}^{j},\tag{2.4}$$

$$\varphi^2 = -I + \sum_{i=1}^s \eta^i \otimes \xi_i, \tag{2.5}$$

then (φ, ξ_i, η^i) is called globally framed f-structure or simply framed f-structure and M is called globally framed f-manifold or simply framed f-manifold [10]. For a framed f-manifold M, the following properties are satisfied [10]:

$$\varphi \xi_i = 0, \tag{2.6}$$

$$\eta^i \circ \varphi = 0. \tag{2.7}$$

If on a framed f-manifold M, there exists a Riemannian metric which satisfies

$$\eta^{i}(X) = g(X, \xi_{i}), \qquad (2.8)$$

and

$$g(\varphi X, \varphi Y) = g(X, Y) - \sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y), \qquad (2.9)$$

for all vector fields X, Y on M, then M is called framed metric f-manifold [4]. On a framed metric f-manifold, fundamental 2-form Φ defined by

$$\Phi(X, Y) = g(X, \varphi Y), \qquad (2.10)$$

for all vector fields $X, Y \in \chi(M)$ [4]. For a framed metric f-manifold,

$$N_{\varphi} + 2\sum_{i=1}^{s} d\eta^{i} \otimes \xi_{i} = 0, \tag{2.11}$$

is satisfied, M is called normal framed metric f-manifold, where N_{φ} denotes the Nijenhuis torsion tensor of φ [7].

3 Nearly C-manifolds

In this section, we recall some basic facts about nearly C-manifolds for further properties from [1]

Definition 3.1. Let M be globally framed f-manifold and ∇ is Levi-Civita connection. For each $X, Y \in \chi(M)$,

$$(\nabla_X \varphi) Y + (\nabla_Y \varphi) X = 0, \tag{3.1}$$

is satisfied, then M is called nearly C-manifold.

On a nearly C-manifold, we can define H_i and H^i tensor fields by

$$H_i X = \nabla_X \xi_i, \tag{3.2}$$

and

$$H^i X = \nabla_{\xi_i} X, \tag{3.3}$$

for all vector fields X on M and for each $1 \le i \le s$.

Corollary 3.2. For H_i and H^i tensor fields, the following relation holds:

$$H_i X = -\varphi H^i \varphi X + \varphi^2 H^i X. \tag{3.4}$$

Proposition 3.3. For each $1 \le i \le s$, H_i and H^i tensor fields satisfy the following properties:

 $(1) H_i(\xi_i) = 0, H^i(\xi_i) = 0,$

(2)
$$H_i \varphi X + \varphi H_i X = -\sum_{j=1}^{s} \varphi H^i \left(\eta^j \left(X \right) \xi_j \right),$$

(3) $tr(H_i) = 0$,

 $(4) (\nabla_X \varphi) \xi_i = -\varphi H_i X,$

for all vector fields $X \in \chi(M)$.

Lemma 3.4. On a nearly C-manifold M, the following identity holds:

$$g(H_{i}X, Y) + g(X, H_{i}Y) = \sum_{k=1}^{s} \{ \eta^{k}(Y) g(X, H_{k}\xi_{i}) + \eta^{k}(X) g(Y, H_{k}\xi_{i}) \},$$
 (3.5)

for all vector fields $X, Y \in \chi(M)$.

Corollary 3.5. On a nearly C-manifold M, for each $1 \le i \le s$, the characteristic vector field ξ_i is not Killing.

Lemma 3.6. Let M be a nearly C-manifold and R is the Riemannian curvature tensor of M. Then the following identities hold [1]:

$$g\left(R\left(\varphi X,\,\varphi Y\right)\varphi Z,\,\varphi W\right) = g\left(R\left(X,\,Y\right)Z,\,W\right) - \sum_{i=1}^{s} \left\{\eta^{i}\left(X\right)g\left(R\left(\xi_{i},\,Y\right)Z,\,W\right) - \eta^{i}\left(Y\right)g\left(R\left(X,\,\xi_{i}\right)Z,\,W\right)\right\},\tag{3.6}$$

$$g\left(R\left(\xi_{i}, X\right)Y, Z\right) = -g\left(\left(\nabla_{X}H_{i}\right)Y, Z\right)$$

$$= \sum_{k=1}^{s} \left\{\eta^{k}\left(Y\right)g\left(\left(H_{i} \circ H_{k}\right)X, Z\right)\right.$$

$$\left.-\eta^{k}\left(Z\right)g\left(\left(H_{i} \circ H_{k}\right)X, Y\right)\right\},$$

$$(3.7)$$

$$(R(\varphi W, \varphi X)Y, Z) = g(R(W, X)Y, Z) + g((\nabla_W \varphi)X, (\nabla_Y \varphi)Z) + \sum_{k=1}^{s} g(H_k W, X)g(Z, H_k Y).$$
(3.8)

