ON THE COSET PRESERVING SUBCENTRAL AUTOMORPHISMS OF FINITE GROUPS

Mohammad Mehdi Nasrabadi and Parisa Seifizadeh

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20D45; Secondary 20D15.
Keywords and phrases: Subcentral automorphism, Finite p-groups, Frattini subgroup, Inner automorphism.

Abstract. Let G be a group and M be a characteristic subgroup of G. We denote by $\text{Aut}_M^G(G)$ the set of all automorphisms of G which centralize G/M and M. In this paper, we give the necessary and sufficient conditions for equality $\text{Aut}_M^G(G)$ with $\text{Aut}_M^G(G)$. Also we study equivalent conditions for equality $\text{Aut}_M^G(G)$ with $\text{Inn}(G)$.

1 Introduction

In this paper p denotes a prime number. Let us denote $\Phi(G)$, G', $Z(G)$, $\text{Aut}(G)$ and $\text{Inn}(G)$, respectively the Frattini subgroup, commutator subgroup, the center, the full automorphism group and the inner automorphisms group of G. An automorphism α of G is called a central automorphism if $x^{-1}\alpha(x) \in Z(G)$ for $x \in G$. All the elements of the central automorphism group of G, denoted by $\text{Aut}_Z^G(G)$, is a normal subgroup of $\text{Aut}(G)$.

There has been a number of results on the central automorphisms of a group. Curran and McCaughan [4] proved that for any non-abelian finite group G, $\text{Aut}_Z^G(G) \cong \text{Hom}(G/G', Z(G), Z(G))$ where $\text{Aut}_Z^G(G)$ is a group of all those central automorphisms which preserve the center $Z(G)$ elementwise. Adney and Yen [1] proved that if a finite group G has no abelian direct factor, then there is a one-one and onto map between $\text{Aut}_Z^G(G)$ and $\text{Hom}(G, Z(G))$. Ghumed and Ghate [5] proved that for a finite group G, $\text{Aut}_M^G(M) \cong \text{Hom}(G/KM, M)$. Also he proved that if G is a purely non-abelian finite group, then $|\text{Aut}_M^G(G)| = |\text{Hom}(G, M)|$. Shabani Attar [10] characterized all finite p-groups G for which the equality $\text{Aut}_Z^G(G) = \text{Aut}_Z^G(G)$ holds. Let $\text{IA}(G)$ be the subgroup of $\text{Aut}(G)$ which consists of those automorphisms α for which $g^{-1}\alpha(g) \in G'$ for each $g \in G$. A group G is called semicomplete if $\text{IA}(G) = \text{Inn}(G)$. Shabani Attar [9] gave some necessary conditions for finite p-groups to be semicomplete. In this paper, we give necessary and sufficient conditions for G such that $\text{Aut}_M^G(G) = \text{Aut}_M^G(G)$ and show some equivalent conditions for equality $\text{Aut}_M^G(G)$ with $\text{Inn}(G)$.

2 Preliminaries

Let M be a characteristic subgroup of G. By $\text{Aut}_M^G(G)$, we mean the subgroup of $\text{Aut}(G)$ consisting of all automorphisms which induce identity on G/M. By $\text{Aut}_M^G(G)$, we mean the subgroup of $\text{Aut}(G)$ consisting of all automorphisms which restrict to the identity on M. Let $\text{Aut}_M^G(G) = \text{Aut}_M^G(G) \cap \text{Aut}_M(G)$. From now onwards, M will be a characteristic central subgroup and elements of $\text{Aut}_M^G(G)$ will be called subcentral automorphisms of G (with respect to subcentral subgroup M). It can be seen that $\text{Aut}_M^G(G)$ is a normal subgroup of $\text{Aut}_Z^G(G)$. We further let A^* be the set $\{\alpha \in \text{Aut}_M(G) : \alpha \beta = \beta \alpha, \forall \beta \in \text{Aut}_M(G)\}$. Clearly A^* is a normal subgroup of $\text{Aut}(G)$. Since every inner automorphism commutes with elements of $\text{Aut}_Z^G(G)$, $\text{Inn}(G) \leq A^*$. Let $P = \langle [g, \alpha] : g \in G, \alpha \in A^* \rangle$, where $[g, \alpha] = g^{-1}\alpha(g)$.

