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Abstract. In this paper we study a three dimensional normal almost contact metric mani-
fold which is isometrically immersed in a four-dimensional Riemannian manifold of constant
curvature 1.

1 Introduction

Let M be an almost contact metric manifold and (¢,&,n) its almost contact structure. This
means, M is an odd-dimensional differentiable manifold and ¢, &, n are tensor fields on M of
types (1, 1), (1,0) and (0, 1) respectively, such that

P =-T+n®E, n(¢) =1, ¢ =0, no¢=0. (1.1)

Let R be the real line and ¢ a coordinate on R. Define an almost complex structure .J on
M x R by

d d

where the pair (X, )\%) denotes a tangent vector on M x R, X and )\% being tangent to M
and R respectively.

(1.2)

M and (¢, &, n) are said to be normal if the structure J is integrable ([1],[2]).
The necessary and sufficient condition for (¢, £, ) to be normal is

(¢, ¢] +2dn ® £ =0, (1.3)
where the pair [¢, ¢] is the Nijenhuis tensor of ¢ defined by
(6, 8)(X,Y) = [¢X,6Y] + ¢*[X, Y] = 6[6X, Y] — ¢ [X, ¢Y] (1.4)
forany X,Y € x(M); x(M) being the Lie algebra of vector fields on M.

We say that the form 7 has rank r = 25 if (dn)® # 0 and nA(dn)® = 0 and has rank r = 2s+1
if n A (dn)* # 0 and (dn)**! = 0. We also say 7 is rank of the structure (¢, £, 7).

A Riemannian metric g on M satisfying the condition
9(6X, ¢Y) = g(X,Y) = n(X)n(Y) (1.5)
for any X,Y € x(M), is said to be compatible with the structure (¢, £, n). If g is such a metric,

then the quadruple (¢, &, 7, g) is called an almost contact metric structure on M and M is an
almost contact metric manifold. On such a manifold we also have

n(X) = g(X,§) (1.6)
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for any X € x(M) and we can always define the 2-form @ by

Q(Y,Z) = g(Y,02), (1.7)
where X, Y € x(M).

It is no hard to see that if dim M = 3, then two Riemannian metric g and ¢’ are compatible
with the same almost contact structure (¢, £, n) on M if and only if

g =09+ —0o)n®n
for a certain positive function o on M.

A normal almost contact metric structure (¢, &, 7, g) satisfying additionally the condition
dn = ¢ is called Sasakian. Of course, any such structure on M has rank 3. Also a normal
almost contact metric structure satisfying the condition d® = 0 is said to be quasi-Sasakian [3].
In the paper [10], Olszak studied the curvature properties of normal almost contact manifold of
dimension three with several examples. Also in [6], U. C. De and A. K. Mondal studied three
dimensional normal almost contact metric manifolds satisfying certain curvature conditions.

T. Takahashi and S. Tanno [11] introduced the notion of isometric immersion on K-contact
manifolds. D. E. Blair, T. Koufogiorgos and R. Sharma [4] studied isometric immersion for three
dimensional contact manifolds satisfying Q¢ = ¢@Q. In [7], U. C. De, A. Yildiz and A. Sarkar
studied isometric immersion of three dimensional quasi-Sasakian manifolds. The quasi-Sasakian
manifolds are particular types of normal almost contact metric manifolds. So in this paper we
like to study isometric immersion on three-dimensional normal almost contact metric manifold.

The object of the present paper is to study a three-dimensional normal almost contact metric
manifold which is isometrically immersed in a four-dimensional Riemannian manifold of con-
stant curvature 1.

The present paper is organized as follows:

Section 1 is the introductory section. In section 2 we give some preliminary notion of three
dimensional normal almost contact metric manifolds. In section 3 we derive some results of
three-dimensional normal almost contact metric manifolds isometrically immersed in a four-
dimensional Riemannian manifold of constant curvature 1. In this section we also prove a neces-
sary and sufficient condition for the immersion to be minimal. Finally in section 4 we construct
an example of three-dimensional normal almost contact metric manifold which illustrates some
results obtained in section 3.

