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Abstract. In this paper, we study some more properties on direct-injective modules in the
context of endoregular, SSP and SIP modules. We find the equivalent condition for a direct-
injective module to be divisible. We also show that the endomorphism ring of an R-module M is
a division ring if and only if M is a direct-injective module with (*) property. Finally, we study
dc-rings and find their connections with hereditary rings and SSI-rings.

1 Introduction

Throughout this paper, all rings are associative rings with unity and all modules are unitary right
R-modules. For a right R-module M, S = EndR(M) denotes the endomorphism ring of M .
For φ ∈ S, Ker(φ) and Im(φ) stand for kernel and image of φ respectively. The notations
N ≤ M , N ≤ess M and N ≤

⊕
M means that N is a submodule, an essential submodule

and a direct summand of M respectively. Matn(R) denotes the n × n matrix ring over R and
rM (I) = {m ∈M |Im = 0}.

The notion of direct-injective modules was introduced by W. K. Nicholson [10] in 1976. This
notion is the generalization of quasi-injective module. A right R-module M is said to be direct-
injective if given a direct summandN ofM with inclusion iN : N →M and any monomorphism
g : N → M there exist f ∈ EndR(M) such that fog = iN . Recall that a module M is called
a C2-module if every submodule of M that is isomorphic to a direct summand of M is itself
a direct summand of M . Nicholson and Yousif [11, Theorem 7.13] showed that the class of
direct-injective modules is equivalent to the class of C2-modules.

According to Rizvi et al. [8], a right R-module M is said to be an endoregular module if
EndR(M) is a von Neumann regular ring. For any right R-module M if EndR(M) is a von
Neumann regular ring then M is a direct-injective module. Thus, every endoregular module is
a direct-injective module but the converse need not be true. We give an example of a direct-
injective module that is not an endoregular module.

In Section 2 of this paper, we discuss the conditions under which every direct-injective mod-
ule is an endoregular module. We also show that a projective module M is endoregular if and
only if M is direct-injective and Im(s) is projective for all s ∈ S. According to Wilson [16],
a right R-module M is said to have summand sum property ( summand intersection property
) called SSP-module ( SIP-module ) if sum ( intersection ) of two direct summands of M is a
direct summand of M . In this Section, we also characterize direct-injective modules in terms of
SSP and SIP module.

According to Sharpe and Vamos [12], an element e of E is said to be ’divisible’ if for every
r of R which is not a right zero-divisor, there exist e

′ ∈ E such that e = re
′
. If every element

of E is divisible, then E is said to be a divisible module. In [6], Han and Choi proved that
every direct-injective module is divisible; however we can show that their result is incorrect,
since Z4 as Z-module is a direct-injective module but not divisible. In this Section, we find
the condition for a direct-injective module to be divisible. According to Tiwari and Pandeya
[13], a right R-module M is said to satisfy (*) property if every non-zero endomorphism of M
is a monomorphism and any module with (*) property is indecomposable. In this Section, we
show that the endomorphism ring of an R-module M is a division ring if and only if M is a
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direct-injective module with (*) property.
In Section 3, we investigate some other properties of direct-injective modules. In this Section,

we give the condition under which a direct-injective module satisfies finite exchange property.
We also find the condition for a submodule of a direct-injective module to be direct-injective. We
show that the class of co-Hopfian, weakly co-Hopfian and Dedekind finite modules are equiva-
lent for a class of direct-injective module. We also show that every singular module in σ [M ] is
direct-injective if and only if it is injective in σ [M ], where σ [M ] is the full subcategory of Mod-
R whose objects are all R-modules subgenerated by M [17]. At the end of this section, we also
study about dc- rings. A ring R is said to be dc- ring if every cyclic R-module is direct-injective.
A ring R is said to be an SSI ring if every semisimple R-module is injective. Finally, we show
that a commutative SSI ring is a dc-ring and every self-injective hereditary ring is a dc-ring.

