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Abstract. In this paper, we discuss the existence, uniqueness and stability of integro-differential
equation with Hilfer-Katugampola fractional derivative. The arguments are based upon Schauder
fixed point theorem, Banach contraction principle and ulam type stability.

1 Introduction

In this paper, we discuss this paper is to establish existence results by Schauder fixed-point theo-
rem and four types of Ulam stability, namely Ulam-Hyers stability, generalized Ulam-Hyers sta-
bility, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stability for integro-differential
equation involving Hilfer-Katugampola fractional derivative of the form{

ρDα,β
a+ x(t) = f(t, x(t),

∫ t
a
h(t, s, x(s))ds), t ∈ J := (a, b],

ρI1−γ
a+ x(a) = x0, γ = α+ β − αβ,

(1.1)

where ρDα,β
a+ is Hilfer-Katugampola fractional derivative of order α and type β and ρI1−γ

a+ is
generalized fractional integral of order 1− γ, ρ > 0 where f : J ×R×R→ R, h : ∆×R→ R
are continuous. Here, ∆ = {(t, s) : a ≤ s ≤ t ≤ b}. For brevity let us take

Hx(t) =

∫ t

a

h(t, s, x(s))ds.

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
order (non-integer). In recent years, fractional differential equations(FDEs) arise naturally in
various fields such as rheology, fractals, chaotic dynamics, modelling and control theory, signal
processing, bioengineering and biomedical applications, etc. Theory of FDEs has been exten-
sively studied by many authors [4, 7, 11, 15, 16]. Recentely, much attention has been paid to
existence results for the integro-differential equation see [2, 3, 6]

The stability problem of functional equations (of group homomorphisms) was raised by Ulam
in 1940 in a talk given at Wisconsin University [17]. The question posed by Ulam was "Under
what conditions does there exist an additive mapping near an approximately additive mapping?"
In 1941, Hyers [5] gave the first answer to the question of Ulam (for the additive mapping) in
the case Banach spaces. In 1978, Rassias established the Hyers-Ulam stability of linear and
nonlinear mapping. He was the first to prove the stability of the linear mapping. This result of
Rassias attracted several mathematicians worldwide who began to be stimulated to investigate
the stability problems of differential equations [1, 12, 13, 20, 21].

U. N. Katugampola [8] introduced generalized fractional derivative and it has been studied
extensively by some researchers [9, 10, 18, 19]. Further a new fractional derivative which is
known as Hilfer-Katugampola fractional derivative was introduced in [14], which is the interpo-
lation of Hilfer, Hilfer-Hadamard, Riemann-Liouville, Hadamard, Caputo, Caputo-Hadamard,
generalized and Caputo-type fractional derivatives, as well as Weyl and Liouville fractional
derivatives for particular cases of integration extremes.

The paper is organized as follows. In section 2, we present notations and definition used
throughout the paper. In Section 3, we discuss the existence and uniqueness results for integro-
differential equations. In Section 4, stability results is analyzed.
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2 Preliminary

In this section, we recall some definitions and results from fractional calculus. The following
observations are taken from [7, 9, 14]. Throughout this paper, let C[a, b] a space of continuous
functions from J into R with the norm

‖x‖C = sup {|x(t)| : t ∈ J} .

The weighted space Cγ,ρ[a, b] of functions f on (a, b] is defined by

Cγ,ρ[a, b] =

{
f : (a, b]→ R :

(
tρ − aρ

ρ

)γ
f(x) ∈ C[a, b]

}
, 0 ≤ γ < 1,

with the norm

‖f‖Cγ,ρ =
∥∥∥∥( tρ − aρρ

)γ
f(x)

∥∥∥∥
C

= max
t∈J

∣∣∣∣( tρ − aρρ

)γ
f(x)

∣∣∣∣ , C0,ρ[a, b] = C[a, b].

Let δρ =
(
tρ ddt

)
. For n ∈ N we denote by Cnδρ,γ [a, b] the Banach space of functions f which are

continuously differentiable, with the operator δρ, on [a, b] up to (n− 1) order and the derivative
δnρ f of order n on (a, b] such that δnρ f ∈ Cγ,ρ[a, b], this is

Cnδρ,γ [a, b] =
{
δkρf ∈ C[a, b], k = 0, 1, ..., n− 1, δnρ f ∈ Cγ,ρ[a, b]

}
with the norm

‖f‖Cnδρ,γ =
n−1∑
k=0

∥∥δkρf∥∥C +
∥∥δnρ f∥∥Cγ,ρ , ‖f‖Cnδρ =

n∑
k=0

max
x∈R

∣∣δkρf(x)∣∣ .
For n = 0, we have

C0
δρ,γ [a, b] = Cγ,ρ[a, b].