2 Preliminaries

For a normal almost contact metric structure (¢, &, 7, g) on M, we have [10]

(Vx¢)(Y) = g(¢VxEY) = n(Y)pVxE, 2.1)

Vx§ = alX —n(X)E] - foX, 2.2)

where 2« = div€ and 28 = tr(¢VE), div€ is the divergent of ¢ defined by div€ = trace{X —
Vx&}and tr(oVE) = trace{ X — ¢V x£&}. Using (2.2) in (2.1) we get

(Vx9)(Y) = alg(¢X,Y)E —n(Y)pX] + Blg(X,Y)E —n(Y)X]. (2.3)

Also in this manifold the following relations hold:
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—[Xa+ (o® = B)n(X)]e*Y
+[Y B+ 2a8n(Y)]oX
—[X B+ 2a8n(X)]4Y,

R(X,Y), = [Ya+ (o’ = mY)]s"X 2.4)
2
]

S(X,§) = —Xa—(¢X)B (2.5)
—[éa +2(a? = B)n(X),

€8 +2a8 =0, 2.6)

where R denotes the curvature tensor and S is the Ricci tensor.

On the other hand, the curvature tensor in three dimensional Riemannian manifold always
satisfies

*%[g(Yv Z)X —g(X, 2)Y],

where r is the scalar curvature of the manifold.
By (2.4), (2.5) and (2.8) we can derive

S(YV,2) = (5+¢a+al—B)g(eY,02) 2.8)
—n(Y)(Za+(62)8) —=n(Z)(Ya+ (6Y)B)
=2(a = )Y )n(Z).

From (2.6) it follows that if «, 5 = constant, then the manifold is either 3-Sasakian or a-
Kenmotsu [9] or cosympletic [1].

Also we have a 3-dimensional normal almost contact metric manifold is quasi-Sasakian if and
only if « = 0 [10].

Now we prove a Lemma here:

Lemma 2.1. A three dimensional compact normal almost contact metric manifold satisfying
#*(grada) + ¢(gradB) = 0 is a quasi-Sasakian manifold, provided 3 is a non-zero constant.

Proof. From the relation ¢?(grada) + ¢(gradB) = 0, we obtain
—grada + (£a)€ + ¢(gradB) = 0. (2.9)
Taking inner product with X in (2.9) yields
g(gradB, X) + da(X) — (£a)n(X) = 0. (2.10)

Differentiating (2.10) covariantly with respect to Y, we obtain

9(VygradB, 6X) + glgrads,(Vy$)X) + (Vyda)X @.11)
= 9(Vygrada,§)n(X) — (a)(Vyn)(X) = 0.
Interchanging X and Y in (2.11), we get
9(VxgradB,¢Y) + g(gradB,(Vx¢)Y) + (Vxda)Y (2.12)
— 9(Vxgrade,n(Y) — (a)(Vxn)(Y) = 0.
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Subtracting (2.11) from (2.12), we have

9(VxgradB, oY) — g(VygradB, X) + g(gradp, (Vxo)Y) (2.13)
— g(gradB,(Vy9)X) — g(Vxgrada,&)n(Y) + g(Vygrada, £)n(X)
- (E)[(Vxn)Y — (Vyn)X] =0.

Let {Ey, E1, E»} be a ¢-basis on the manofold where £y = £ and ¢E; = E,. Taking X =
E.,Y = E>in (2.13) and using (Vg,¢)Er = of, (VE,¢)E) = —a and (Vg,n)E, = —f, we
obtain

9(VE gradB, Ey) + g(VE,gradB, E») = 2a(E8) + 2(Ea)S. (2.14)

Differentiating (2.6) covariantly with respectively £, we get

9(VegradB,§) = —28(8a) — 2a(£P). (2.15)

Adding (2.14) and (2.15), we obtain
AB =0. (2.16)

Since the manifold is compact we have (3 is constant. If 5 is a non-zero constant then we easily
obtain from (2.6) that o = 0 and hence the manifold becomes a quasi-Sasakian manifold. This
proves the lemma.O O

3 Isometric immersion of three-dimensional normal almost contact metric
manifolds

Definition 3.1. Let M/ and M’ be smooth manifolds of dimension m and m’ respectively. If
J M — M'is asmooth map and f., : T.(M) — Ty, (M’) is the tangential map at x € M
then f is said to be an immersion if f,, is injective for each z € M.

Let M and M’ be two Riemannian manifolds with Riemannian metric g and ¢’ respectively.
Amap f : M — M’ is called isometric at a point z of M if g(X,Y) = ¢'(f. X, f.Y), for al
X,Y € T,(M).

An immersion f which is isometric at every point of M is called an isometric immersion [12].

If X and Y are two vector fields on a manifold M which is immersed in a Riemannian man-
ifold M’ then we know that [12] B(X,Y) = VxY — VxY, where B is the second fundamental
form and V and V denote the covariant differentiation with respect to the Levi-Civita connection
in M and M’ respectively.