2 Characterization of Direct-injective Modules in terms of Endoregular, SSP
and SIP Modules

Nicholson and Yousif [11, Theorem 7.13] showed that the class of direct-injective modules are
equivalent to the class of C2-modules. Throughout the paper, we consider direct-injective mod-
ules as a C2-modules. We need the following lemmas for clarity.

Lemma 2.1. [1, Theorem 16] Let M be a right R-module then, S = EndR(M) is a von Neu-
mann regular ring if and only if Ker(s) and Im(s) are direct summands of M for all s ∈ S.

Lemma 2.2. [5, Lemma 2.1] Let M be a module and S = End(M). Then the following condi-
tions are equivalent:

(i) M is a C2-module (or direct-injective).

(ii) For any s ∈ S, Im(s) is a direct summand of M if Ker(s) is a direct summand of M .

According to Rizvi et al. [8], a right R-module M is an endoregular module if EndR(M) is a
von Neumann regular ring. By Lemma 2.1, every endoregular module is direct-injective but the
converse need not be true. Here, we give a counterexample which shows that a direct-injective
module need not be an endoregular module.

Example 2.3. Let M = Z4 as Z-module. Then M is a direct-injective module because it is
a quasi-injective module but EndZ(Z4) is not a von Neumann regular ring hence it is not an
endoregular module.

Now we discuss the conditions under which direct-injective modules are endoregular. Ac-
cording to G. Lee et al. [9], a right R-module M is a Rickart module if Ker(φ) is a direct
summand of M for all φ ∈ EndR(M).

Theorem 2.4. The following conditions are equivalent for a module M and S = EndR(M)

(i) M is an endoregular module;

(ii) M is a direct-injective module and M
⊕
M is an SIP module;

(iii) M is a direct-injective module and a Rickart module.

Proof. (1)⇒ (2). It is easy to see that M is an endoregular module implies that M is a direct-
injective module. Now, we show that M

⊕
M is an SIP module. Set S

′
= EndR(M

⊕
M) ∼=

Mat2(S), Mat2(S) is von Neumann regular ring as S is von Neumann regular ring and has
SSP due to the fact that every von Neumann regular ring has the SSP. So S

′
has SSP. Then by [3,

Lemma 2.1], for the any pair of idempotents α, β ∈ S′
there exist idempotents e, e

′ ∈ S′
such that

αβS
′
= eS

′
and S

′
αβ = S

′
e
′
. Since, Ker(αβ) = rM (S

′
αβ) = rM (S

′
e
′
) = (1− e′)M

⊕
M .

So Ker(αβ) ≤
⊕

(M
⊕
M) which shows that M

⊕
M is an SIP modules.

(2)⇒ (3). Since M
⊕
M is an SIP module therefore Ker(s) is a direct summand of M for

all s ∈ S. Hence, M is a Rickart module.
(3)⇒ (1). Since M is a Rickart module so Ker(s) is a direct summand of M for all s ∈ S.

Also given that M is direct-injective then, by Lemma 2.2 Im(s) is a direct summand of M for
all s ∈ S. Hence, by Lemma 2.1 M is an endoregular module.
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Corollary 2.5. A module M is an endoregular module if M is a Rickart module and M
⊕
M is

a C3 module.

We have observed that a projective module need not be an endoregular module. For example,
Z-module Zn is not an endoregular module for any n ∈ N. In the next proposition, we give an
equivalent condition for a projective module to be an endoregular module.

Proposition 2.6. A projective module M is an endoregular module if and only if M is direct-
injective and Im(s) is projective for all s ∈ S = EndR(M).

Proof. Suppose a projective module M is an endoregular module then M is a direct-injective
module because Ker(s) and Im(s) are direct summands of M for all s ∈ S. Since M is
projective there exist a projective submodule K of M such that M = Ker(s)

⊕
K and Im(s) ∼=

M
Ker(s)

∼= K. Therefore, Im(s) is projective.
Conversely, suppose that Im(s) is projective for all s ∈ S. Then Ker(s) is a direct summand

of M but M is direct-injective implies that Im(s) is a direct summand of M , so by Lemma 2.1,
M is an endoregular module.

