ISOMETRIC IMMERSION OF 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS

Sujit Ghosh

Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classifications: Primary 53C15, 53C45.

Keywords and phrases: Isometric immersion, normal almost contact metric manifolds, quasi-Sasakian manifolds.

Abstract. In this paper we study a three dimensional normal almost contact metric manifold which is isometrically immersed in a four-dimensional Riemannian manifold of constant curvature 1.

1 Introduction

Let M be an almost contact metric manifold and (ϕ, ξ, η) its almost contact structure. This means, M is an odd-dimensional differentiable manifold and ϕ, ξ, η are tensor fields on M of types $(1,1)$, $(1,0)$ and $(0,1)$ respectively, such that

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta \circ \phi = 0. \quad (1.1)$$

Let \mathbb{R} be the real line and t a coordinate on \mathbb{R}. Define an almost complex structure J on $M \times \mathbb{R}$ by

$$J(X, \lambda \frac{d}{dt}) = (\phi X - \lambda \xi, \eta(X) \frac{d}{dt}), \quad (1.2)$$

where the pair $(X, \lambda \frac{d}{dt})$ denotes a tangent vector on $M \times \mathbb{R}$, X and $\lambda \frac{d}{dt}$ being tangent to M and \mathbb{R} respectively.

M and (ϕ, ξ, η) are said to be normal if the structure J is integrable ([1],[2]). The necessary and sufficient condition for (ϕ, ξ, η) to be normal is

$$\mathcal{N}(\phi, \phi) + 2d\eta \otimes \xi = 0, \quad (1.3)$$

where the pair $[\phi, \phi]$ is the Nijenhuis tensor of ϕ defined by

$$[\phi, \phi](X, Y) = [\phi X, \phi Y] + \phi^2[X, Y] - \phi[\phi X, Y] - \phi[X, \phi Y] \quad (1.4)$$

for any $X, Y \in \chi(M)$; $\chi(M)$ being the Lie algebra of vector fields on M.

We say that the form η has rank $r = 2s$ if $(d\eta)^s \neq 0$ and $\eta \wedge (d\eta)^s = 0$ and has rank $r = 2s+1$ if $\eta \wedge (d\eta)^s \neq 0$ and $(d\eta)^{s+1} = 0$. We also say r is rank of the structure (ϕ, ξ, η).

A Riemannian metric g on M satisfying the condition

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \quad (1.5)$$

for any $X, Y \in \chi(M)$, is said to be compatible with the structure (ϕ, ξ, η). If g is such a metric, then the quadruple (ϕ, ξ, η, g) is called an almost contact metric structure on M and M is an almost contact metric manifold. On such a manifold we also have

$$\eta(X) = g(X, \xi) \quad (1.6)$$
for any $X \in \chi(M)$ and we can always define the 2-form Φ by

$$\Phi(Y, Z) = g(Y, \phi Z),$$ \hspace{1cm} (1.7)

where $X, Y \in \chi(M)$.

It is no hard to see that if $\dim M = 3$, then two Riemannian metric g and g' are compatible with the same almost contact structure (ϕ, ξ, η) on M if and only if

$$g' = \sigma g + (1 - \sigma) \eta \otimes \eta$$

for a certain positive function σ on M.

A normal almost contact metric structure (ϕ, ξ, η, g) satisfying additionally the condition $d\eta = \phi$ is called Sasakian. Of course, any such structure on M has rank 3. Also a normal almost contact metric structure satisfying the condition $d\Phi = 0$ is said to be quasi-Sasakian [3]. In the paper [10], Olszak studied the curvature properties of normal almost contact manifold of dimension three with several examples. Also in [6], U. C. De and A. K. Mondal studied three dimensional normal almost contact metric manifolds satisfying certain curvature conditions.

T. Takahashi and S. Tanno [11] introduced the notion of isometric immersion on K-contact manifolds. D. E. Blair, T. Koufogiorgos and R. Sharma [4] studied isometric immersion for three dimensional contact manifolds satisfying $Q\phi = \phi Q$. In [7], U. C. De, A. Yildiz and A. Sarkar studied isometric immersion of three dimensional quasi-Sasakian manifolds. The quasi-Sasakian manifolds are particular types of normal almost contact metric manifolds. So in this paper we like to study isometric immersion on three-dimensional normal almost contact metric manifold.

