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Abstract. In this paper, a composite Chebyshev finite difference (ChFD) strategy is pre-
sented and applied for finding the solution of fractional optimal control problems (FOCPs)
with time delays. The exhibited technique is an extension of the ChFD method and using the
Chebyshev-Gauss-Lobatto (CGL) points. A numerical example is stated to exhibit the legiti-
macy and appropriateness of the recommended approach. Also, In this work one may use the
Bezier curve strategy for solving of multi-point boundary value problems (BVPs). Numerical
results are demonstrated the validity of the suggested approach for solving of multi-point BVPs.

1 Introduction

A tremendous use of fractional calculus is in engineering, (see [1, 2, 3, 4, 5, 6, 7, 8]). Recently,
the applications have included solving various classes of nonlinear fractional differential equa-
tions (FDEs) numerically (see [1, 7]). Also, the Adomian decomposition method is an approach
to solve the linear/nonlinear systems of FDEs (see [9, 10, 11, 12]).
In the present paper, we introduce ChFD method and apply it for finding the solution of FOCPs
with time delays.
The paper is organized as follows: In Section 2, we give basic preliminaries. In Section 3, the
Shifted Chebyshev polynomials are presented. In Sections 4 and 5, we introduce an approxi-
mation of the Left CFD and right RLFD, respectively. Section 6 is devoted to expansion of the
delay function by the composite ChFD method. one may state an example in Section 7. Also, a
remark is stated. Finally, In Section 8, the conclusion is stated.

2 Basic preliminaries

Definition 2.1. Let x : [a, b] → R be a function, α > 0 a real number, and n = α, where α
denotes the smallest integer greater than or equal to α (see [13]). The left (left RLFD) and right
(right RLFD) Riemann-Liouville fractional derivatives are follow as

aD
α
t x(t) =

1
Γ(n− α)

dn

dtn

∫ t

a

(t− τ)n−α−1x(τ) dτ, (left RLFD),

tD
α
b x(t) =

(−1)n

Γ(n− α)
dn

dtn

∫ b

t

(τ − t)n−α−1x(τ) dτ, (right RLFD), (2.1)

In addition, the left (left CFD) and right (right CFD) Caputo fractional derivatives are

C
aD

α
t x(t) =

1
Γ(n− α)

∫ t

a

(t− τ)n−α−1x(n)(τ) dτ, (left CFD),

C
t D

α
b x(t) =

(−1)n

Γ(n− α)

∫ b

t

(τ − t)n−α−1x(n)(τ) dτ, (right CFD), (2.2)
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3 Shifted Chebyshev polynomials

Chebyshev polynomials are defined in [−1, 1] as follows:

Tn+1(z) = 2zTn(z)− Tn−1(z), T0(z) = 1, T1(z) = z, n = 1, 2, . . . .

For using these polynomials on [0, L], one may utilize Chebyshev polynomials by introducing
the change of variable z = 2t

L − 1. Now, one may have

T ∗n(t) = Tn(
2t
L
− 1), T ∗0 (t) = 1.

A function x ∈ L2([0, L]) can be defined as:

x(t) =
∞∑
j=0

cnT
∗
n(t),

where

cn =
1
hn

∫ L

0
x(t)T ∗n(t)w(t) dt, n = 0, 1, . . . . (3.1)

4 Approximation of the Left CFD

In the sequel, some basic results for the approximation of the fractional derivative are given.

Theorem 4.1. An approximation of the fractional derivative of order α in the Caputo sense of
the function x at ts is given by

C
t D

α
t xN (ts)

∼=
N∑
r=0

x(tr)d
α
s,r, α > 0, (4.1)

where

dαs,r =
4θr
N

N∑
n=bαc

N∑
j=0

n∑
k=bαc

nθn
bj

(−1)n−k(n+ k − 1)!Γ(k − α+ 1
2T
∗
n(tr)T

∗
j (ts)

LαΓ(k + 1
2(n− k)!Γ(k − α− j + 1)Γ(k − α+ j + 1)

(4.2)

and s, r = 0, 1, . . . , N with θ0 = θN = 1
2 , θi = 1 for i = 1, 2, . . . , N − 1.