Theorem 2.7. Let M is a direct-injective module then the following assertions hold.

(i) S = EndR(M) is a right SSP ring if M is a Rickart module.

(ii) Mat2(S) is a right SSP ring if M is a Rickart module.

Proof.

(i) Let M be a Rickart module then Ker(s) is a direct summand of M ∀s ∈ S = End(M).
Since M is a direct-injective module, hence Im(s) is a direct summand of M ∀s ∈ S =
End(M). Then by [1, Theorem 16], S is a von Neumann regular ring. Since every von
Neumann regular ring is a right SSP ring, so S is a right SSP ring.

(ii) Since S is a von Neumann regular ring, therefore Mat2(S) is a von Neumann regular ring.
Hence, Mat2(S) is a right SSP ring.

Remark 2.8. Since every right SSP ring is also a right SIP ring, therefore S and Mat2(S) are
also right SIP ring if M is a Rickart module and a direct-injective module.

An element m of a module M over a ring R is said to be torsion element there exist a regular
element r ∈ R such that rm = 0. A module M over a ring R is called a torsion module if all
its elements are torsion element and M is called torsion-free if zero is the only torsion element
of M . Every torsion-free module need not be direct injective. For example, Z as Z-module is a
torsion-free module but not a direct-injective module. A module M over a ring R is said to be
divisible if rM =M for all regular element r ∈ R.

Proposition 2.9. Let R be a commutative domain and M be a torsion-free module. Then M is a
direct-injective module if and only if M is a divisible module.

Proof. SupposeM is a direct-injective module and let r be a non-zero element ofR. SinceR is a
commutative domain, so r is a regular element of R. Let us define f : M →M by f(m) = rm,
m ∈ M . Then f is clearly a monomorphism. As M is a direct-injective module, f(M) ≤

⊕
M .

Then there exist a submodule K of M such that M = f(M)
⊕
K = rM

⊕
K. Then rK = 0

implies that K = 0. Thus, rM =M for all regular r ∈ R. Hence, M is a divisible module.
Conversely, let M is a divisible R-module. Since M is also a torsion-free module over a

commutative domain, therefore by [12, Proposition 2.7], M is an injective module and so M is
a direct-injective module.

Remark 2.10. It is observed that every direct-injective module need not be divisible. For exam-
ple, Z-module Z4 is a direct-injective module but not a divisible module. This shows that [6,
Theorem 2.1] is incorrect.
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An R-module M is said to satisfy (*) property if each non-zero endomorphism of M
is a monomorphism [13]. With the help of this property, we find the condition under which the
endomorphism ring of a direct-injective module is a division ring. Recall that a module M is
called co-Hopfian [14], if every injective endomorphism f : M → M is an automorphism. In
the next result, we generalize Schur’s, Lemma.

Proposition 2.11. Let M be a right R-module and S = EndR(M). Then the following condi-
tions are equivalent:

(i) S is a division ring;

(ii) M is a direct-injective module with (*) property;

(iii) M is a co-Hopfian module with (*) property;

(iv) S is a von-Neumann regular ring and M is an indecomposable module.

Proof. (1) ⇒ (2) Since every division ring is von Neumann regular ring, therefore, S is a von
Neumann regular ring and hence, M is a direct-injective module. Also S is a division ring, so
every non-zero endomorphism f ∈ S is an automorphism, hence a monomorphism. Therefore,
M satisfy (*) property.

(2)⇒ (3) Let f ∈ S is an injective endomorphism. Then f(M) ∼=M ≤
⊕
M , so f(M) ≤

⊕
M , as M is direct-injective. Since every module with (*) property is indecomposable, therefore
f(M) =M . Thus, f is an automorphism implies M is co-Hopfian.