Definition 2.1. The generalized left-sided fractional integral ρIαa+f of order α ∈ C(<(α)) is
defined by

(ρIαa+) f(t) =
ρ1−α

Γ(α)

∫ t

a

(tρ − sρ)α−1sρ−1f(s)ds, t > a, (2.1)

if the integral exists.
The generalized fractional derivative, corresponding to the generalised fractional integral

(2.1), is defined for 0 ≤ a < t, by

(ρDα
a+f) (t) =

ρα−n−1

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

a

(tρ − sρ)n−α+1sρ−1f(s)ds, (2.2)

if the integral exists.

Definition 2.2. The Hilfer-Katugampola fractional derivative with respect to t, with ρ > 0, is
defined by (

ρDα,β
a± f

)
(t) =

(
±ρIβ(1−α)a±

(
tρ−1 d

dt

)
ρI

(1−β)(1−α)
a± f

)
(t) (2.3)

=
(
±ρIβ(1−α)a± δρ

ρI
(1−β)(1−α)
a± f

)
(t).

• The operator ρDα,β
a+ can be written as

ρDα,β
a+ = ρI

β(1−α)
a+ δρ

ρI1−γ
a+ = ρI

β(1−α)
a+

ρDγ
a+ , γ = α+ β − αβ.

• The fractional derivative ρDα,β
a+ is considered as interpolator, with the convenient parame-

ters, of the following fractional derivatives
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(i) Hilfer fractional derivative when ρ→ 1.
(ii) Hilfer-Hadamard fractional derivative when ρ→ 0.

(iii) Generalized fractional derivative when β = 0.
(iv) Caputo-type fractional derivative when β = 1.
(v) Riemann-Liouville fractional derivative when β = 0, ρ→ 1.

(vi) Hadamard fractional derivative when β = 0, ρ→ 0.
(vii) Caputo fractional derivative when β = 1, ρ→ 1.

(viii) Caputo-Hadamard fractional derivative when β = 1, ρ→ 0.
(ix) Liouville fractional derivative when β = 0, ρ→ 1, a = 0.
(x) Hadamard fractional derivative when β = 0, ρ→ 1, a = −∞.

• We consider the following parameters α, β, γ, µ satisfying

γ = α+ β − αβ, 0 ≤ γ < 1, 0 ≤ µ < 1, α > 0, β < 1.

Lemma 2.3. Let α, β > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and ρ, c ∈ R, and ρ ≥ c. Then, for
f ∈ Xp

c (a, b) the semigroup property is valid. This is,

(ρIαa+
ρIβa+f)(x) = (ρIα+βa+ )(x),

and
(ρDα

a+
ρIαa+f)(x) = f(x).

Lemma 2.4. Let x > a, ρIαa+ and ρDα
a+ , according to Eq.(2.1) and (2.2), respectively. Then

ρIαa+

(
tρ − aρ

ρ

)β−1

(x) =
Γ(β)

Γ(α+ β)

(
xρ − aρ

ρ

)α+β−1

, α ≥ 0, β > 0.

ρDα
a+

(
tρ − aρ

ρ

)β−1

(x) = 0, 0 < α < 1.

Lemma 2.5. Let 0 < α < 1, 0 ≤ γ < 1. If f ∈ Cγ and ρI1−α
a+ f ∈ C1

γ [a, b], then

(ρIαa+
ρDα

a+) (x) = f(x)−

(
ρI1−α
a+ f

)
(a)

Γ(α)

(
xρ − aρ

ρ

)α−1

,

for all x ∈ (a, b].

Lemma 2.6. Let 0 < a < b < ∞, α > 0, 0 ≤ γ < 1 and f ∈ Cγ,ρ[a, b]. If α > γ, then ρIαa+f is
continuous on [a, b] and

(ρIαa+f) (a) = lim
t→a+

(ρIαa+) f(t) = 0.

In order to solve our problem, the following spaces are presented.

Cα,β1−γ,ρ[a, b] =
{
f ∈ C1−γ,ρ[a, b],

ρDα,β
a+ f ∈ Cµ,ρ[a, b]

}
and

Cγ1−γ,ρ[a, b] =
{
f ∈ C1−γ,ρ[a, b],

ρDγ
a+f ∈ C1−γ,ρ[a, b]

}
.

It is obvious that
Cγ1−γ,ρ[a, b] ⊂ C

α,β
1−γ,ρ[a, b].