The object of the present paper is to study a three-dimensional normal almost contact metric manifold which is isometrically immersed in a four-dimensional Riemannian manifold of constant curvature 1.

The present paper is organized as follows:
Section 1 is the introductory section. In section 2 we give some preliminary notion of three dimensional normal almost contact metric manifolds. In section 3 we derive some results of three-dimensional normal almost contact metric manifolds isometrically immersed in a four-dimensional Riemannian manifold of constant curvature 1. In this section we also prove a necessary and sufficient condition for the immersion to be minimal. Finally in section 4 we construct an example of three-dimensional normal almost contact metric manifold which illustrates some results obtained in section 3.

2 Preliminaries

For a normal almost contact metric structure (ϕ, ξ, η, g) on M, we have [10]

$$(\nabla_X \phi)(Y) = g(\phi \nabla_X \xi, Y) - \eta(Y) \phi \nabla_X \xi,$$ \hspace{1cm} (2.1)

$$\nabla_X \xi = \alpha [X - \eta(X) \xi] - \beta \phi X,$$ \hspace{1cm} (2.2)

where $2\alpha = div \xi$ and $2\beta = tr(\phi \nabla \xi)$. $div \xi$ is the divergent of ξ defined by $div \xi = trace\{X \mapsto \nabla_X \xi\}$ and $tr(\phi \nabla \xi) = trace\{X \mapsto \phi \nabla_X \xi\}$. Using (2.2) in (2.1) we get

$$(\nabla_X \phi)(Y) = \alpha [g(\phi X, Y) \xi - \eta(Y) \phi X] + \beta [g(X, Y) \xi - \eta(Y) X].$$ \hspace{1cm} (2.3)

Also in this manifold the following relations hold:
\begin{align}
R(X,Y)\xi &= \left[Y\alpha + (\alpha^2 - \beta^2)\eta(Y) \right] \phi^2 X \\
&\quad - \left[X\alpha + (\alpha^2 - \beta^2)\eta(X) \right] \phi^2 Y \\
&\quad + [Y\beta + 2\alpha\beta\eta(Y)]\phi X \\
&\quad - [X\beta + 2\alpha\beta\eta(X)]\phi Y,
\end{align}

\begin{align}
S(X,\xi) &= -X\alpha - (\phi X)\beta \\
&\quad - [\xi \alpha + 2(\alpha^2 - \beta^2)]\eta(X),
\end{align}

where R denotes the curvature tensor and S is the Ricci tensor.

On the other hand, the curvature tensor in three dimensional Riemannian manifold always satisfies

\begin{align}
R(X,Y)Z &= S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY \\
&\quad - \frac{r}{2} [g(Y,Z)X - g(X,Z)Y],
\end{align}

where r is the scalar curvature of the manifold.

By (2.4), (2.5) and (2.8) we can derive

\begin{align}
S(Y,Z) &= \left(\frac{r}{2} + \xi \alpha + \alpha^2 - \beta^2 \right) g(\phi Y, \phi Z) \\
&\quad - \eta(Y)(Z\alpha + (\phi Z)\beta) - \eta(Z)(Y\alpha + (\phi Y)\beta) \\
&\quad - 2(\alpha^2 - \beta^2) \eta(Y)\eta(Z).
\end{align}

From (2.6) it follows that if α, β = constant, then the manifold is either β-Sasakian or α-Kenmotsu [9] or cosympletic [1].

Also we have a 3-dimensional normal almost contact metric manifold is quasi-Sasakian if and only if $\alpha = 0$ [10].

Now we prove a Lemma here:

Lemma 2.1. A three dimensional compact normal almost contact metric manifold satisfying $\phi^2(\text{grad}\alpha) + \phi(\text{grad}\beta) = 0$ is a quasi-Sasakian manifold, provided β is a non-zero constant.

