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Abstract In this paper, one may present an effective algorithm for treating a singularly per-
turbed differential equation (SPDE) using Genocchi polynomials (GPs) analytically. Some basic
preliminaries for GPs are first presented. Then, a collocation method based on these polyno-
mials is explored for the problem under consideration. The suggested technique is tested for
two numerical examples where the first ten terms of the obtained semi-analytical solutions are
evaluated at different values of the variable x and the numerical results are compared with two
different methods.

1 Introduction

In the field of SPDE, the computation of its solution has been a great challenge and is great
importance due to the versatility of such equations in various application field such as fluid me-
chanics, fluid dynamics, elasticity, aero dynamics. These problems depend on a small positive
parameter (ε) in such a way that the solution varies rapidly in some parts of the domain and
varies slowly in some other parts of the domain.
The authors in [2] considered a semi linear ordinary differential equation which was integrated
to achieve a first order ordinary differential equation (ODE), and considered both the inner and
outer solutions. And these equations as well as numerical methods have been studied by several
authors (see [1, 6]).
In this sequel, a new operational matrix of fractional order derivative based on Genocchi poly-
nomials is introduced to provide approximate solutions of SPDE. The outline of this sequel is as
follow: In Section 2, Some basic preliminaries is stated. Explanation of the problem is explained
in Section 3. Some numerical results are provided in Section 4. Finally, Section 5 will give a
conclusion briefly.

2 Some basic preliminaries

Genocchi numbers and polynomials have been extensively studied in various papers (see [5]).
The classical Genocchi polynomials Gn(x) is usually defined by the following form

2text

et + 1
=
∞∑
i=0

Gn(x)
tn

n!
, (|t| < π), (2.1)

where Gn(x) is the GPs of degree n which is given as:

Gn(x) =
n∑
k=0

(
n

k

)
Gkx

n−k,

and Gn is the Gennochi number which is given as:

G1 = 1, G2 = 0, G3 = 0, G4 = 1, G5 = 0, G6 = −3, G7 = 0,

G8 = 17, G9 = 0, G10 = −155,

G2n+1 = 0, n ∈ N,G12 = 2073,
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hence

G1(x) = 1,

G2(x) = 2x− 1,

G3(x) = 3x2 − 3x,

G4(x) = 4x3 − 6x2 + 1,

G5(x) = 5x4 − 10x3 + 5x,

G6(x) = 6x5 − 15x4 + 15x2 − 3,

Gn(x+ 1) +Gn(x) = 2nxn−1, n ≥ 0,

dGn(x)

dx
= nGn−1(x), n ≥ 1,∫ b

a

Gn(x)dx =
Gn+1(b)−Gn+1(a)

n+ 1
,∫ 1

0
Gn(x)Gm(x) dx =

2(−1)nn!m!
(n+m)!

Gn+m, m, n ≥ 1,

3 Explanation of the problem

Firstly, SPDE is considered

εy′′(x) + p(x)y′(x) + q(x)y(x)− g(x) = 0, 0 ≤ x ≤ 1, (3.1)

y(0) = α, y(1) = β

where p(x), q(x) and g(x) are sufficiently smooth functions, α and β are arbitrary constants, ε is
a small positive parameter, and y(x) is unknown function.
Now, the collocation method based on Genocchi operational matrix of derivatives to solve nu-
merically SPDE is presented.
Our strategy is utilizing GPs to approximate the solution y(x) by yN (x) is as given below.

y(x) ≈ yN (x) =
N∑
n=1

cnGn(x) = G(x)C,

where

CT = [c1, c2, . . . , cn],

G(x) = [G1(x), G2(x), . . . , GN (x)],

also

G′(x)T =MGT (x),⇒ G′(x) = G(x)MT ,

...
...

G(k)(x) = G(x)(MT )k,

where M is N ×N operational matrix of derivative which is given as:

M =



0 0 0 . . . 0 0 0,
2 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . N − 1 0 0
0 0 0 . . . 0 N 0
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then, the k-th derivative of yN (x) can be stated as

y
(k)
N (x) = G(k)(x)C = G(x)(MT )kC, (3.2)

by Eqs. (3.1) and (3.2), we have

εG(x)(MT )2C + p(x)G(x)MTC + q(x)G(x)C − g(x) = 0, (3.3)

to obtain yN (x), one may use the collocation points xj = j−1
N , j = 1, 2, . . . , N − 1.