It is easy to check that P is a characteristic subgroup of G.
We first state some results that will be used in the proof of the main theorems.

Proposition 2.1. [5, Proposition 2.1] \(\text{Aut}^M(G) \) acts trivially on \(P \).

Let \(A^{**} \) be any normal subgroup of \(\text{Aut}(G) \) contained in \(A^* \), and \(K = \langle [g, \alpha] : g \in G, \alpha \in A^{**} \rangle \). In particular, when \(A^{**} = \text{Inn}(G) \), we get \(K = G' \). Since \(K \) is a subgroup of \(P \), it is invariant under the action of \(\text{Aut}^M(G) \). It is easy to see that \(K \) is a characteristic subgroup of \(G \), and hence it is a normal subgroup of \(G \).

Theorem 2.2. [5, Theorem A] For a finite group \(G \), \(\text{Aut}^M(G) \cong \text{Hom}(G/KM, M) \).

Theorem 2.3. [5, Theorem C] If \(G \) is a purely non-abelian finite group, then \(|\text{Aut}^M(G)| = |\text{Hom}(G, M)| \).

Proposition 2.4. [5, Proposition 2.4] Let \(G \) be a purely non-abelian finite group, then for each \(\alpha \in \text{Hom}(G, M) \) and each \(x \in K \), we have \(\alpha(x) = 1 \). Further \(\text{Hom}(G/K, M) \cong \text{Hom}(G, M) \).

3 Main Results

We note that in this section \(M \) is a central characteristic subgroup.

Theorem 3.1. Let \(G \) be a finite group. Then \(G/M \) is abelian if and only if \(\text{Inn}(G) \leq \text{Aut}^M(G) \).

Proof. Suppose \(G/M \) is abelian. Thus \(G' \leq M \). Let \(x \in G \). Then for the inner automorphism \(\theta_x \) induced by \(x \) and every \(g \in G \) we have, \(g^{-1}\theta_x(g) = [g, x] \in G' \leq M \). So for every \(\alpha \in \text{Inn}(G) \), \(g^{-1}\alpha(g) \in M \). This means \(\text{Inn}(G) \leq \text{Aut}^M(G) \). Hence \(\text{Inn}(G) \leq \text{Aut}^M(G) \).

Conversely, suppose \(\text{Inn}(G) \leq \text{Aut}^M(G) \). Hence it is clear \(G' \leq M \) and so \(G/M \) is abelian.

Here we give a basic lemmas that will be used in the proof of the results.

Lemma 3.2. [3, Lemma E] Suppose \(H \) is an abelian \(p \)-group of exponent \(p^r \), and \(K \) is cyclic group of order divisible by \(p^s \). Then \(\text{Hom}(H, K) \) is isomorphic to \(H \).

Lemma 3.3. [3, Lemma H] Let \(G \) be a purely non-abelian \(p \)-group, of nilpotent class 2. Then \(|\text{Hom}(G/Z(G), G')| \geq |G/Z(G)|^{p^{r(s-1)}} \), where \(r = \text{rank}(G/Z(G)) \) and \(s = \text{rank}(G') \).

Theorem 3.4. Suppose \(G \) is a non-abelian finite \(p \)-group for which \(G/M \) is abelian. Then \(|\text{Aut}^M(G) : \text{Inn}(G)| \geq p^{r(s-1)} \), where \(r \) and \(s \) are as defined before.