Proof. From the relation $\phi^2(\text{grad}\alpha) + \phi(\text{grad}\beta) = 0$, we obtain

\begin{align}
- \text{grad}\alpha + (\xi \alpha)\xi + \phi(\text{grad}\beta) = 0.
\end{align}

Taking inner product with X in (2.9) yields

\begin{align}
g(\text{grad}\beta, \phi X) + d\alpha(X) - (\xi \alpha)\eta(X) = 0.
\end{align}

Differentiating (2.10) covariantly with respect to Y, we obtain

\begin{align}
g(\nabla_Y \text{grad}\beta, \phi X) + g(\text{grad}\beta, (\nabla_Y \phi) X) + (\nabla_Y d\alpha) X \\
- g(\nabla_Y \text{grad}\alpha, \xi)\eta(X) - (\xi \alpha)(\nabla_Y \eta)(X) = 0.
\end{align}

Interchanging X and Y in (2.11), we get

\begin{align}
g(\nabla_X \text{grad}\beta, \phi Y) + g(\text{grad}\beta, (\nabla_X \phi) Y) + (\nabla_X d\alpha) Y \\
- g(\nabla_X \text{grad}\alpha, \xi)\eta(Y) - (\xi \alpha)(\nabla_X \eta)(Y) = 0.
\end{align}
Subtracting (2.11) from (2.12), we have
\begin{align}
g(\nabla_X \text{grad} \beta, \phi Y) - g(\nabla_Y \text{grad} \beta, \phi X) + g(\text{grad} \beta, (\nabla_X \phi) Y) \\
- g(\text{grad} \beta, (\nabla_Y \phi) X) - g(\nabla_X \text{grad} \alpha, \xi(Y)) + g(\nabla_Y \text{grad} \alpha, \xi(X)) \\
- (\xi \alpha)[(\nabla_X \eta) Y - (\nabla_Y \eta) X] = 0.
\end{align}
(2.13)

Let \(\{E_0, E_1, E_2\} \) be a \(\phi \)-basis on the manifold where \(E_0 = \xi \) and \(\phi E_1 = E_2 \). Taking \(X = E_1, Y = E_2 \) in (2.13) and using \((\nabla_{E_1} \phi) E_2 = \alpha \xi, (\nabla_{E_2} \phi) E_1 = -\alpha \xi \) and \((\nabla_{E_i} \eta) E_2 = -\beta \), we obtain
\[g(\nabla_{E_1} \text{grad} \beta, E_1) + g(\nabla_{E_2} \text{grad} \beta, E_2) = 2\alpha(\xi \beta) + 2(\xi \alpha) \beta. \]
(2.14)

Differentiating (2.6) covariantly with respect to \(\xi \), we get
\[g(\nabla_{\xi} \text{grad} \beta, \xi) = -2\beta(\xi \alpha) - 2\alpha(\xi \beta). \]
(2.15)

Adding (2.14) and (2.15), we obtain
\[\Delta \beta = 0. \]
(2.16)

Since the manifold is compact we have \(\beta \) is constant. If \(\beta \) is a non-zero constant then we easily obtain from (2.6) that \(\alpha = 0 \) and hence the manifold becomes a quasi-Sasakian manifold. This proves the lemma. \(\square \)

3 Isometric immersion of three-dimensional normal almost contact metric manifolds

Definition 3.1. Let \(M \) and \(M' \) be smooth manifolds of dimension \(m \) and \(m' \) respectively. If \(f : M \to M' \) is a smooth map and \(f_x : T_x(M) \to T_{f(x)}(M') \) is the tangential map at \(x \in M \) then \(f \) is said to be an immersion if \(f_x \) is injective for each \(x \in M \).

Let \(M \) and \(M' \) be two Riemannian manifolds with Riemannian metric \(g \) and \(g' \) respectively. A map \(f : M \to M' \) is called isometric at a point \(x \) of \(M \) if \(g(X, Y) = g'(f_* X, f_* Y) \), for all \(X, Y \in T_x(M) \).

An immersion \(f \) which is isometric at every point of \(M \) is called an isometric immersion [12].