These equations can be solved by Maple 15 software.

Lemma 3.1. If y(x) ∈ Cn+1[0, 1] and U = Span{G1(x), G2(x), . . . , GN (x)}, then G(x)C is
the best approximation of y(x) out of U when

‖y(x)−G(x)C‖ ≤ h
2n+3

2 R

(n+ 1)!
√

2n+ 3
, x ∈ [xi, xi+1] ⊂ [0, 1],

where R = maxx∈[xi,xi+1] |y(n+1)(x)| and h = xi+1 − xi.

Proof. See [4].

4 Numerical applications

In this section, some results are given to demonstrate the quality of the sated technique in ap-
proximating the solution of SPDE.

Example 4.1. First, the following SPDE is considered (see [3])

εy′′ + y = 0,

y(0) = 0, y(1) = 1,

yexact(x) =
sin( x√

ε
)

sin( 1√
ε
)
,

One may achieve

yapprox(x) = −20.570113x+ 55.29527944x2 − 250.849768x3 + 2977.28137x4

− 10817.41278x5 + 17013.66227x6 − 12817.21305x7

+ 4249.369047x8 − 388.5622535x9,

with this technique by n = 10 and ε = 10−2. The approximate and exact solution for y(x) are
shown in figure 1. Table 1 demonstrates the absolute error of the this technique.

Figure 1. The approximate and exact solution of y(x) for Example 4.1
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Table 1. The absolute error of the this method for Example 4.1 with n = 10 and ε = 10−2

x error of y
0.1 0.002818580693
0.2 2.049552816× 10−7

0.3 0.007346408557
0.4 0.006970506336
0.5 0.000001746071946
0.6 0.007481043140
0.7 9.185305312× 10−7

0.8 0.000003522841231
0.9 0.01414795299
1.0 0.000001500000000

Example 4.2. Second, the following SPDE is considered (see [3])

εy′′ + (1− x

2
)y′ − 1

2
y = 0,

y(0) = 0, y(1) = 1

yexact(x) =
1

2− x
− 1

2
e−

x
4 +

x2
16 ,

One may obtain

yapprox(x) = 19.882x− 4357.499925x11 + 668.9680910x12− 273.9026x2

+ 1962.721x3 − 8262.3343x4 + 21640.389x5 − 35510.57001x6

+ 34377.2155x7 − 14428.05702x8 − 5597.78005x9 + 9761.968971x10

with this method by n = 13 and ε = 10−2. Table 2 demonstrates the absolute error of the this
technique. Also, we compare the numerical results of B-splines method (BM) [3], Chebyshev-
Gauss grid method (ChgM) and presented method in Table 3.

Table 2. The absolute error of the this method for Example 4.2 with n = 13 and ε = 10−2

x error of y
0.1 0.04355702423
0.2 0.0001611588014
0.3 0.004400500700
0.4 0.0007657160000
0.5 0.0004581663000
0.6 0.002234155700
0.7 0.0008172308000
0.8 0.0006226667000
0.9 0.0004170909000
1.0 0.0006610000000
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Table 3. Comparison of the absolute error between this method (n = 13) and others for Example
4.2 with ε = 2−4

x error of y error of ChgM (N = 100) in [3] error of BM (N = 200) in [3]
0.1 0.006341928300 0.029 0.0354
0.2 0.000001981250000 0.035 0.0325
0.3 0.6500879490× 10−3 −− −−
0.4 0.4936620000× 10−3 −− −−
0.5 0.000005197721500 0.0338 0.0234
0.6 0.1820443981× 10−2 −− −−
0.7 0.5499775547× 10−4 −− −−
0.8 0.2315202100× 10−5 −− −−
0.9 0.2487923486× 10−4 0.0134 0.0084
1.0 1.873220000× 10−10 −− −−

5 Conclusions

In this paper, GPs stated for solving the SPDE. The stated technique is computationally attractive.
Some results are included to explain the validity of this technique. The presented approximate
solutions are more accurate compared to the references as it is shown in the tables. By stated
technique, the high orders of convergence obtained when it achieved accurate solutions even for
small values of n.
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