Definition 3.7. Let M be a nearly C-manifold. If at any point $p \in M$ the sectional curvature $K(X, \varphi X)$, which is denoted by K_p , is independent of the choice of the tangent vector $X \in T_pM$, such that $X \neq 0$ and for each $1 \leq i \leq s \ X \perp \xi_i$, then it is said that M has the pointwise constant φ -sectional curvature K_p .

4 D-conformal Transformations on Nearly C-manifolds

Definition 4.1. Let M be a globally framed f-manifold and β be a non-zero smooth function which satisfies $d\beta \wedge \eta^i = 0$ for each $1 \leq i \leq s$. Then, for each $\lambda \in R$, the D-conformal transformation of $(\varphi, \xi_i, \eta^i, g)$ on M are defined by

$$\widetilde{\varphi} = \varphi, \quad \widetilde{\xi}_i = \frac{1}{\beta} \xi_i, \quad \widetilde{\eta}^i = \beta \eta^i, \quad \widetilde{g} = \lambda g + (\beta^2 - \lambda) \sum_{i=1}^s \eta^i \otimes \eta^i.$$
 (4.1)

Furthermore, \widetilde{M} is a globally framed f-manifold admitting a $\left(\widetilde{\varphi},\ \widetilde{\xi}_i,\ \widetilde{\eta}^i,\ \widetilde{g}\right)$ f-structure. Additionally, we can define a fundamental 2-form $\widetilde{\Phi}(X,\ Y) = \widetilde{g}(X,\ \widetilde{\varphi}Y)$.

In view of this definition, we can give following corollaries:

Corollary 4.2. \widetilde{M} is a globally framed f-manifold if and only if M is a globally framed f-manifold.

Corollary 4.3. There is relation between $\widetilde{\Phi}$ and Φ such that

$$\widetilde{\Phi}(X, Y) = \widetilde{g}(X, \widetilde{\varphi}Y) = \lambda g(X, \varphi Y), \tag{4.2}$$

namely, $\widetilde{\Phi} = \lambda \Phi$ for all X and Y vector fields. Where $\lambda \in R$ and $\widetilde{\Phi}$ and Φ are fundamental 2-forms on M and \widetilde{M} , respectively.

Proposition 4.4. Let M and \widetilde{M} be globally framed f-manifolds such as stated in the above. The following identities hold

$$\widetilde{\nabla}_{X}\widetilde{\xi}_{i} = X\left(\frac{1}{\beta}\right)\xi_{i} + \nabla_{X}\xi_{i} + \frac{\varepsilon_{i}}{\beta}\eta^{i}\left(X\right)\xi_{i},\tag{4.3}$$

$$\widetilde{\nabla}_{\widetilde{\xi}_{i}} X = \nabla_{\xi_{i}} X + \frac{\varepsilon_{i}}{\beta} \eta^{i} (X) \xi_{i}, \tag{4.4}$$

$$\sum_{k=1}^{s} \eta^{k} \left(\widetilde{\nabla}_{X} Y \right) = \sum_{k=1}^{s} \left\{ \eta^{k} \left(\nabla_{X} Y \right) + \varepsilon_{k} \eta^{k} \left(X \right) \eta^{k} \left(Y \right) \right\}, \tag{4.5}$$

$$\widetilde{\nabla}_{X}Y = \nabla_{X}Y + \sum_{k=1}^{s} \varepsilon_{k} \eta^{k} (X) \eta^{k} (Y) \xi_{k}, \tag{4.6}$$

for all vector fields X, Y. Where ∇ and $\widetilde{\nabla}$ denotes Levi-Civita connections on M and \widetilde{M} , respectively. We set $\varepsilon_k := \frac{d\beta\left(\xi_k\right)}{\beta}$ for simplicity.