Proof. See [14].

5 Approximation of the Right RLFD

Suppose that f be a sufficiently smooth function in [0, b] and let J(s; f) be defined as follows

J(s; f) =
∫ b

s

(t− s)−αf ′(t) dt, 0 < s < b. (5.1)

By Eq. (2.2), one may have

sD
α
b f(s) =

f(b)

Γ(1− α)
(b− s)−α +

J(s; f)
Γ(1− α)

.

By approximating f(t), for 0 ≤ t ≤ b, we obtain

f(t) ≈ pN (t) =
N∑
k=0

´́ akTk(
2t
b
− 1), ak =

2
N

N∑
j=0

´́ f(tj)Tk(
2tj
b
− 1), (5.2)
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where tj = b
2 −

b
2cos(

πj
N ), j = 0, 1, . . . , N , therefore

J(s; f) ≈ J(s; pN ) =
∫ b

s

p′N (t)(t− s)−α dt. (5.3)

Also, sDα
b f(s) can be approximated by

sD
α
b f(s) ≈

f(b)

Γ(1− α)
(b− s)−α +

J(s; pN )
Γ(1− α)

. (5.4)

6 Expansion of delay function by composite ChFD

For expanding the delay function f(t− τ) by the composite ChFD method, one may choose N1,
such that

N1 =

{
tf
τ , if tfτ ∈ Z
[ tfτ ] + 1, otherwise,

(6.1)

where [ tfτ ] denotes the greatest integer value less than or equal to tf
τ , and τ is time delay. It should

be noted that N1 is chosen in such a way so that the number of subintervals can be minimized.
Therefore

f(t− τ) ≈
N1∑
n=2

M∑
m=0

´́ gnmbnm(t),

where

gnm =
2
M

M∑
j=0

´́ f(tnj − τ)bnm(tnj). (6.2)

it is obvious that

tnj − τ = tn−1,j , n = 2, . . . , N1, j = 0, 1, . . . ,M. (6.3)

Now, utilizing Eqs. (6.2) and (6.3), one may get

gnm =
2
M

M∑
j=0

´́ f(tn−1,j)bnm(tnj),

because of

bnm(tnj) = bn−1,m(tn−1,j),

hence

gnm =
2
M

M∑
j=0

f(tn−1,j)bn−1,m(tn−1,j). (6.4)

The convergence of the composite ChFD method was presented in [15] for the linear OCPs with
time delay.

Theorem 6.1. For approximating xN (t), the error is the follow as:

error = ‖xexact − xN (t)‖ ≤
∞∑

k=N+1

‖cn‖,

where

xN (t) =
N∑
n=0

cnTn(t), t ∈ [−1, 1].

Proof. see [16]
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7 Numerical example

Now, an example is solved to demonstrate the efficiency, the accuracy, and the applicability of
the proposed technique.

Example 7.1. The following OCP with time delay is considered (see [15])

J =
1
2
x2(1) +

1
2

∫ 1

0
u2(t) dt (7.1)

s.t. ẋ(t) + C
0 D

α
t x(t) = x(t− 2

5
) + u(t), 0 ≤ t ≤ 1, (7.2)

x(t) = 2t2 + 1, − 2
5
≤ t ≤ 0, α = 0.9, tf = 1. (7.3)

To solve this problem by the composite ChFD method, we choose N = 2 and N1 = 3 in Eq.
(6.1). Now, utilizing the proposed technique, one can obtain the following solutions x(t) and
u(t) for this problem with Japprox = 0.5273969950.

xapprox(t) = −0.3695439090t+ 1− 0.6304560910t2,

uapprox(t) = 0.9049153660t− 1.600000000 + 0.6950846360t2.