We consider a three-dimensional normal almost contact metric manifold which is isometri-
cally immersed in a four-dimensional Riemannian manifold of constant curvature 1. Then we
can write the Gauss and Codazzi equations as [5]

R(X,Y) = XAY + AXAAY, 3.1)
R(X,Y)Z = g(Y,2)X — g(X, Z)Y + g(AY, Z)AX — g(AX, Z)AY, 3.2)
(VxA)(Y) = (Vy 4)(X), (3.3)

where Aisa (1, 1) tensor field associated with second fundamental form B givenby B(X,Y) =
g(AX,Y). A is symmetric with respect to g. If the trace of A vanishes then the immersion is
called minimal. The type number of the immersion is equal to the rank of A. From (3.2) it
follows that

g(R(X,Y)Z, U) = g(Y, Z)g(X, U) - g(X, Z)g(Ya U)
—|—g(AY, Z)g(AX, U) - g(AX, Z)g(AY, U)'
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In the above equation putting X = U = e;, where {e;}, ¢ = 1,2,3, is an orthonormal basis of
the tangent space at each point of the manifold M and taking summation over i, we get

S(Y,Z) =29(Y, Z) + g(AY, Z2)0 — g(AAY, Z), (3.4)
where 6 is the trace of A. Replacing Z by ¢ we get from (3.4)
S(Y, ) =29(Y,€) + g(AY,§)0 — g(AAY, £). (3.5)
In view of (2.5) we get from (3.5)

—(Ya) = (¢Y)B — {éa+2(c? = B%) +2}n(Y) (3.6)
= g(AY,€) — g(AAY,¢).

For g(gradf, X) = df (X), symmetry of A and skew-symetry of ¢, the equation (3.6) implies

—grada + ¢(gradB) — {éa+2(a* — %) +2}¢ (3.7
= G(A€) — AAE.

If 6 = 0 the equation (3.7) reduces to

—grada + ¢(gradB) — {Ea +2(a® — B%) +2}¢ + AAE = 0. (3.8)
Thus we can state the following:
Theorem 3.1. If a three dimensional normal almost contact metric manifold is isometrically im-

mersed in a four dimensional Riemannian manifold of constant curvature 1 and if the immersion
is minimal then (3.8) holds.

We now suppose that the relation (3.8) holds. Then in view of (3.7) we have 0A¢ = 0.
Therefore either § = 0 or A = 0. If A¢ = 0, then from (3.7) we get

—grada + ¢(gradB) — {€a +2(a* — B%) +2}¢ = 0. (3.9)
Applying ¢ on both sides of (3.9), we obtain

#*(gradB) — ¢(grada) = 0. (3.10)

In view of the Lemma 2.1. we state the following:

Theorem 3.2. If a three dimensional compact normal almost contact metric manifold is isomet-
rically immersed in a four dimensional Riemannian manifold of constant curvature 1 and if (3.8)
holds then either the immersion is minimal or the manifold is a quasi-Sasakian manifold, 8 being
a non-zero constant.
By virtue of (1.1) and (2.6) we obtain from (2.8)
T
S(9Y,67) = (5 +€a+a® = F)g(9Y, 6 2). (3.11)
From (3.4) we also have
S(6Y.02Z) = 29(8Y,6Z) + g(ADY, 62)0 — g(AAGY, $2). (3.12)
From (3.11) and (3.12), we get
(5 +€a+a? = B = 2)g(¢%Y, 2) - g(6A6Y, 2)0 + (9AAGY, 2) = 0. (313)
We obtain from (3.13)

(%—I—ga—l—az—b’z—2)¢2—9¢A¢+¢AA¢:O. (3.14)
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If = 0, then (3.14) reduces to
r 2 2 2
(§+§a+a — B =2)¢p"+ pAAp = 0. (3.15)

Thus we can state the following:

Theorem 3.3. If a three dimensional normal almost contact metric manifold is isometrically im-
mersed in a four dimensional Riemannian manifold of constant curvature 1 and if the immersion
is minimal then (3.15) holds.

Next let (3.15) holds. Then from (3.14) we get 8¢ A¢ = 0. Hence either § = 0 or pA¢p = 0.
Hence we can state the following:

Theorem 3.4. If a three dimensional normal almost contact metric manifold is isometrically im-
mersed in a four dimensional Riemannian manifold of constant curvature 1 and if (3.15) holds
then either the immersion is minimal or ¢ A¢ = 0.