Proof. From Koszul formula, we have

$$2\widetilde{g}\left(\widetilde{\nabla}_{X}Y, Z\right) = 2\lambda g\left(\nabla_{X}Y, Z\right)$$

$$+2\left(\beta^{2} - \lambda\right) \sum_{k=1}^{s} \eta^{k}\left(\nabla_{X}Y\right) \eta^{k}\left(Z\right)$$

$$+2\sum_{k=1}^{s} d\beta\left(\xi_{k}\right) \eta^{k}\left(X\right) \eta^{k}\left(Y\right) \eta^{k}\left(Z\right).$$

$$(4.7)$$

On the other hand, using (4.1), we find

$$2\widetilde{g}\left(\widetilde{\nabla}_{X}Y, Z\right) = 2\lambda g\left(\widetilde{\nabla}_{X}Y, Z\right) + 2\left(\beta^{2} - \lambda\right) \sum_{k=1}^{s} \eta^{k}\left(\widetilde{\nabla}_{X}Y\right) \eta^{k}\left(Z\right).$$

$$(4.8)$$

In view of (4.7) and (4.8), we get (4.5) and (4.6). Putting $Y = \widetilde{\xi}_i$ in (4.6), we have (4.3). Again, choosing $X = \widetilde{\xi}_i$ and Y = X we obtain (4.4).

Theorem 4.5. Let M be globally framed f-manifold and \widetilde{M} be a globally framed f-manifold which is gotten from M by using D-conformal transformations. Then, \widetilde{M} is a nearly C-manifold if and only if M is a nearly C-manifold.

Proof. Replacing Y by $\widetilde{\varphi}Y$ in (4.6) and using (2.6) and $\widetilde{\varphi} = \varphi$, we have

$$\left(\widetilde{\nabla}_X\widetilde{\varphi}\right)Y = \left(\nabla_X\varphi\right)Y. \tag{4.9}$$

Similarly, we get

$$\left(\widetilde{\nabla}_{Y}\widetilde{\varphi}\right)X = \left(\nabla_{Y}\varphi\right)X. \tag{4.10}$$

Now, adding (4.9) and (4.10) side by side, we have

$$\left(\widetilde{\nabla}_{X}\widetilde{\varphi}\right)Y + \left(\widetilde{\nabla}_{Y}\widetilde{\varphi}\right)X = \left(\nabla_{X}\varphi\right)Y + \left(\nabla_{Y}\varphi\right)X. \tag{4.11}$$

Since M is a nearly C-manifold, we find

$$\left(\widetilde{\nabla}_{X}\widetilde{\varphi}\right)Y + \left(\widetilde{\nabla}_{Y}\widetilde{\varphi}\right)X = 0, \tag{4.12}$$

which means \widetilde{M} is a nearly C-manifold.

Conversely, let \widetilde{M} be a nearly C-manifold. Then (4.10) is satisfied. Considering (4.6), we have $(\nabla_X \widetilde{\varphi}) Y + (\nabla_Y \widetilde{\varphi}) X = 0$. Since $\widetilde{\varphi} = \varphi$, we obtain $(\nabla_X \varphi) Y + (\nabla_Y \varphi) X = 0$ which means M is a nearly C-manifold. This completes our proof.

Let M and \widetilde{M} be globally framed f-manifolds such as stated in the above. On globally framed f-manifold \widetilde{M} , \widetilde{H}_i and \widetilde{H}^i tensor fields are defined by $\widetilde{H}_iX=\widetilde{\nabla}_X\widetilde{\xi}_i$ and $\widetilde{H}^iX=\widetilde{\nabla}_{\widetilde{\xi}_i}X$, respectively. Then, considering definitions of H_i and H^i tensor fields, we have

$$\widetilde{H}_{i}X = \frac{1}{\beta}H_{i}X + X\left(\frac{1}{\beta}\right)\xi_{i} + \frac{\varepsilon_{i}}{\beta}\eta^{i}(X)\xi_{i}$$
(4.13)

and

$$\widetilde{H}^{i}X = \frac{1}{\beta}H_{i}X + \frac{\varepsilon_{i}}{\beta}\eta^{i}(X)\,\xi_{i}.\tag{4.14}$$

Now, we can give a corollary similar to Corollary 3.2.