The obtained solution for u(t) is shown in Fig. 1.

Figure 1. The graph of u(t) for Example 7.1

Remark 7.2. Multi-point BVPs have considered for the numerical applications in various re-
gions of science. In this remark, our objective is to obtain numerically solution by utilizing
Bezier curves strategy. Numerical examples are stated to show the legitimacy and appropriate-
ness of the proposed method.
Presently, the following multi-point BVP is considered

y(n1) = g(x, y, y′, . . . , y(n1−1)), 0 ≤ x ≤ 1,

Now, Bezier curves method is introduced:

y(x) ∼= yn+1(x) =
n∑
i=0

ciBi,n(x), 0 ≤ x ≤ 1, n ≥ 1, (7.4)

where

Br,n(
x− x0

h
) =

(
n

r

)
1
hn

(xf − x)n−r(x− x0)
r, x0 ≤ x ≤ xf , i = 0, 1, . . . , n,

h = xf − x0, x0 = 0, xf = 1,

the unknown control points are ci, i = 0, 1, . . . , n. In this remark, the Bezier curve method is
utilizing for solving the muli-point BVP. This technique is applied in [17, 18]. The convergence
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of this method was proven when n tends infinity.
Now, substituting y(x) in multi-point BVP, one may defined fobjective for x ∈ [x0, xf ] as:

fobjective =
n∑
i=0

c2
i , (7.5)

with boundary conditions of the given problem. One may have:

y′(x) = n

n−1∑
i=0

Bi,n(x)(ci+1 − ci), (7.6)

y′′(x) = n(n− 1)
n−2∑
i=0

Bi,n−2(x)(ci+2 − 2ci+1 + ci) (7.7)

Now, one may utilize Lagrange multipliers technique for solving Eq. (7.5).

Example 7.3. The following four-point second-arrange nonlinear ordinary differential equation
is considered (see [19])

y′′(x) + (x3 + x+ 1)y2(x) = f(x), 0 ≤ x ≤ 1,

with

y(0) =
1
6
y(

2
9
) +

1
3
y(

7
9
)− 0.286634,

where

f(x) =
2
9
[−6 cos(x− x2) + sin(x− x2)(−3(1− 2x)2 + (1 + x+ x3) sin(x− x2))],

yexact(x) =
1
3

sin(x− x2).

One may obtain yapprox(x) = −0.0002714842857 + 0.3346606074x − 0.3419321979x2 +
0.007137731959x3 with the proposed technique by n = 3. The approximate solution for y(x) is
shown in Fig. 2.

Figure 2. The graph of y(x) for Example 7.3

Example 7.4. The following third-order linear differential equation is considered

y′′′(x)− k2y′ + a = 0, 0 ≤ x ≤ 1,

with

y′(0) = y′(1) = 0, y(
1
2
) = 0,
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where

yexact(x) =
a

k3 (sinh(
k

2
sinh(kx)) +

a

k2 (x−
1
2
) +

a

k3 (cosh(kx)− cosh(
k

2
)) tanh

k

2
,

k = 5, a = 1.

One may obtain yapprox(x) = −0.01210708561 + 0.07264251371x2 − 0.04842834258x3 +
8.000000000 × 10−11x4 with the proposed technique by n = 4. The obtained solution for y(x)
is shown in Fig. 3.

Figure 3. The graph of y(x) for Example 7.4

Example 7.5. The following system is considered

y(4)(x) + y(x)y′(x)− 4x7 − 24 = 0, 0 ≤ x ≤ 1,

y(0) = 0, y′′(
1
2
) = 3, y′′′(

1
4
)) = 6, y(1) = 1,

where yexact(x) = x4. One may obtain yapprox(x) = x4 with this method by n = 4 where the
absolute error is zero. The approximate solution for y(x) is shown in Fig. 4.