Lemma 2.7. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α+ β − αβ. If Cγ1−γ [a, b], then

ρIγa+
ρDγ

a+f = ρIαa+
ρDα,β

a+ f (2.4)

and

ρDγ
a+
ρIαa+f = ρD

β(1−α)
a+ f. (2.5)
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Lemma 2.8. Let f ∈ L1(a, b). If ρDβ(1−α)
a+ f exists on L1(a, b), then

ρDα,β
a+

ρIαa+f = ρI
β(1−α)
a+

ρD
β(1−α)
a+ f.

Lemma 2.9. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. If f ∈ C1−γ [a, b] and
ρI

1−β(1−α)
a+ ∈ C1

1−γ [a, b], then ρDα,β
a+ fρIαa+ exists on (a, b] and

ρDα,β
a+

ρIαa+f = f.

Lemma 2.10. Suppose α > 0, a(t) is a nonnegative function locally integrable on a ≤ t < b
(some b ≤ ∞), and let g(t) be a nonnegative, nondecreasing continuous function defined on
a ≤ t < b, such that g(t) ≤ K for some constant K. Further let x(t) be a nonnegative locally
integrable on a ≤ t < b function with

|x(t)| ≤ a(t) + g(t)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1x(s)ds, t ∈ J

with some α > 0. Then

|x(t)| ≤ a(t) +
∫ t

a

[ ∞∑
n=1

(g(t)Γ(α))n

Γ(nα)

(
tρ − sρ

ρ

)nα−1

sρ−1

]
x(s)ds, a ≤ t < b.

The proof of above lemma is similar to Theorem 1 in [22].

Lemma 2.11. Let γ = α+ β −αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. If f : J ×R×R→ R is a
function such that f(·, x(·), Hx(·)) ∈ C1−γ [a, b] for all x ∈ C1−γ [a, b]. A function x ∈ Cγ1−γ [a, b]
is the solution of fractional initial value problem{

ρDα,β
a+ x(t) = f(t, x(t), Hx(t)), 0 < α < 1, 0 ≤ β ≤ 1,

ρI1−γ
a+ x(a) = x0,

if and only if x satisfies the following Volterra integral equation

x(t) =
x0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, x(s), Hx(s))ds. (2.6)

3 Existence results

We make the following hypotheses to prove our main results.

(H1) For all x1, x2, y1, y2 ∈ R, there exists a positive constant L > 0 such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ L(|x1 − y2|+ |x2 − y2|).

(H2) : Let h : ∆×R→ R be continuous and there exists a constant H > 0, such that∫ t

0
|h(t, s, x)− h(t, s, y)| ≤ H |x− y| .

(H3) Let f : J ×R×R→ R a function and there exists a function µ ∈ C[a, b] such that

|f(t, x, y)| ≤ µ(t), ∀ t ∈ J, x, y ∈ R.

Theorem 3.1. Assume that [H1] - [H3] are satisfied. Then, (1.1) has at least one solution.

Proof. Consider the operator N : C1−γ,ρ[a, b] → C1−γ,ρ[a, b]. The equivalent integral equation
(2.6) which can be written in the operator form

x(t) = Nx(t)



258 S. Harikrishnan, K. Kanagarajan and D. Vivek

where

(Nx)(t) =
x0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, x(s), Hx(s))ds. (3.1)

Consider the ball
Br = {x ∈ C1−γ,ρ[a, b] : ‖x‖ ≤ r}

It is obvious that the operator N is well defined. Clearly, the fixed points of the operator N are
solutions of the problem. For any x ∈ C1−γ,ρ[a, b] and each t ∈ J we have,∣∣∣∣∣(Nx)(t)

(
tρ − aρ

ρ

)1−γ
∣∣∣∣∣ =

∣∣∣∣∣ x0

Γ(γ)
+

1
Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, x(s), Hx(s))ds

∣∣∣∣∣
≤ x0

Γ(γ)
+

1
Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |f(s, x(s), Hx(s))| ds

≤ x0

Γ(γ)
+

1
Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |µ(s)| ds

≤ x0

Γ(γ)
+

1
Γ(α)

(
tρ − aρ

ρ

)1−γ (
tρ − aρ

ρ

)α+γ−1

B(γ, α) ‖µ‖C1−γ,ρ

≤ x0

Γ(γ)
+

1
Γ(α)

(
bρ − aρ

ρ

)α
B(γ, α) ‖µ‖C1−γ,ρ

.

This proves that N transforms the ball Br =
{
x ∈ C1−γ,ρ[a, b] : ‖x‖C1−γ,ρ

≤ r
}

into itself.
The proof is divided into several steps.
Step 1: The operator N is continuous.