Corollary 4.6. There is a relation between \widetilde{H}_i and \widetilde{H}^i tensor fields such as

$$\widetilde{H}_{i}X = -\widetilde{\varphi}\widetilde{H}^{i}\widetilde{\varphi}X + \widetilde{\varphi}^{2}\widetilde{H}^{i}X + \frac{\varepsilon_{i}}{\beta}\eta^{i}(X)\,\xi_{i}. \tag{4.15}$$

Proof. From (4.1), we find

$$\widetilde{\varphi}\widetilde{\xi}_i = \frac{1}{\beta}\varphi\xi_i,\tag{4.16}$$

for each $1 \le i \le s$. Differentiating (4.16) with respect to X, we get

$$\widetilde{H}_{i}X = -\widetilde{\varphi}\widetilde{H}^{i}\widetilde{\varphi}X + \widetilde{\varphi}^{2}\widetilde{H}^{i}X + \sum_{k=1}^{s} \eta^{k} \left(\widetilde{\nabla}_{X}\widetilde{\xi}_{i}\right)\xi_{k}.$$
(4.17)

Finally, using (4.3) and (4.5), we obtain desired result.

Theorem 4.7. Let M be a nearly C-manifold and \widetilde{M} be a nearly C-manifold which is gotten from M by using D-conformal transformations. Denote R and \widetilde{R} the Riemannian curvature tensor of M and \widetilde{M} , respectively, then the following identity holds

$$\widetilde{R}(X, Y)Z = R(X, Y)Z + \sum_{k=1}^{s} \{A_k(X, Y, Z) - A_k(Y, X, Z)\},$$
 (4.18)

for all vector fields X, Y, Z and for each $1 \le k \le s$. Here, for each $1 \le k \le s$, the A_k tensor fields are defined by

$$A_{k}(X, Y, Z) = X(\varepsilon_{k}) \eta^{k}(Y) \eta^{k}(Z) \xi_{k} + \varepsilon_{k} X\left(\frac{1}{\beta}\right) \eta^{i}(Y) \eta^{k}(Z) \xi_{k}$$

$$+\varepsilon_{k} g(Y, H_{k}X) \eta^{k}(Z) \xi_{k} + \varepsilon_{k} X\left(\frac{1}{\beta}\right) \eta^{i}(Z) \eta^{k}(Y) \xi_{k} + \varepsilon_{k} g(Z, H_{k}X) \eta^{k}(Y) \xi_{k}$$

$$+\varepsilon_{k} X\left(\frac{1}{\beta}\right) \eta^{k}(Y) \eta^{k}(Z) \xi_{k} + \varepsilon_{k} \eta^{k}(Y) \eta^{k}(Z) H_{k}X.$$

$$(4.19)$$

Proof. Let ∇ and $\widetilde{\nabla}$ be Levi-Civita connections on M and \widetilde{M} . All vector fields X, Y, Z, it is well-known that the Riemannian curvature \widetilde{R} of \widetilde{M} is defined by

$$\widetilde{R}(X, Y)Z = \widetilde{\nabla}_X \widetilde{\nabla}_Y Z - \widetilde{\nabla}_Y \widetilde{\nabla}_X Z - \widetilde{\nabla}_{[X, Y]} Z. \tag{4.20}$$

Taking (4.6) into account of (4.20) and making necessary calculations, we easily get (4.19).

Lemma 4.8. Let M and \widetilde{M} be nearly C-manifolds which are stated in the above. For all vector fields X, Y, Z and for each $1 \le k \le s$, the A_k tensor fields satisfy

$$\sum_{k=1}^{s} A_{k}\left(X,\ \widetilde{\varphi}Y,\ Z\right) = \sum_{k=1}^{s} \varepsilon_{k} g\left(\widetilde{\varphi}Y,\ H_{k}X\right) \eta^{k}\left(Z\right) \xi_{k} \tag{4.21}$$

and

$$\sum_{k=1}^{s} A_k (X, Y, \widetilde{\varphi}Z) = \sum_{k=1}^{s} \varepsilon_k g(\widetilde{\varphi}Z, H_k X) \eta^k (Y) \xi_k.$$
 (4.22)

Proof. Putting $Y = \widetilde{\varphi}Y$ in (4.19) and using (2.7), we obtain (4.21). Similarly, setting $Z = \widetilde{\varphi}Z$ in (4.19), then we have (4.22).