Figure 4. The graph of y(x) for Example 7.5

8 Conclusions

A composite ChFD method as an extension of the ChFD scheme was applied for solving FOCPs
with time delays. The composite ChFD method is based on Chebyshev polynomials using the
well-known CGL points. One of the most important advantages of the proposed technique is
good representation of smooth functions. Also, in this work one may utilize the Bezier curves
method for solving the multi-point BVPs. Numerical examples are explained to show the appro-
priateness of the proposed technique.



NUMERICAL WAYS FOR FRACTIONAL OPTIMAL CONTROL .. 333

References
[1] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods,

Series on Complexity, Nonlinearity and Chaos, World Scientific, (2012).

[2] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential Equations,
North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, (2006).

[3] V. Kiryakova, Generalized Fractional Calculus and Applications, Longman and J. Wiley, Harlow-New
York, (1994).

[4] F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fractional Calculus
and Applied Analysis, 15(4) 712–718 (2012).

[5] A.B. Malinowska, D.F.M. Torres, Fractional calculus of variations for a combined Caputo derivative,
Fractional Calculus & Applied Analysis, 14(4) 523–538 (2011).

[6] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York and London, (1974).

[7] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).

[8] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications,
Gordon and Breach, Yverdon, (1993).

[9] V. Daftardar-Gejji, H. Jafari, Adomian decomposition: A tool for solving a system of fractional differential
equations, Journal of Mathematical Analysis and Applications, 2, 508–518 (2005).

[10] H. Jafari, V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using Adomian
decomposition, Journal of Computational and Applied Mathematics, 29(1) 108–113 (2006).

[11] J.H. He, Variational iteration method some recent result and new interpretations, Journal of Computa-
tional and Applied Mathematics, 207, 3–17 (2007).

[12] H. Jafari, M. Zabihi, E. Salehpor, Application of Variational iteration method for modified Camassa-
Holm and Degasperis-Procesi equations, Numerical Methods for Partial Differential Equations, 26(5)
1033–1039 (2010).

[13] N.H. Sweilam, T.M. AL-Ajmi, R.H.W. Hoppe, Numerical solution of some types of fractional optimal
control problems, Numerical Analysis and Scientific Computing Preprint Seria, (2013).

[14] M. M. Khader, A. S. Hendy, Fractional Chebyshev finite difference method for solving the fractional
BVPS, J. Appl. Math. Informatics, 31(1-2) 299–309 (2012).

[15] H. R. Marzban, S. M. Hoseini, Solution of linear optimal control problems with time delay using a com-
posite Chebyshev finite difference method, Optim. Control Appl. Meth. DOI: 10.1002/oca.2019 (2012).

[16] N. H. Sweilam, M.M. Khader, A. M.S. Mahdy, Numerical studies for frctional-order logistic differential
equation with two different delays, Journal of applied mathematics, DOI: 10.1155/2012/764894 (2012).

[17] F. Ghomanjani, M.H. Farahi, Optimal control of switched systems based on bezier control points, Int J
Intell Syst Appl 4(7):16–22 (2012).

[18] F. Ghomanjani, M.H. Farahi, A.V. Kamyad, Numerical solution of some linear optimal control systems
with pantograph delays, IMA J Math Control Inf, (2013).

[19] A. Saadatmandi, M. Dehghan, The use of Sinc-collocation method for solving multi-point boundary value
problems, Commun Nonlinear Sci Numer Simulat, 17, 593–601 (2012).

Author information
Fateme Ghomanjani, Department of Mathematics, Kashmar Higher Education Institute, Kashmar., Iran.
E-mail: fatemeghomanjani@gmail.com

Received: October 4, 2017.

Accepted: December 27, 2017


	1 Introduction
	2 Basic preliminaries 
	3 Shifted Chebyshev polynomials
	4 Approximation of the Left CFD
	5 Approximation of the Right RLFD
	6 Expansion of delay function by composite ChFD 
	7 Numerical example
	8 Conclusions

