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Abstract. We establish some common coupled fixed point theorems for hybrid pair of map-
pings under generalized symmetric Meir-Keeler contraction on a non-complete metric space,
which is not partially ordered. It is to be noted that to find coupled coincidence point, we do
not employ the condition of continuity of any mapping involved therein. Moreover, an example
and an application to integral equations are given here to illustrate the usability of the obtained
results. We improve, extend and generalize several known results.

1 Introduction

Let (X, d) be a metric space. We denote by 2X the class of all nonempty subsets of X, by
CL(X) the class of all nonempty closed subsets of X, by CB(X) the class of all nonempty
closed bounded subsets of X and by K(X) the class of all nonempty compact subsets of X. A
functionalH : CL(X)×CL(X)→ R+∪{+∞} is said to be the Pompeiu-Hausdorff generalized
metric induced by d is given by

H(A, B) =

{
max

{
supa∈AD(a, B), supb∈B D(b, A)

}
, if maximum exists,

+∞, otherwise,

for all A, B ∈ CB(X), where D(x, A) = infa∈A d(x, a) denote the distance from x to A ⊂ X.
For simplicity, if x ∈ X, we denote g(x) by gx.

The existence of fixed points for various multivalued contractions and non-expansive map-
pings has been studied by many authors under different conditions which was initiated by Markin
[25]. The theory of multivalued mappings has found application in control theory, convex opti-
mization, differential inclusions and economics.

In [19], Guo and Lakshmikantham given the notion of coupled fixed point. In [7], Gnana-
Bhaskar and Lakshmikantham established some coupled fixed point theorems and applied these
results to study the existence and uniqueness of solution for periodic boundary value problems.
Lakshmikantham and Ciric [22] proved coupled coincidence and common coupled fixed point
theorems for nonlinear contractive mappings in partially ordered complete metric spaces and
extended the results of Gnana-Bhaskar and Lakshmikantham [7], which was later generalized
by Ding et al. [18]. Many authors focused on coupled fixed point theory including [5, 6, 8, 9,
10, 18, 22, 24, 28].

Samet et al. [29] claimed that most of the coupled fixed point theorems in the setting of
single-valued mappings on ordered metric spaces are consequences of well-known fixed point
theorems.

The concepts related to coupled fixed point theory in the setting of multivalued mappings
were extended by Abbas et al.[3] and obtained coupled coincidence point and common coupled
fixed point theorems involving hybrid pair of mappings satisfying generalized contractive condi-
tions in complete metric spaces. Very few papers were devoted to coupled fixed point problems
for hybrid pair of mappings including [2, 3, 11, 13, 14, 15, 16, 17, 23, 27].

In [3], Abbas et al. introduced the following for multivalued mappings:
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Definition 1. Let X be a non-empty set, F : X ×X → 2X and g be a self-mapping on X. An
element (x, y) ∈ X ×X is called

(1) a coupled fixed point of F if x ∈ F (x, y) and y ∈ F (y, x).
(2) a coupled coincidence point of hybrid pair {F, g} if gx ∈ F (x, y) and gy ∈ F (y, x).
(3) a common coupled fixed point of hybrid pair {F, g} if x = gx ∈ F (x, y) and y = gy ∈

F (y, x).
We denote the set of coupled coincidence points of mappings F and g by C(F, g). Note that

if (x, y) ∈ C(F, g), then (y, x) is also in C(F, g).
Definition 2. Let F : X ×X → 2X be a multivalued mapping and g be a self-mapping on X.

The hybrid pair {F, g} is called w−compatible if gF (x, y) ⊆ F (gx, gy) whenever (x, y) ∈ C(F,
g).

Definition 3. Let F : X ×X → 2X be a multivalued mapping and g be a self-mapping on X.
The mapping g is called F−weakly commuting at some point (x, y) ∈ X ×X if g2x ∈ F (gx,
gy) and g2y ∈ F (gy, gx).

Lemma 1 [27]. Let (X, d) be a metric space. Then, for each a ∈ X and B ∈ K(X), there is
b0 ∈ B such that D(a, B) = d(a, b0), where D(a, B) = infb∈B d(a, b).