If \(X \) and \(Y \) are two vector fields on a manifold \(M \) which is immersed in a Riemannian manifold \(M' \) then we know that [12] \(B(X, Y) = \nabla_X Y - \nabla_Y X \), where \(B \) is the second fundamental form and \(\nabla \) and \(\nabla \) denote the covariant differentiation with respect to the Levi-Civita connection in \(M \) and \(M' \) respectively.

We consider a three-dimensional normal almost contact metric manifold which is isometrically immersed in a four-dimensional Riemannian manifold of constant curvature \(1 \). Then we can write the Gauss and Codazzi equations as [5]
\[R(X, Y) = XAY + AXAY, \]
(3.1)
\[R(X, Y) Z = g(Y, Z) X - g(X, Z) Y + g(AY, Z) AX - g(A, Z) AY, \]
(3.2)
\[(\nabla_X A)(Y) = (\nabla_Y A)(X), \]
(3.3)

where \(A \) is a \((1, 1) \) tensor field associated with second fundamental form \(B \) given by \(B(X, Y) = g(A X, Y) \). \(A \) is symmetric with respect to \(g \). If the trace of \(A \) vanishes then the immersion is called minimal. The type number of the immersion is equal to the rank of \(A \). From (3.2) it follows that
\[g(R(X, Y) Z, U) = g(Y, Z) g(X, U) - g(X, Z) g(Y, U) \]
\[+ g(AY, Z) g(A, U) - g(A, Z) g(AY, U). \]
In the above equation putting \(X = U = e_i \), where \(\{e_i\} \), \(i = 1, 2, 3 \), is an orthonormal basis of the tangent space at each point of the manifold \(M \) and taking summation over \(i \), we get
\[
S(Y, Z) = 2g(Y, Z) + g(AY, Z)\theta - g(AAY, Z),
\]
where \(\theta \) is the trace of \(A \). Replacing \(Z \) by \(\xi \) we get from (3.4)
\[
S(Y, \xi) = 2g(Y, \xi) + g(AY, \xi)\theta - g(AAY, \xi).
\]
In view of (2.5) we get from (3.5)
\[
-\langle Ya \rangle - \langle \phi Y \rangle\beta - \{\xi\alpha + 2(\alpha^2 - \beta^2) + 2\}\eta(Y) = g(AY, \xi) - g(AAY, \xi).
\]
For \(g(\text{grad}f, X) = df(X) \), symmetry of \(A \) and skew-symmetry of \(\phi \), the equation (3.6) implies
\[
-g\text{grad} \alpha + \phi(\text{grad} \beta) = \{\xi\alpha + 2(\alpha^2 - \beta^2) + 2\}\xi + AA\xi = 0.
\]
If \(\theta = 0 \) the equation (3.7) reduces to
\[
-g\text{grad} \alpha + \phi(\text{grad} \beta) = \{\xi\alpha + 2(\alpha^2 - \beta^2) + 2\} \xi + AA\xi = 0.
\]
Thus we can state the following:

Theorem 3.1. If a three dimensional normal almost contact metric manifold is isometrically immersed in a four dimensional Riemannian manifold of constant curvature 1 and if the immersion is minimal then (3.8) holds.

We now suppose that the relation (3.8) holds. Then in view of (3.7) we have \(\theta A\xi = 0 \). Therefore either \(\theta = 0 \) or \(A\xi = 0 \). If \(A\xi = 0 \), then from (3.7) we get
\[
-g\text{grad} \alpha + \phi(\text{grad} \beta) - \{\xi\alpha + 2(\alpha^2 - \beta^2) + 2\} \xi = 0.
\]
Applying \(\phi \) on both sides of (3.9), we obtain
\[
\phi^2(\text{grad} \beta) - \phi(\text{grad} \alpha) = 0.
\]
In view of the Lemma 2.1. we state the following:

Theorem 3.2. If a three dimensional compact normal almost contact metric manifold is isometrically immersed in a four dimensional Riemannian manifold of constant curvature 1 and if (3.8) holds then either the immersion is minimal or the manifold is a quasi-Sasakian manifold, \(\beta \) being a non-zero constant.