Theorem 4.9. Let M and \widetilde{M} be nearly C-manifolds which are stated in the above and let R and \widetilde{R} denote the Riemannian curvature tensors of M and \widetilde{M} ,respectively. Then the following identities are satisfied:

$$\widetilde{g}\left(\widetilde{R}(X, Y)Z, W\right) = \lambda \left[g\left(R(X, Y)Z, W\right) + \sum_{k=1}^{s} \left\{g\left(A_{k}(X, Y, Z), W\right) - g\left(A_{k}(Y, X, Z), W\right)\right\}\right] + \left(\beta^{2} - \lambda\right) \sum_{k=1}^{s} \left\{\eta^{k}\left(R(X, Y)Z\right) + \eta^{k}\left(A_{k}(X, Y, Z)\right) - \eta^{k}\left(A_{k}(Y, X, Z)\right)\right\} \eta^{k}(W), \tag{4.23}$$

$$\widetilde{g}\left(\widetilde{R}\left(\widetilde{\varphi}X, Y\right)Z, W\right) + \widetilde{g}\left(\widetilde{R}\left(X, \widetilde{\varphi}Y\right)Z, W\right) + \widetilde{g}\left(\widetilde{R}\left(X, Y\right)\widetilde{\varphi}Z, W\right) \\
+ \widetilde{g}\left(\widetilde{R}\left(X, Y\right)Z, \widetilde{\varphi}W\right) = \sum_{k=1}^{s} \left\{B_{k}\left(X, Y, Z, W\right) - B_{k}\left(Y, X, Z, W\right)\right\}, \tag{4.24}$$

$$\widetilde{g}\left(\widetilde{R}\left(\widetilde{\varphi}X,\ \widetilde{\varphi}Y\right)\widetilde{\varphi}Z,\ \widetilde{\varphi}W\right) = \lambda\left\{g\left(R\left(X,\ Y\right)Z,\ W\right) - \sum_{k=1}^{s}\left\{\eta^{k}\left(X\right)g\left(R\left(\xi_{k},\ Y\right)Z,\ W\right) - \eta^{k}\left(Y\right)g\left(R\left(X,\ \xi_{k}\right)Z,\ W\right)\right\}\right\},\tag{4.25}$$

$$\widetilde{g}\left(\widetilde{R}\left(\widetilde{\varphi}X,\,\widetilde{\varphi}Y\right)Z,\,W\right) = \lambda g\left(R\left(X,\,Y\right)\widetilde{\varphi}Z,\,\widetilde{\varphi}W\right)
+ \left[\lambda + s\left(\beta^{2} - \lambda\right)\right] \sum_{k=1}^{s} \varepsilon_{k} \left\{g\left(\widetilde{\varphi}Y,\,H_{k}\widetilde{\varphi}X\right)\eta^{k}\left(Z\right)\eta^{k}\left(W\right)
- g\left(\widetilde{\varphi}X,\,H_{k}\widetilde{\varphi}Y\right)\eta^{k}\left(Z\right)\eta^{k}\left(W\right)\right\},$$
(4.26)

$$\widetilde{g}\left(\widetilde{R}(\xi_{i}, X) Y, Z\right) = \sum_{k=1}^{s} \left\{ C_{k}(\xi_{i}, X, Y, Z) - C_{k}(X, \xi_{i}, Y, Z) \right\} \\
+ \sum_{k=1}^{s} \left\{ \lambda \eta^{k}(Y) g((H_{i} \circ H_{k}) X, Z) - \left[\lambda + s(\beta^{2} - \lambda) \right] \eta^{k}(Z) g((H_{i} \circ H_{k}) X, Y) \right\}$$
(4.27)

and

$$\widetilde{g}\left(\widetilde{R}\left(\widetilde{\varphi}X,\,\widetilde{\varphi}Y\right)Z,\,W\right) = \lambda \left\{g\left(R\left(X,\,Y\right)Z,\,W\right) \\
+g\left(\left(\nabla_{X}\widetilde{\varphi}\right)Y,\,\left(\nabla_{Z}\widetilde{\varphi}\right)W\right) + \sum_{k=1}^{s}g\left(H_{k}X,\,Y\right)g\left(H_{k}Z,\,W\right)\right\} \\
+\left[\lambda + s\left(\beta^{2} - \lambda\right)\right] \sum_{k=1}^{s} \left\{g\left(\widetilde{\varphi}Y,\,H_{k}\widetilde{\varphi}X\right)\eta^{k}\left(Z\right) \\
-g\left(\widetilde{\varphi}X,\,H_{k}\widetilde{\varphi}Y\right)\eta^{k}\left(Z\right)\right\}\eta^{k}\left(W\right) \\
+\left(\beta^{2} - \lambda\right) \sum_{k=1}^{s} \left\{g\left(\left(\nabla_{X}\widetilde{\varphi}\right)Y,\,H_{k}\widetilde{\varphi}X\right)\eta^{k}\left(W\right) - \eta^{k}\left(R\left(X,\,Y\right)Z\right)\eta^{k}\left(W\right)\right\},$$
(4.28)