Proof. By Theorem 2.3, \(|\text{Aut}^M(G)| = |\text{Hom}(G, M)| \). Now we have

\[
|\text{Hom}(G, M)| = |\text{Hom}(G/Z(G), M)| \geq |\text{Hom}(G/Z(G), G')| \geq |G/Z(G)|^{p^{r(s-1)}}.
\]

Hence \(|\text{Aut}^M(G)| \geq |G/Z(G)|^{p^{r(s-1)}} \), thus \(|\text{Aut}^M(G) : \text{Inn}(G)| = |\text{Aut}^M(G)|/|G/Z(G)| \geq p^{r(s-1)}. \)

Find necessary and sufficient conditions on a finite \(p \)-group \(G \) such that \(\text{Aut}_M^G(G) = \text{Aut}^M(G) \).

Let \(G \) be a non-abelian finite \(p \)-group. Let

\[
G/K = C_{p_1} \times C_{p_2} \times \ldots \times C_{p_k},
\]

where \(C_{p_i} \) is a cyclic group of order \(p^{a_i} \), \(1 \leq i \leq k \), and \(a_1 \geq a_2 \geq \ldots \geq a_k \geq 1 \). Let

\[
G/KM = C_{p_1} \times C_{p_2} \times \ldots \times C_{p_1}
\]

and

\[
M = C_{p^{b_1}} \times C_{p^{b_2}} \times \ldots \times C_{p^{b_m}},
\]
where \(b_1 \geq b_2 \geq \cdots \geq b_t \geq 1 \) and \(c_1 \geq c_2 \geq \cdots \geq c_m \geq 1 \).

Since \(G/KM \) is a quotient of \(G/K \), by [2, Section 25], we have \(l \leq k \) and \(b_i \leq a_i \) for all \(1 \leq i \leq l \).

Theorem 3.5. Let \(G \) be a purely non-abelian finite \(p \)-group \((p \text{ odd})\). Then \(\text{Aut}^M(G) = \text{Aut}^M(G) \) if and only if \(M \leq K \) or \(M \leq \Phi(G), k = l \) and \(c_1 \leq b_t \) where \(t \) is the largest integer between 1 and \(k \) such that \(a_t > b_t \).

Proof. Let \(M \leq K \), by Proposition 2.1 and since \(K \leq P \), every \(\alpha \in \text{Aut}^M(G) \) fixes \(M \) and so \(\text{Aut}^M(G) \leq \text{Aut}^M(G) \), since \(\text{Aut}^M(G) \leq \text{Aut}^M(G) \). Thus \(\text{Aut}^M(G) = \text{Aut}^M(G) \). Now suppose that \(M \leq \Phi(G), k = l \) and \(c_1 \leq b_t \). Since \(G \) is purely non-abelian and by Theorem 2.3 and Proposition 2.4, we have

\[
|\text{Aut}^M(G)| = |\text{Hom}(G, M)| = |\text{Hom}(G/K, M)| = \prod_{1 \leq i \leq k, 1 \leq j \leq m} p^{\min(a_i, c_j)}
\]

On the other hand, by Theorem 2.2, we have

\[
|\text{Aut}^M_M(G)| = |\text{Hom}(G/KM, M)| = \prod_{1 \leq i \leq l, 1 \leq j \leq m} p^{\min(b_i, c_j)}
\]

Since \(b_1 \geq c_1 \), we have

\[
b_1 \geq b_2 \geq \cdots \geq b_{t-1} \geq b_t \geq c_1 \geq c_2 \geq \cdots \geq c_m \geq 1.
\]

Therefore, \(c_j \leq b_i \leq a_i \) for all \(1 \leq j \leq m \) and \(1 \leq i \leq t \), whence \(\min(a_i, c_j) = c_j = \min(b_i, c_j) \) for all \(1 \leq j \leq m \) and \(1 \leq i \leq t \). Since \(a_i = b_i \) for all \(i > t \), we have \(\min(a_i, c_j) = \min(b_i, c_j) \) for all \(1 \leq j \leq m \) and \(t + 1 \leq i \leq k \). Thus \(\min(b_i, c_j) = \min(a_i, c_j) \) for all \(1 \leq j \leq m \) and \(1 \leq i \leq k \). Therefore, \(\text{Aut}^M_M(G) = \text{Aut}^M(G) \).