Aamri and ElMoutawakil [1] defined (EA) property for self-mappings which contained the
class of non-compatible mappings. Kamran [21] extended the (EA) property for hybrid pair
f : X → X and T : X → 2X . In [20], Jungck and Rhoades introduced the notion of occasionally
weakly compatibility for self mappings. Abbas and Rhoades [4] extended the concept of occa-
sionally weakly compatible mappings for hybrid pair f : X → X and T : X → 2X . Deshpande
and Handa [12] introduced the concept of (EA) property and occasionally w−compatibility for
hybrid pair f : X → X and F : X ×X → 2X .

In [12], Deshpande and Handa introduced the following:
Definition 4. Mappings g : X → X and F : X ×X → CB(X) are said to satisfy the (EA)

property if there exist sequences {xn} and {yn} in X, some s, t in X and A, B in CB(X) such
that

lim
n→∞

gxn = s ∈ A = lim
n→∞

F (xn, yn),

lim
n→∞

gyn = t ∈ B = lim
n→∞

F (yn, xn).

Definition 5. Mappings F : X × X → 2X and g : X → X are said to be occasionally
w−compatible if and only if there exists some point (x, y) ∈ X × X such that gx ∈ F (x,
y), gy ∈ F (y, x) and gF (x, y) ⊆ F (gx, gy).

Occasionally w−compatibility is weaker condition than w−compatibility, see Example 8 in
Deshpande and Handa [12].

Let (X, d) be a metric space and T : X → X a self mapping. If (X, d) is complete and T is
a contraction, that is, there exists a constant k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X, (1.1)

then, by Banach contraction mapping principle, which is a classical and powerful tool in nonlin-
ear analysis, we know that T has a unique fixed point p and, for any x0 ∈ X, the Picard iteration
{Tnx0} converges to p. The Banach contraction mapping principle has been generalized in sev-
eral directions. One of these generalizations known as the Meir-Keeler fixed point theorem [26],
has been obtained by replacing the contraction condition (1) by the following more general as-
sumption: for all ε > 0 there exists δ(ε) > 0 such that

x, y ∈ X, ε ≤ d(x, y) < ε+ δ(ε)⇒ d(Tx, Ty) < ε. (1.2)

In [28], Samet established the coupled fixed points of mixed strict monotone generalized Meir-
Keeler operators and also established the existence and uniqueness results for coupled fixed
point. Berinde and Pecurar [6] obtained more general coupled fixed point theorems for mixed
monotone operators F : X×X → X satisfying a generalized symmetric Meir-Keeler contractive
condition.

In this paper, we establish a common coupled fixed point theorem for hybrid pair of mappings
under generalized symmetric Meir-Keeler contraction on a non-complete metric space, which is
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not partially ordered. It is to be noted that to find coupled coincidence point, we do not employ
the condition of continuity of any mapping involved therein. An example and an application to
integral equation demonstrate the effectiveness of our generalization. We improve, extend and
generalize the results of Berinde and Pecurar [6], Gnana-Bhaskar and Lakshmikantham [7], Meir
and Keeler [26], Samet [28] and many other results in the existing literature.

2 Main results

Theorem 2.1. (X, d) be a metric space, F : X ×X → K(X) and g : X → X be two mappings.
Suppose for each ε > 0, there exists δ(ε) > 0 such that

ε ≤ d(gx, gu) + d(gy, gv)

2
≤ ε+ δ(ε),

implies
H(F (x, y), F (u, v)) +H(F (y, x), F (v, u))

2
< ε, (2.1)

for all x, y, u, v ∈ X. Furthermore assume that F (X × X) ⊆ g(X) and g(X) is a complete
subset ofX. Then F and g have a coupled coincidence point. Moreover, F and g have a common
coupled fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u and limn→∞ gny = v for some (x,
y) ∈ C(F, g) and for some u, v ∈ X and g is continuous at u and v.

(b) g is F−weakly commuting for some (x, y) ∈ C(F, g) and gx and gy are fixed points of
g, that is, g2x = gx and g2y = gy.

(c) g is continuous at x and y. limn→∞ gnu = x and limn→∞ gnv = y for some (x, y) ∈ C(F,
g) and for some u, v ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

Proof. Proof. Let x0, y0 ∈ X be arbitrary. Then F (x0, y0) and F (y0, x0) are well defined.
Choose gx1 ∈ F (x0, y0) and gy1 ∈ F (y0, x0), because F (X ×X) ⊆ g(X). Since F : X ×X →
K(X), therefore by Lemma 1, there exist z1 ∈ F (x1, y1) and z2 ∈ F (y1, x1) such that

d(gx1, z1) ≤ H(F (x0, y0), F (x1, y1)),

d(gy1, z2) ≤ H(F (y0, x0), F (y1, x1)).