(3) ⇒ (4) Let f is a non-zero endomorphism in S. Since M has (*)property, therefore f
is a monomorphism. Since, M is a co-Hopfian module, therefore f becomes an automorphism.
Hence,Ker(f) = 0 and Im(f) =M . This implies thatKer(f) and Im(f) are direct summands
of M . Therefore, S is a von Neumann regular ring. It is easy to see that every module with (*)
property is indecomposable.

(4)⇒ (1) Since S is a von Neumann regular ring, soKer(f) and Im(f) are direct summands
of M for each f ∈ S. To show that S is a division ring we have to show that each non-zero
endomorphism f ∈ S is an automorphism. Since, M is an indecomposable module, Ker(f) = 0
and Im(f) =M . Hence, f is an automorphism as desired.

Corollary 2.12. (i) LetM be a cyclic torsion-free direct-injective module, then S = EndR(M)
is a division ring.

(ii) Let M be an uniform torsion-free direct-injective module, then S = EndR(M) is a division
ring.

Proof. Since every cyclic torsion-free and uniform torsion-free modules satisfy (*) property.
Therefore, the proof follows from Proposition (2.11).

A ring is said to be an abelian ring if all its idempotents are central. A module M is said to
be an abelian module if its endomorphism ring is an abelian ring.

Proposition 2.13. Let M be an abelian endoregular module with (*) property. Then EndR(M)
is a division ring.

Proof. Since M has the (*) property, each non-zero endomorphisms are monomorphisms. Since
M is an abelian endoregular module, M = Ker(s)

⊕
Im(s) for all s ∈ EndR(M) [8]. So

each injective endomorphism becomes an automorphism. Thus, each non-zero endomorphism
is invertible so EndR(M) is a division ring.

3 Some Properties of Direct-injective Modules

In this section, we give the condition under which every direct-injective module satisfies the finite
exchange property. We also find the condition under which a submodule of a direct-injective
module is a direct-injective module. We also study about the ring for which every cyclic R-
module is a direct-injective module.
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A right R-module M is said to satisfy the exchange property if for every right R-module
A and any two direct sum decompositions A = M

′ ⊕
N =

⊕
i∈I

Ai with M
′ ∼= M , there exist

submodules Bi of Ai such that A =M
′ ⊕

(
⊕
i∈I

Bi). M is said to satisfy finite exchange property

if this hold only for any finite index set I. A ring R is said to be an exchange ring if the module
RR satisfy the exchange property. Warfield [15] proved that a module M has the finite exchange
property if and only if EndR(M) is an exchange ring.

Proposition 3.1. Let M be a direct-injective module such that Ker(s) lies under a direct sum-
mand of M for any s ∈ EndR(M). Then M satisfies the finite exchange property.

Proof. Let M be a direct-injective module and S = EndR(M). Since Ker(s) lies under a direct
summand of M for every s ∈ EndR(M), therefore, S is a semiregular ring [10]. Since every
semiregular ring is an exchange ring, hence S is an exchange ring. This proves that M has the
finite exchange property.

Corollary 3.2. Every endoregular module has the finite exchange property.

Proposition 3.3. Let M be a direct-injective module and N is a submodule of M . Then N is a

direct-injective module if
M

N
is a free module.

Proof. Since
M

N
is free module then the short exact sequence 0 → N → M → M

N
→ 0 splits.

So N is a direct summand of M . Hence, N is a direct injective module.

Corollary 3.4. Let M be a finitely generated direct-injective module over a principle ideal do-
main, then the torsion submodule of M is a direct-injective module.

Haghani and Vedadi [4] called an R-module M weakly co-Hopfian if for any injective endo-
morphism f of M , f(M) ≤ess M . An R-module M is called Dedekind-finite if M ∼= M

⊕
N

for some module N , then N = 0. Co-Hopfian modules are weakly co-Hopfian and weakly co-
Hopfian modules are Dedekind-finite [4]. But these classes of modules are equivalent for the
class of direct-injective modules.