By virtue of (1.1) and (2.6) we obtain from (2.8)
\[
S(\phi Y, \phi Z) = (\frac{r}{2} + \xi\alpha + \alpha^2 - \beta^2)g(\phi Y, \phi Z).
\]
From (3.4) we also have
\[
S(\phi Y, \phi Z) = 2g(\phi Y, \phi Z) + g(A\phi Y, \phi Z)\theta - g(AA\phi Y, \phi Z).
\]
From (3.11) and (3.12), we get
\[
(\frac{r}{2} + \xi\alpha + \alpha^2 - \beta^2 - 2)g(\phi^2 Y, Z) - g(\phi A\phi Y, Z)\theta + g(\phi AA\phi Y, Z) = 0.
\]
We obtain from (3.13)
\[
(\frac{r}{2} + \xi\alpha + \alpha^2 - \beta^2 - 2)\phi^2 - \theta\phi A\phi + \phi AA\phi = 0.
\]
If $\theta = 0$, then (3.14) reduces to
\[
\left(\frac{r}{2} + \xi \alpha + \alpha^2 - \beta^2 - 2\right) \phi^2 + \phi A \phi = 0.
\] (3.15)

Thus we can state the following:

Theorem 3.3. If a three dimensional normal almost contact metric manifold is isometrically im-
mersed in a four dimensional Riemannian manifold of constant curvature 1 and if the immersion
is minimal then (3.15) holds.

Next let (3.15) holds. Then from (3.14) we get $\theta \phi A = 0$. Hence either $\theta = 0$ or $\phi A \phi = 0$. Hence we can state the following:

Theorem 3.4. If a three dimensional normal almost contact metric manifold is isometrically im-
mersed in a four dimensional Riemannian manifold of constant curvature 1 and if (3.15) holds
then either the immersion is minimal or $\phi A \phi = 0$.

Combining Theorem 3.3 and Theorem 3.4 we get a necessary and sufficient condition for the
immersion is minimal as the following:

Theorem 3.5. If a three dimensional normal almost contact metric manifold is isometrically im-
mersed in a four dimensional Riemannian manifold of constant curvature 1, then the immersion
is minimal if and only if (3.13) holds, provided $\phi A \phi \neq 0$.

Putting $Z = \xi$ in (3.2) and using (2.4), we obtain
\[
[Y \alpha + (\alpha^2 - \beta^2) \eta(Y)] \phi^2 X
\]
\[-[X \alpha + (\alpha^2 - \beta^2) \eta(X)] \phi^2 Y
\]
\[+[Y \beta + 2 \alpha \beta \eta(Y)] \phi X
\]
\[-[X \beta + 2 \alpha \beta \eta(X)] \phi Y
\]
\[= \eta(Y) X - \eta(X) Y + \eta(A Y) AX - \eta(A X) A Y.
\]

Putting $Y = \xi$ in (3.16) and using (1.1), (2.6) yields
\[
(\xi \alpha + \alpha^2 - \beta^2 + 1)[X - \eta(X) \xi] + \eta(A \xi) AX - \eta(A X) A \xi = 0.
\] (3.17)

Now $g(A X, Y) = B(X, Y)$ and we know that $B(X, Y) = \bar{\nabla} X Y - \nabla X Y$. Hence
\[g(A \xi, \xi) = B(\xi, \xi) = \bar{\nabla} \xi \xi - \nabla \xi \xi, \] (3.18)

and
\[g(A X, \xi) = B(X, \xi) = \bar{\nabla} X \xi - \nabla X \xi. \] (3.19)

Using (3.18), (3.19) in (3.17), we obtain
\[
(\xi \alpha + \alpha^2 - \beta^2 + 1)[X - \eta(X) \xi] - (\bar{\nabla} \xi \xi - \nabla \xi \xi) A \xi = 0.
\] (3.20)