Since F (X ×X) ⊆ g(X), there exist x2, y2 ∈ X such that z1 = gx2 and z2 = gy2. Thus

d(gx1, gx2) ≤ H(F (x0, y0), F (x1, y1)),

d(gy1, gy2) ≤ H(F (y0, x0), F (y1, x1)).

Continuing this process, we obtain sequences {xn} and {yn} in X such that for all n ∈ N, we
have gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn) such that

d(gxn+1, gxn+2) ≤ H(F (xn, yn), F (xn+1, yn+1)),

d(gyn+1, gyn+2) ≤ H(F (yn, xn), F (yn+1, xn+1)).

Now, by (2.1), for each ε > 0, there exists δ(ε) > 0 such that

ε ≤ d(gx, gu) + d(gy, gv)

2
≤ ε+ δ(ε),

implies
H(F (x, y), F (u, v)) +H(F (y, x), F (v, u))

2
< ε. (2.2)

Condition (2.2) implies the strict contractive condition

H(F (x, y), F (u, v)) +H(F (y, x), F (v, u))

2
<
d(gx, gu) + d(gy, gv)

2
. (2.3)
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Thus, by (2.3), we have

d(gxn+1, gxn) + d(gyn+1, gyn)

2

≤ H(F (xn, yn), F (xn−1, yn−1)) +H(F (yn, xn), F (yn−1, xn−1))

2

<
d(gxn, gxn−1) + d(gyn, gyn−1)

2
,

which shows that the sequence of nonnegative numbers {αn}∞n=0 given by

αn =
d(gxn, gxn−1) + d(gyn, gyn−1)

2
, (2.4)

is non-increasing. Therefore, there exists some ε ≥ 0 such that

lim
n→∞

αn = lim
n→∞

d(gxn, gxn−1) + d(gyn, gyn−1)

2
= ε.

We shall prove that ε = 0. Suppose, to the contrary, that ε > 0. Then there exists a positive
integer p such that

ε < αp < ε+ δ(ε),

which, by (2.2), implies

H(F (xp, yp), F (xp−1, yp−1)) +H(F (yp, xp), F (yp−1, xp−1))

2
< ε,

it follows that

αp+1 =
d(gxp+1, gxp) + d(gyp+1, gyp)

2
< ε,

which is a contradiction. Thus ε = 0 and hence

lim
n→∞

αn = lim
n→∞

d(gxn, gxn−1) + d(gyn, gyn−1)

2
= 0. (2.5)

Let now ε > 0 be arbitrary and δ(ε) the corresponding value from the hypothesis of our theorem.
By (2.5), there exists a positive integer k such that

αk+1 =
d(gxk+1, gxk) + d(gyk+1, gyk)

2
< δ(ε). (2.6)

For this fixed number k, consider now the set Ak = {(x, y) : gxk ≤ gx, gyk ≥ gy, 1
2 [d(gxk,

gx) + d(gyk, gy)] < ε+ δ(ε)}. By (2.6), Ak 6= φ. We claim that

(x, y) ∈ Ak ⇒ (F (x, y), F (y, x)) ∈ Ak. (2.7)

Let (x, y) ∈ Ak. Then

d(gxk, gx) + d(gyk, gy)

2
< ε+ δ(ε), (2.8)

which, by (2.1), implies

H(F (xk, yk), F (x, y)) +H(F (yk, xk), F (y, x))

2
< ε. (2.9)
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Now, by (2.6), (2.9) and by triangle inequality, we have

D(gxk, F (x, y)) +D(gyk, F (y, x))

2

≤ D(gxk, F (xk, yk)) +D(gyk, F (yk, xk))

2

+
H(F (xk, yk), F (x, y)) +H(F (yk, xk), F (y, x))

2

≤ d(gxk, gxk+1) + d(gyk, gyk+1)

2

+
H(F (xk, yk), F (x, y)) +H(F (yk, xk), F (y, x))

2
< ε+ δ(ε).

Thus (F (x, y), F (y, x)) ∈ Ak. Again

d(gxk, gxk+1) + d(gyk, gyk+1)

2

≤ D(gxk, F (x, y)) + d(gyk, F (y, x))

2

+
D(F (x, y), gxk+1) +D(F (y, x), gyk+1)

2
< 2(ε+ δ(ε)).