Let xn be a sequence such that xn → x in C1−γ,ρ[a, b]. Then for each t ∈ J ,∣∣∣∣∣((Nxn)(t)− (Nx)(t))

(
tρ − aρ

ρ

)1−γ
∣∣∣∣∣

≤
(
tρ − aρ

ρ

)1−γ
∣∣∣∣∣ 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, xn(s), Hxn(s))ds

− 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, x(s), Hx(s))ds

∣∣∣∣∣
≤
(
tρ − aρ

ρ

)1−γ
∣∣∣∣∣ 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |f(s, xn(s), Hxn(s))− f(s, x(s), Hx(s))| ds

∣∣∣∣∣
≤
(
tρ − aρ

ρ

)1−γ 1
Γ(α)

(
tρ − aρ

ρ

)α+γ−1

B(γ, α) ‖f(·, xn(·), Hxn(·))− f(·, x(·), Hx(·))‖C1−γ,ρ
,

which implies

‖Nxn −Nx‖C1−γ,ρ
≤ B(γ, α)

(
bρ − aρ

ρ

)α 1
Γ(α)

‖f(·, xn(·), Hxn(·))− f(·, x(·), Hx(·))‖C1−γ,ρ
.

It implies that N is continuous.
Step 2: N(Br) is uniformly bounded.
It is clear that N(Br) ⊂ Br is bounded.
Step 3: N(Br) is relatively compact.
It follows from N(Br) ⊂ Br that N(Br) is uniformly boundeed. Moreover, to show that N is
an equicontinuous operator. Let t1, t2 ∈ J, t1 < t2, Br be a bounded set of C1−γ,ρ[a, b]. Then,

|((Nx)(t1)− (Nx)(t2))|

≤ x0

Γ(γ)

∣∣∣∣∣
(
tρ1 − aρ

ρ

)γ−1

−
(
tρ2 − aρ

ρ

)γ−1
∣∣∣∣∣+ B(γ, α)

Γ(α)

((
tρ1 − aρ

ρ

)α+γ−1

−
(
tρ1 − aρ

ρ

)α+γ−1
)
‖f‖C1−γ,ρ
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As t1 → t2, the right hand side of the above inequality tends to zero. As a consequence of claim 1
to 3, together with Arzela-Ascoli theorem, we can conclude that N : C1−γ,ρ[a, b]→ C1−γ,ρ[a, b]
is continuous and completely continuous.

Theorem 3.2. Assume that hypothesis (H1) and (H2) are fulfilled. If

L(1 +H)

Γ(α)

(
bρ − aρ

ρ

)α
B(γ.α) < 1

then, Eq. (1.1) has unique solution.

4 Stability Analysis

Next, we shall give the definitions and the criteria of Ulam-Hyers stability and Ulam-Hyers-
Rassias stability for fractional integro-differential Eq.(1.1). Let ε > 0 be a positive real number
and ϕ : J → R+ be a continuous function. We consider the following inequalities

∣∣ρDα,β
a+ z(t)− f(t, z(t), Hz(t))

∣∣ ≤ ε, t ∈ J, (4.1)

∣∣ρDα,β
a+ z(t)− f(t, z(t), Hz(t))

∣∣ ≤ εϕ(t), t ∈ J, (4.2)

∣∣ρDα,β
a+ z(t)− f(t, z(t), Hz(t))

∣∣ ≤ ϕ(t), t ∈ J. (4.3)

Definition 4.1. Eq. (1.1) is Ulam-Hyers stable if there exists a real number Cf > 0 such that for
each ε > 0 and for each solution z ∈ C1−γ,ρ[a, b] of the inequality (4.1) there exists a solution
x ∈ C1−γ,ρ[a, b] of Eq. (1.1) with

|z(t)− x(t)| ≤ Cf ε, t ∈ J.

Definition 4.2. Eq. (1.1) is generalized Ulam-Hyers stable if there exist ϕ ∈ C1−γ,ρ[a, b],
ϕf (0) = 0 such that for each solution z ∈ C1−γ,ρ[a, b] of the inequality (4.1) there exists a
solution x ∈ C1−γ,ρ[a, b] of Eq. (1.1) with

|z(t)− x(t)| ≤ ϕf ε, t ∈ J.

Definition 4.3. Eq. (1.1) is Ulam-Hyers-Rassias stable with respect to ϕ ∈ C1−γ,ρ[a, b] if there
exists a real number Cf,ϕ > 0 such that for each ε > 0 and for each solution z ∈ C1−γ,ρ[a, b] of
the inequality (4.2) there exists a solution x ∈ C1−γ,ρ[a, b] of Eq. (1.1) with

|z(t)− x(t)| ≤ Cf,ϕ εϕ(t), t ∈ J.