From [8] we know that $2 \nabla X X = \text{grad} f$, where $f = g(X, X)$ is a smooth function on a Riemann-
ian manifold endowed with a metric g. Then for $X = \xi$ and $g(\xi, \xi) = 1$, we get $\bar{\nabla} \xi \xi = 0$, since
\text{grad} 1 = 0. Also from (2.1) it follows that $\nabla \xi \xi = 0$. Hence applying ϕ on both sides of (4.20)
we obtain
\[
(\xi \alpha + \alpha^2 - \beta^2 + 1) \phi X = 0.
\] (3.21)

Since $\phi X \neq 0$, unless $X = \xi$, we have
\[
(\xi \alpha + \alpha^2 - \beta^2 + 1) = 0.
\] (3.22)

Therefore we can state the following:
Theorem 3.6. If a three dimensional normal almost contact metric manifold is isometrically immersed in a four dimensional Riemannian manifold of constant curvature 1, then the manifold satisfies the relation (3.22).

4 Example

We consider the three dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$, where (x, y, z) are standard coordinate of \mathbb{R}^3.

The vector fields

$$e_1 = z \frac{\partial}{\partial x}, \quad e_2 = z \frac{\partial}{\partial y}, \quad e_3 = z \frac{\partial}{\partial z}$$

are linearly independent at each point of M.

Let g be a Riemannian metric defined by

$$g(e_1, e_3) = g(e_1, e_2) = g(e_2, e_3) = 0,$$

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1$$

that is, the form of the matrix becomes

$$g = \frac{dx^2 + dy^2 + dz^2}{z^2}.$$

Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$ for any $Z \in \chi(M)$. Let ϕ be the $(1, 1)$ tensor field defined by

$$\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0.$$

Then using the identity of ϕ and g, we have

$$\eta(e_3) = 1, \quad \phi^2 Z = -Z + \eta(Z)e_3,$$

$$g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W)$$

for any $Z, W \in \chi(M)$.

Then for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$[e_1, e_3] = e_1 e_3 - e_3 e_1 = z \frac{\partial}{\partial x}(z \frac{\partial}{\partial z}) - z \frac{\partial}{\partial z}(z \frac{\partial}{\partial x}) = -e_1,$$

Similarly

$$[e_1, e_2] = 0 \quad and \quad [e_2, e_3] = -e_2.$$

The Riemannian connection ∇ of the metric g is given by

$$2g(\nabla_X Y, Z) = X g(Y, Z) + Y g(Z, X) - Z g(X, Y)$$

$$-g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]),$$

(4.1)
which is known as Koszul’s formula. Using (4.1) we have
\[2g(\nabla_{e_1}e_3, e_1) = -2g(e_1, e_1) \]
\[= 2g(-e_1, e_1). \]
(4.2)

Again by (4.1)
\[2g(\nabla_{e_1}e_3, e_2) = 0 = 2g(-e_1, e_2) \]
and
\[2g(\nabla_{e_1}e_3, e_3) = 0 = 2g(-e_1, e_3). \]
(4.3)

From (4.2), (4.3) and (4.4) we obtain
\[2g(\nabla_{e_1}e_3, X) = 2g(-e_1, X) \]
for all \(X \in \chi(M) \).

Thus
\[\nabla_{e_1}e_3 = -e_1. \]

Therefore, (4.1) futher yields
\[\nabla_{e_1}e_3 = -e_1, \quad \nabla_{e_1}e_2 = 0, \quad \nabla_{e_1}e_1 = -e_3 \]
\[\nabla_{e_2}e_3 = -e_2, \quad \nabla_{e_3}e_2 = e_3, \quad \nabla_{e_3}e_1 = 0, \]
(4.5)
\[\nabla_{e_3}e_3 = 0, \quad \nabla_{e_3}e_2 = 0, \quad \nabla_{e_3}e_1 = 0. \]

(4.5) tells us that the manifold satisfies (2.2) for \(\alpha = -1 \) and \(\beta = 0 \) and \(\xi = e_3 \). Hence the manifold is a normal almost contact metric manifold with \(\alpha, \beta = \)constants.

References

Author information
Sujit Ghosh, Department of Mathematics, Krishnagar Government College, Krishnagar, Nadia, West Bengal, India.
E-mail: ghosh.sujit6@gmail.com

Received: January 17, 2018.
Accepted: March 14, 2018.