Thus (gxk+1, gyk+1) ∈ Ak and by induction,

(gxn, gyn) ∈ Ak, for all n > k.

This implies that for all n, m > k, we have

d(gxn, gxm) + d(gyn, gym)

2

≤ d(gxn, gxk) + d(gyn, gyk)

2
+
d(gxk, gxm) + d(gyk, gym)

2
< 2(ε+ δ(ε)) = 4ε.

This shows that {gxn}∞n=0 and {gyn}∞n=0 are Cauchy sequences in g(X). Since g(X) is complete,
therefore there exist x, y ∈ X such that

lim
n→∞

gxn = gx and lim
n→∞

gyn = gy. (2.10)

Now, since gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn), therefore by using condition (2.3), we
get

D(gxn+1, F (x, y)) +D(gyn+1, F (y, x))

2

≤ H(F (xn, yn), F (x, y)) +H(F (yn, xn), F (y, x))

2

<
d(gxn, gx) + d(gyn, gy)

2
.

Letting n→∞ in the above inequality, by using (2.10), we get

D(gx, F (x, y)) = 0 and D(gy, F (y, x)) = 0,

it follows that
gx ∈ F (x, y) and gy ∈ F (y, x),
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that is, (x, y) is a coupled coincidence point of F and g. Hence C(F, g) is nonempty.
Suppose now that (a) holds. Assume that for some (x, y) ∈ C(F, g),

lim
n→∞

gnx = u and lim
n→∞

gny = v, (2.11)

where u, v ∈ X. Since g is continuous at u and v. We have, by (2.11), that u and v are fixed
points of g, that is,

gu = u and gv = v. (2.12)

As F and g are w−compatible, so

(gnx, gny) ∈ C(F, g), for all n ≥ 1, (2.13)

that is, for all n ≥ 1,

gnx ∈ F (gn−1x, gn−1y) and gny ∈ F (gn−1y, gn−1x). (2.14)

Now, by using (2.3) and (2.14), we obtain

D(gnx, F (u, v)) +D(gny, F (v, u))

2

≤ H(F (gn−1x, gn−1y), F (u, v)) +H(F (gn−1y, gn−1x), F (v, u))

2

<
d(gnx, gu) + d(gny, gv)

2
.

On taking limit as n→∞ in above inequality, by using (2.11) and (2.12), we get

D(gu, F (u, v)) = 0 and D(gv, F (v, u)) = 0,

it follows that
gu ∈ F (u, v) and gv ∈ F (v, u). (2.15)

Now, from (2.12) and (2.15), we have

u = gu ∈ F (u, v) and v = gv ∈ F (v, u),

that is, (u, v) is a common coupled fixed point of F and g.
Suppose now that (b) holds. Assume that for some (x, y) ∈ C(F, g), g is F−weakly com-

muting, that is g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx) and g2x = gx and g2y = gy. Thus
gx = g2x ∈ F (gx, gy) and gy = g2y ∈ F (gy, gx), that is, (gx, gy) is a common coupled fixed
point of F and g.

Suppose now that (c) holds. Assume that for some (x, y) ∈ C(F, g) and for some u, v ∈ X,

lim
n→∞

gnu = x and lim
n→∞

gnv = y.

Since g is continuous at x and y. Therefore x and y are fixed points of g, that is,

gx = x and gy = y. (2.16)

Since (x, y) ∈ C(F, g). Therefore, by using (2.16), we obtain

x = gx ∈ F (x, y) and y = gy ∈ F (y, x),

that is, (x, y) is a common coupled fixed point of F and g.
Finally, suppose that (d) holds. Let g(C(F, g)) = {(x, x)}. Then {x} = {gx} = F (x, x).

Hence (x, x) is a common coupled fixed point of F and g.

If we put g = I (the identity mapping) in the Theorem 2.1, we get the following result:
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Corollary 2.2. Let (X, d) be a complete metric space, F : X × X → K(X) be a mapping.
Suppose for each ε > 0, there exists δ(ε) > 0 such that

ε ≤ d(x, u) + d(y, v)

2
≤ ε+ δ(ε),

implies
H(F (x, y), F (u, v)) +H(F (y, x), F (v, u))

2
< ε, (2.17)

for all x, y, u, v ∈ X. Then F has a coupled fixed point.