Definition 4.4. Eq. (1.1) is generalized Ulam-Hyers-Rassias stable with respect to ϕ ∈ C1−γ,ρ[a, b]
if there exists a real number Cf,ϕ > 0 such that for each solution z ∈ C1−γ,ρ[a, b] of the inequal-
ity (4.3) there exists a solution x ∈ C1−γ,ρ[a, b] of Eq. (1.1) with

|z(t)− x(t)| ≤ Cf,ϕϕ(t), t ∈ J.

Remark 4.5. Clearly,
1. Definition 4.1⇒ Definition 4.2.
2. Definition 4.3⇒ Definition 4.4.
3. Definition 4.3 for ϕ(t) = 1⇒ Definition 4.1

Remark 4.6. A function z ∈ C1−γ,ρ[a, b] is a solution of the inequality (4.1) if and only if there
exists a function g ∈ C1−γ,ρ[a, b] such that∣∣ρDα,β

a+ z(t)− f(t, z(t), Hz(t))
∣∣ ≤ ε, t ∈ J,

if and only if there exist a function g ∈ C1−γ,ρ[a, b] such that
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(i) |g(t)| ≤ ε, t ∈ J .

(ii) ρDα,β
a+ z(t) = f(t, z(t), Hz(t)) + g(t), t ∈ J .

One can have similar remarks for the inequalities (4.2) and (4.3).

Remark 4.7. Let 0 < α < 1, if z is solution of the inequality (4.1) then z is a solution of the
following integral inequality∣∣∣∣∣z(t)− z0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, z(s), Hz(s))ds

∣∣∣∣∣ ≤ ε T ρα

ραΓ(α+ 1)
.

Indeed, by Remark 4.6 we have that

ρDα,β
a+ z(t) = f(t, z(t), Hz(t)) + g(t), t ∈ J.

Then

z(t) =
z0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 (f(s, z(s), Hz(s)) + g(s)) ds.

From this it follows that∣∣∣∣∣z(t)− z0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, z(s), Hz(s))ds

∣∣∣∣∣
=

∣∣∣∣∣ 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s)ds

∣∣∣∣∣
≤ 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |g(s)| ds

≤ ε
(
bρ − aρ

ρ

)α 1
Γ(α+ 1)

.

We have similar remarks for the inequality (4.2) and (4.3).
Now, we give the main results, generalised Ulam-Hyers-Rassias stable results, in this section.

[H3]: There exists an increasing finctions ϕ ∈ C1−γ,ρ[a, b] and there exists λϕ > 0 such that
for any t ∈ J

ρIαa+ϕ(t) ≤ λϕϕ(t).

Theorem 4.8. The hypothesis [H1] and [H2] holds. Then Eq.(1.1) is generalised Ulam-Hyers-
Rassias stable.

Proof. Let z be solution of 4.3 and by Theorem 3.2 there x is unique solution of the problem

ρDα,β
a+ x(t) = f(t, x(t), Hx(t)), t ∈ J,

ρI1−γ
a+ x(a) = ρI1−γ

a+ z(a).

Then we have

x(t) =
z0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, x(s), Hx(s))ds.

By differentiating inequality (4.3), we have∣∣∣∣∣z(t)− z0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, z(s), Hz(s))ds

∣∣∣∣∣ ≤ λϕϕ(t).
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Hence it follows

|z(t)− x(t)| ≤

∣∣∣∣∣z(t)− z0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, x(s), Hx(s))ds

∣∣∣∣∣
≤

∣∣∣∣∣z(t)− z0

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, z(s), Hz(s))ds

∣∣∣∣∣
+

∣∣∣∣∣ 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, z(s), Hz(s))ds

− 1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1f(s, x(s), Hx(s))ds

∣∣∣∣∣
≤ λϕϕ(t) +

L(1 +H)

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |z(s)− x(s)| ds.

By Lemma 2.10, there exists a constant M∗ > 0 independent of λϕϕ(t) such that

|z(t)− x(t)| ≤M∗λϕϕ(t) := Cf,ϕϕ(t).

Thus, Eq.(1.1) is generalized Ulam-Hyers-Rassias stable.

Remark 4.9. (i) Under the assumption of Theorem 4.8, we consider (1.1) and the inequality
(4.2). One can repeat the same process to verify that Eq.(1.1) is Ulam-Hyers-Rassias stable.

(ii) Under the assumption of Theorem 4.8, we consider (1.1) and the inequality (4.1). One can
repeat the same process to verify that Eq.(1.1) is Ulam-Hyers stable.
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