Combining Theorem 3.3 and Theorem 3.4 we get a necessary and sufficient condition for the
immersion is minimal as the following:

Theorem 3.5. If a three dimensional normal almost contact metric manifold is isometrically im-
mersed in a four dimensional Riemannian manifold of constant curvature 1, then the immersion
is minimal if and only if (3.13) holds, provided ¢pA¢ # 0.

Putting Z = £ in (3.2) and using (2.4), we obtain
[Ya+ (o = 82)n(Y)]e* X (3.16)
~[Xa+(o? = Bm(X))e’Y
+[YB +2a8n(Y)]oX
—[XB +2a8n(X)]oY
= (V)X —n(X)Y +n(AY)AX — n(AX)AY.
Putting Y = £ in (3.16) and using (1.1), (2.6) yields

(Ca+a® — B2+ 1)[X — n(X)E] +n(AAX — n(AX)AE = 0. (3.17)
Now g(AX,Y) = B(X,Y) and we know that B(X,Y) = VxY — VxY. Hence
9(AE,€) = B(€,€) = Ve — Ve, (3.18)
and 5
9(AX,§) = B(X,§) = Vx¢ — Vx&. (3.19)
Using (3.18), (3.19) in (3.17), we obtain
(€at+a® = B2+ DX —n(X)¢] - (Vx€ — Vx§)AE = 0. (3.20)

From [8] we know that 2V x X = gradf, where f = g(X, X) is a smooth function on a Rieman-
nian manifold endowed with a metric g. Then for X = £ and ¢(&, &) = 1, we get @55 = 0, since
gradl = 0. Also from (2.1) it follows that V¢£ = 0. Hence applying ¢ on both sides of (4.20)
we obtain

(a+a® - +1)pX =0. (3.21)
Since X # 0, unless X = &, we have
(Ca+a*—p*+1)=0. (3.22)

Therefore we can state the following:
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Theorem 3.6. If a three dimensional normal almost contact metric manifold is isometrically im-
mersed in a four dimensional Riemannian manifold of constant curvature 1, then the manifold
satisfies the relation (3.22).

4 Example

We consider the three dimensional manifold M = {(z,y,2) € R3,z # 0}, where (x,y, z) are
standard coordinate of R3.
The vector fields

0 0 0
e =z—, € =z—

ox

are linearly independent at each point of M.
Let g be a Riemannian metric defined by

gler,ez) = g(er,e2) = glez,e3) =0,

gler,er) = g(ez,e2) = g(es,e3) =1
that is, the form of the matrix becomes

daz? + dy? + dz?
9=—"»2

Let n be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M).
Let ¢ be the (1, 1) tensor field defined by

pler) = —ex,  dlea) =1, ¢le3) =0.
Then using the identity of ¢ and g, we have

7](63) = 15
$*Z = —Z+n(Z)es,

9(oZ,oW) = g(Z, W) = n(Z)n(W)
forany Z, W € x(M).
Then for e3 = ,the structure (¢, £, 1, g) defines an almost contact metric structure on M.

Let V be the Levi-Civita connection with respect to the metric g. Then we have

ler,e3] = eres —ese;

Similarly
[er1,e2] =0 and [ez, e3] = —en.
The Riemannian connection V of the metric g is given by

29(VxY,Z) = Xg(V,Z2)+Yg(Z,X)— Zg(X,Y) “4.1)
—g(X, [Y, Z]) —g(Y, [Xv Z]) +9(Z7 [X,Y]),
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which is known as Koszul’s formula. Using (4.1) we have

29(Vees,e1) = —2g(er,er) 4.2)
= 2g(—er,e).
Again by (4.1)
29(Ve,e3,e2) =0=2g(—e1,€2) (4.3)
and
29(Vee3,e3) =0 =2g(—e1,¢€3). 4.4)

From (4.2), (4.3) and (4.4) we obtain

29(V61637X) = 29(_617X)

forall X € x(M).

Thus

V61€3 = —€].

Therefore, (4.1) futher yields

Vees=—e;, Veer=0, Ve =—e3
Ve, €3 = —e3, Vger=e3, Ve =0, 4.5)
Ve363 == O, Ve3€2 == 07 Ve3€1 =0.

(4.5) tells us that the manifold satisfies (2.2) for « = —1 and 8 = 0 and £ = e;. Hence the
manifold is a normal almost contact metric manifold with «, 3 =constants.
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