If we take F to be a singleton set in Theorem 2.1, then we get the following result:

Corollary 2.3. Let (X, d) be a metric space, F : X×X → X and g : X → X be two mappings.
Suppose for each ε > 0, there exists δ(ε) > 0 such that

ε ≤ d(gx, gu) + d(gy, gv)

2
≤ ε+ δ(ε),

implies
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2
< ε, (2.18)

for all x, y, u, v ∈ X. Furthermore assume that F (X × X) ⊆ g(X) and g(X) is a complete
subset of X. Then F and g have a coupled coincidence point.

If we put g = I (the identity mapping) in the Corollary 2.3, we get the following result:

Corollary 2.4. Let (X, d) be a complete metric space, F : X ×X → X be a mapping. Suppose
for each ε > 0, there exists δ(ε) > 0 such that

ε ≤ d(x, u) + d(y, v)

2
≤ ε+ δ(ε),

implies
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2
< ε, (2.19)

for all x, y, u, v ∈ X. Then F has a coupled fixed point.

Theorem 2.5. Let (X, d) be a metric space. Assume F : X × X → CB(X) and g : X → X
be two mappings satisfying (2.1) and {F, g} satisfies the (EA) property. Then F and g have a
coupled coincidence point. Furthermore, if one of the conditions (a) to (d) holds. Then F and g
have a common coupled fixed point.

Proof. Since {F, g} satisfies the (EA) property, there exist sequences {xn} and {yn} in X, some
s, t in X and A, B in CB(X) such that

lim
n→∞

gxn = s ∈ A = lim
n→∞

F (xn, yn),

lim
n→∞

gyn = t ∈ B = lim
n→∞

F (yn, xn). (2.20)

Since g(X) is a closed subset of X, then there exist x, y ∈ X, we have

s = gx and t = gy. (2.21)

Now, by using condition (2.3), we get

H(F (xn, yn), F (x, y)) +H(F (yn, xn), F (y, x))

2

<
d(gxn, gx) + d(gyn, gy)

2
.
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Letting n→∞ in the above inequality, by using (2.20) and (2.21), we get

H(A, F (x, y)) = 0 and H(B, F (y, x)) = 0.

Since gx ∈ A and gy ∈ B, therefore

gx ∈ F (x, y) and gy ∈ F (y, x),

that is, (x, y) is a coupled coincidence point of F and g. Hence C(F, g) is nonempty.
Suppose now that (a) holds. Assume that for some (x, y) ∈ C(F, g),

lim
n→∞

gnx = u and lim
n→∞

gny = v, (2.22)

where u, v ∈ X. Since g is continuous at u and v. We have, by (2.22), that u and v are fixed
points of g, that is,

gu = u and gv = v. (2.23)

As F and g are w−compatible, so

(gnx, gny) ∈ C(F, g), for all n ≥ 1, (2.24)

that is, for all n ≥ 1,

gnx ∈ F (gn−1x, gn−1y) and gny ∈ F (gn−1y, gn−1x). (2.25)

Now, by using (2.3) and (2.25), we obtain

D(gnx, F (u, v)) +D(gny, F (v, u))

2

≤ H(F (gn−1x, gn−1y), F (u, v)) +H(F (gn−1y, gn−1x), F (v, u))

2

<
d(gnx, gu) + d(gny, gv)

2
.

On taking limit as n→∞ in above inequality, by using (2.22) and (2.23), we get

D(gu, F (u, v)) = 0 and D(gv, F (v, u)) = 0,

it follows that
gu ∈ F (u, v) and gv ∈ F (v, u), (2.26)

Now, from (2.23) and (2.26), we have

u = gu ∈ F (u, v) and v = gv ∈ F (v, u),

that is, (u, v) is a common coupled fixed point of F and g.
Suppose now that (b) holds. Assume that for some (x, y) ∈ C(F, g), g is F−weakly com-

muting, that is g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx) and g2x = gx and g2y = gy. Thus
gx = g2x ∈ F (gx, gy) and gy = g2y ∈ F (gy, gx), that is, (gx, gy) is a common coupled fixed
point of F and g.

Suppose now that (c) holds. Assume that for some (x, y) ∈ C(F, g) and for some u, v ∈ X,

lim
n→∞

gnu = x and lim
n→∞

gnv = y.