for all vector fields X, Y, Z, W, where B_k and C_k tensor fields are defined by

$$B_{k}(X, Y, Z, W) = \lambda g(A_{k}(\widetilde{\varphi}X, Y, Z), W)$$

$$(\beta^{2} - \lambda) \eta^{k}(A_{k}(\widetilde{\varphi}X, Y, Z)) \eta^{k}(W)$$

$$[\lambda + s(\beta^{2} - \lambda)] \varepsilon_{k} \{g(\widetilde{\varphi}Y, H_{k}X) \eta^{k}(W) \eta^{k}(Z)$$

$$g(\widetilde{\varphi}Z, H_{k}X) \eta^{k}(W) \eta^{k}(Y)\} + \varepsilon_{k}\lambda \eta^{k}(Z) \eta^{k}(Y) g(\widetilde{\varphi}W, H_{k}X)$$

$$(4.29)$$

and

$$C_k(X, \xi_i, Y, Z) = \lambda q(A_k(X, \xi_i, Y), Z) + (\beta^2 - \lambda) \eta^k(A_k(X, \xi_i, Y)) \eta^k(Z),$$
 (4.30)

for each $1 \le k \le s$.

Proof. (4.23): It is clear from (4.18).

(4.24): Replacing X by $\widetilde{\varphi}X$ in (4.23) and using (4.19) and (4.21), we get

$$\widetilde{g}\left(\widetilde{R}\left(\widetilde{\varphi}X, Y\right)Z, W\right) = \lambda \left\{g\left(R\left(\widetilde{\varphi}X, Y\right)Z, W\right) \\
+ \sum_{k=1}^{s} \left[g\left(A_{k}\left(\widetilde{\varphi}X, Y, Z\right), W\right) - \varepsilon_{k}g\left(\widetilde{\varphi}X, H_{k}Y\right)\eta^{k}\left(W\right)\eta^{k}\left(Z\right)\right]\right\} \\
+ \left(\beta^{2} - \lambda\right) \sum_{k=1}^{s} \left\{\eta^{k}\left(R\left(\widetilde{\varphi}X, Y\right)Z\right) + \eta^{k}\left(A_{k}\left(\widetilde{\varphi}X, Y, Z\right)\right) \\
-s\varepsilon_{k}g\left(\widetilde{\varphi}X, H_{k}Y\right)\eta^{k}\left(Z\right)\right\}\eta^{k}\left(W\right).$$
(4.31)

We can obtain the other terms of (4.23), similarly. Then adding the gotten equations side by side, we find (4.24).

(4.25): Replacing X, Y, Z and W by $\widetilde{\varphi}X$, $\widetilde{\varphi}Y$, $\widetilde{\varphi}Z$ and $\widetilde{\varphi}W$, respectively in (4.23) and considering (4.21) and (4.22), then we get

$$\widetilde{g}\left(\widetilde{R}\left(\widetilde{\varphi}X,\ \widetilde{\varphi}Y\right)\widetilde{\varphi}Z,\ \widetilde{\varphi}W\right) = \lambda g\left(R\left(\widetilde{\varphi}X,\ \widetilde{\varphi}Y\right)\widetilde{\varphi}Z,\ \widetilde{\varphi}W\right). \tag{4.32}$$

Putting (3.6) into (4.32), we have desired result.

(4.26): Similar to the last calculations, taking $X = \widetilde{\varphi}X$ and $Y = \widetilde{\varphi}Y$ in (4.23), we get (4.26) by using (4.21) and (4.22).

(4.27): We can get easily from (3.7) and (4.23).

(4.28): Finally, in (4.23), using (3.8), we have (4.28).

Theorem 4.10. Let M and \widetilde{M} be nearly C-manifolds which are stated in the above. \widetilde{M} has the pointwise constant φ -sectional curvature K if and only if M has the pointwise constant φ -sectional curvature K.