Proposition 3.5. Let M be a direct-injective module. Then the following are equivalent:

(i) M is co-Hopfian;

(ii) M is weakly co-Hopfian;

(iii) M is Dedekind-finite.

Proof. (1)⇒ (2)⇒ (3). They are clear.
(3) ⇒ (1) Let f : M → M be an injective endomorphism. Since M is direct-injective,

so f(M) ≤
⊕

M . Let M = f(M)
⊕
N for some N ≤ M . We define a homomorphism

g : M
⊕
N → M by g(m,n) = f(m) + n. Then M

⊕
N ∼= M and M is Dedekind-finite,

N = 0. Hence, f(M) =M , so f is an automorphism as desired.

According to Wisbauer[17], for a module M , σ [M ] denotes the full subcategory of Mod-
R whose objects are all R-modules subgenerated by M and EM (N) denotes the M -injective
hull of a module N which is the trace of M in the injective hull E(N) of N , i.e. EM (N) =∑
{f(M) : f ∈ Hom(M,E(N))}. According to Dung et al.[2], an R-module N is called sin-

gular in σ [M ] or M -singular if N ∼= L/K for an L ∈ σ [M ] and K ≤ess L. Every mod-
ule N ∈ σ [M ] contains a largest M -singular submodule which we denote by ZM (N). If
ZM (N) = 0, then N is called non-singular in σ [M ].

Theorem 3.6. Assume ZM (M) = 0. Then the following are equivalent:

(i) Every singular module in σ [M ] is injective;

(ii) Every singular module in σ [M ] is direct-injective.
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Proof. (1)⇒ (2). This is clear.
(2) ⇒ (1). Let N be a singular module in σ [M ]. By [2, Proposition 4.1], EM (N) the M -

injective hull of N is also singular in σ [M ]. Then, N
⊕
EM (N) is also singular in σ [M ], so

N
⊕
EM (N) is direct-injective by hypothesis. Thus, the inclusion map i : N → EM (N) splits,

so N ≤
⊕
EM (N). As N is essential in EM (N), N = EM (N). So, N is M -injective. Hence,

every singular module in σ [M ] is injective.

Corollary 3.7. The following conditions are equivalent for a right non-singular ring R:

(i) Every singular right R-module is direct-injective;

(ii) Every singular right R-module is injective;

(iii) Every cyclic singular right R-module is injective;

(iv) Every singular right R-module is semisimple.

Proof. (1)⇒ (2). Let M be a singular right R-module. Then, M
⊕
E(M) is also singular right

R-module, so M
⊕
E(M) is direct-injective by hypothesis. Hence, M = E(M) which implies

that M is injective.
(2)⇒ (3)⇒ (4). They are clear by [2, Corollary 7.1].
(4)⇒ (1). This is clear.

A ring R is said to be a dc-ring if every cyclic R-module is a direct-injective module. A ring
R is said to be a qc-ring if every cyclic R-module is a quasi-injective module. Since every quasi-
injective module is a direct-injective module, therefore every qc-ring is a dc-ring. Semisimple
artinian rings are obviously dc-rings. In this section, we also find the connections of dc-rings
with SSI rings and hereditary rings.

Proposition 3.8. A commutative SSI-ring is a dc-ring.

Proof. A ringR is SSI ring if and only ifR is a Noetherian V -ring. SinceR is a commutative SSI
ring implies that R is a commutative Noetherian V -ring. Since commutative V -ring is regular.
So R is a Noetherian regular ring, hence R is a semisimple artinian ring. Therefore, R is a
dc-ring.

Proposition 3.9. Every self injective hereditary ring is a dc-ring.

Proof. Since R is a hereditary ring, a quotient of an injective module is direct-injective [18,
Theorem 4]. Also, R is self-injective implies that every cyclic R-module is isomorphic to the
quotient of an injective R-module, so every cyclic R-module is a direct-injective module. There-
fore, R is a dc-ring.
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