Since g is continuous at x and y. Therefore x and y are fixed points of g, that is,

gx = x and gy = y. (2.27)

Since (x, y) ∈ C(F, g), Therefore, by using (2.27), we obtain

x = gx ∈ F (x, y) and y = gy ∈ F (y, x),

that is, (x, y) is a common coupled fixed point of F and g.
Finally, suppose that (d) holds. Let g(C(F, g)) = {(x, x)}. Then {x} = {gx} = F (x, x).

Hence (x, x) is a common coupled fixed point of F and g.
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Theorem 2.6. Let (X, d) be a complete metric space. Assume F : X × X → CB(X) and
g : X → X be mappings satisfying (2.1) and {F, g} is occasionally w−compatible. Then F and
g have a common coupled fixed point.

Proof. Since the pairs {F, g} is occasionally w−compatible, therefore there exists some point
(x, y) ∈ X ×X such that

gx ∈ F (x, y), gy ∈ F (y, x) and gF (x, y) ⊆ F (gx, gy). (2.28)

It follows that
g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx). (2.29)

Now, suppose u = gx and v = gy, then by (2.29), we get

gu ∈ F (u, v) and gv ∈ F (v, u). (2.30)

Now, we claim that u = gx = gu and v = gy = gv. If not, then by condition (2.3) and by
triangle inequality, we have

d(gx, gu) + d(gy, gv)

2

≤ H(F (x, y), F (u, v)) +H(F (y, x), F (v, u))

2

<
d(gx, gu) + d(gy, gv)

2
,

which is a contradiction. Hence we must have

u = gx = gu and v = gy = gv. (2.31)

Thus, by (2.30) and (2.31), we get

u = gu ∈ F (u, v) and v = gv ∈ F (v, u),

that is, (u, v) is a common coupled fixed point of F and g.

Example 2.7. Suppose that X = [0, 1], equipped with the metric d : X ×X → [0, +∞) defined
as d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈ X. Let F : X×X → K(X) be defined as

F (x, y) =

{
{0}, for x, y = 1,[

0, x2+y2

3

]
, for x, y ∈ [0, 1),

and g : X → X be defined as
g(x) = x2, for all x ∈ X.

Suppose for each ε > 0, there exists δ(ε) > 0 such that

ε ≤ d(gx, gu) + d(gy, gv)

2
≤ ε+ δ(ε).

Now, for all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1), we have
Case (a). If x2 + y2 = u2 + v2, then

H(F (x, y), F (u, v))

=
u2 + v2

3

≤ 1
3

max{x2, u2}+ 1
3

max{y2, v2}

≤ 1
3
d(gx, gu) +

1
3
d(gy, gv)

≤ 2
3

(
d(gx, gu) + d(gy, gv)

2

)
≤ 2

3
(ε+ δ(ε)) < ε.
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Case (b). If x2 + y2 6= u2 + v2 with x2 + y2 < u2 + v2, then

H(F (x, y), F (u, v))

=
u2 + v2

3

≤ 1
3

max{x2, u2}+ 1
3

max{y2, v2}

≤ 1
3
d(gx, gu) +

1
3
d(gy, gv)

≤ 2
3

(
d(gx, gu) + d(gy, gv)

2

)
≤ 2

3
(ε+ δ(ε)) < ε.

Similarly, we obtain the same result for u2 + v2 < x2 + y2. Thus the contractive condition
(2.1) is satisfied for all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1). Again, for all x, y, u, v ∈ X with
x, y ∈ [0, 1) and u, v = 1, we have

H(F (x, y), F (u, v))

=
x2 + y2

3

≤ 1
3

max{x2, u2}+ 1
3

max{y2, v2}

≤ 1
3
d(gx, gu) +

1
3
d(gy, gv)

≤ 2
3

(
d(gx, gu) + d(gy, gv)

2

)
≤ 2

3
(ε+ δ(ε)) < ε.

Thus the contractive condition (2.1) is satisfied for all x, y, u, v ∈ X with x, y ∈ [0, 1) and
u, v = 1. Similarly, we can see that the contractive condition (2.1) is satisfied for all x, y, u,
v ∈ X with x, y, u, v = 1. Hence, the hybrid pair {F, g} satisfies the contractive condition (2.1),
for all x, y, u, v ∈ X. In addition, all the other conditions of Theorem 2.1, Theorem 2.5 and
Theorem 2.6 are satisfied and z = (0, 0) is a common coupled fixed point of hybrid pair {F, g}.
The function F : X × X → K(X) involved in this example is not continuous at the point (1,
1) ∈ X ×X.
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