Proof. Let M be a nearly C-manifold with pointwise constant φ -sectional curvature K. At any point $p \in M$, for each $1 \le k \le s$ and for all vector fields X such that $X \perp \xi_k$, we have

$$g\left(R\left(\varphi X,\ X\right)\varphi X,\ X\right) + K_{p}g\left(X,\ X\right)g\left(X,\ X\right) = 0. \tag{4.33}$$

Using (4.1) in the last equation and takin (4.23) into account of gotten equation, we obtain

$$\widetilde{g}\left(\widetilde{R}\left(\widetilde{\varphi}X, X\right)\widetilde{\varphi}X, X\right) + K_{p}\widetilde{g}\left(X, X\right)\widetilde{g}\left(X, X\right)$$

$$= \lambda^{2} \left\{ g\left(R\left(\widetilde{\varphi}X, X\right)\widetilde{\varphi}X, X\right) + K_{p}g\left(X, X\right)g\left(X, X\right) \right\}. \tag{4.34}$$

In view of (4.33), we have

$$\widetilde{g}\left(\widetilde{R}\left(\widetilde{\varphi}X,\ X\right)\widetilde{\varphi}X,\ X\right)+K_{p}\widetilde{g}\left(X,\ X\right)\widetilde{g}\left(X,\ X\right)=0,\tag{4.35}$$

which means M has the pointwise constant φ -sectional curvature K_p at any point $p \in M$.

Conversely, let \widetilde{M} has pointwise constant φ -sectional curvature K_p . Then (4.35) is satisfied. Here, we can see easily that (4.33) holds from (4.1) and (4.23). This completes the proof.

References

- [1] Y. S. Balkan and N.Aktan, A new class of globally framed f-manifolds analogue to nearly Kähler manifolds, submitted.
- [2] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Diff. Geom. 4, 155-167 (1970).
- [3] M. Falcitelli and A. M. Pastore, Almost Kenmotsu f-manifolds, Balkan J. Geom. Appl. 12, 32-43 (2007).

- [4] S. I. Goldberg and K. Yano, On normal globally framed f-manifolds, Tohoku Math. J. 22, 362-370 (1970).
- [5] S. I. Goldberg and K. Yano, Globally framed f-manifolds, Illinois J. Math. 15, 456-474 (1971).
- [6] A. Gray, Nearly Kähler manifolds, J. Diff. Geom. 4, 283-309 (1970).
- [7] S. Ishihara, Normal structure f satisfying $f^3 + f = 0$, Kodai Math. Sem. Rep. 18, 36-47 (1966).
- [8] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, *Kodai Math. J.* 4, 1-27 (1981).
- [9] T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structure, *Acta Math. Sinica* 21, 841-846 (2005).
- [10] H. Nakagawa, On framed f-manifolds, Kodai Math. Sem. Rep. 18, 293-306 (1966).
- [11] H. Öztürk, N. Aktan and C. Murathan, Almost α -cosymplectic (κ, μ, ν) -spaces, arXiv: 1007.0527v1.
- [12] H. Öztürk, C. Murathan, N. Aktan and A. Turgut Vanlı Almost α-cosymplectic f-manifolds, Ann. Alexandru Ioan Cuza Uni.-Math. 60, 211-226 (2014).
- [13] R. E. Stong, The rank of *f*-srtucture, *Kodai Math. Sem. Rep.* 29, 207-209 (1977).
- [14] S. Tanno, Harmonic and Betti numbers of certain contact Riemannian manifolds, J. Math. Soc. Japan 19, 308-316 (1967).
- [15] S. Tanno, The topology of contact Riemannian manifolds, Tohoku Math. J. 12, 700-717 (1968).
- [16] K. Yano, On a structure f satisfying $f^3 + f = 0$, Tech. Rep. No. 12, University of Washington, Washington-USA, (1961).
- [17] K. Yano, On a structure defined by a tensor field of f of type (1, 1) satisfying $f^3 + f = 0$, Tensor 14, 99-109 (1963).

Author information

Yavuz Selim Balkan and Nesip Aktan, Department of Mathematics, Faculty of Arts and Sciences Düzce University, Düzce, 81620

Department of Mathematics-Computer Sciences, Faculty of Sciences Necmettin Erbakan University, Konya, 42090, TURKEY.

E-mail: y.selimbalkan@gmail.com

nesipaktan@gmail.com