Conversely if \(\text{Aut}^M_M(G) = \text{Aut}^M(G) \) and \(M \not\leq K \). We claim that \(M \leq \Phi(G) \). Assume contrarily that \(M \) is not contained in \(\Phi(G) \). Then there exists a maximal subgroup \(D \) of \(G \) such that \(M \not\leq D \). The maximality of \(D \) implies that \(G = DM \) and \(D \leq G \). Hence we assume that \(|G/D| = p \), where \(p \) is a prime number. Now we consider the following two cases.

Case 1: \(p \mid |M \cap D| \). Choose \(z \in M \cap D \) such that \(o(z) = p \) and fix \(g \in M \). It is clear that \(G = D < g > \). Then the map \(\alpha \) defined on \(G \) by \(\alpha(dq^i) = dq^iz^k \) for every \(d \in D \) and every \(i \in \{0, 1, 2, ..., p-1\} \), \(\alpha \in \text{Aut}^M(G) \). By the given hypothesis \(g = \alpha(g) = gz \), whence \(z = 1 \), which is a contradiction. Hence \(M \leq \Phi(G) \).

Case 2: \(p \not\mid |M \cap D| \). In this case, since

\[
p = |G/D| = |DM/D| = |M/M \cap D|,
\]

we see that \(p \) divides \(|M| \) and we may choose \(z \in M \) such that \(o(z) = p \) and \(z \notin D \). Hence \(G = (D, z) = D \times \langle z \rangle \). Consider the map \(\alpha : G \to G \) where \(\alpha(dz^i) = dz^{2i} \) for every \(d \in D \) and every \(i \in \{0, 1, 2, ..., p-1\} \), \(\alpha \in \text{Aut}^M(G) \). By the given hypothesis and since \(z \in M \) it is clear that \(z = \alpha(z) = \alpha(1.z^{1}) = z^2 \), a contradiction. The proof of the theorem is complete.

Lemma 3.6. Let \(G \) be a finite \(p \)-group, then \(\text{Aut}^M_M(G) \cong \text{Hom}(G/M, M) \).

Proof. Consider the map \(\phi : \text{Aut}^M_M(G) \to \text{Hom}(G/M, M) \) defined by \(\phi(\alpha) = \alpha^* \), where \(\alpha^*(gM) = g^{-1}\alpha(g) \) for all \(g \in G \). It is clear that \(\alpha^* \) is a well defined homomorphism. We show that \(\phi \) is an isomorphism. If \(\alpha_1, \alpha_2 \in \text{Aut}^M_M(G) \) and \(\alpha_1 = \alpha_2 \), then \(g^{-1}\alpha_1(g) = g^{-1}\alpha_2(g) \), thus \(\alpha_1^*(gM) = \alpha_2^*(gM) \), hence \(\alpha_1^* = \alpha_2^* \), therefore \(\phi(\alpha_1) = \phi(\alpha_2) \), so \(\phi \) is a well defined homomorphism. It is easy to check that \(\phi \) is a monomorphism. We show that \(\phi \) is onto. For given any \(f \in \text{Hom}(G/M, M) \), define \(\alpha : G \to G \) by \(\alpha(g) = gf(gM) \). Clearly \(\alpha \in \text{Aut}(G) \).

We show that \(\alpha \in \text{Aut}^M_M(G) \). Since \(g^{-1}\alpha(g) = f(gM) \in M \), then \(\alpha \in \text{Aut}^M_M(G) \). Also for each \(m \in M \), we have \(\alpha(m) = m \alpha(mM) = m \), thus \(\alpha \in \text{Aut}^M_M(G) \). So \(\alpha \in \text{Aut}^M_M(G) \) and \(\phi(\alpha) = f \). Therefore \(\phi \) is an isomorphism and \(\text{Aut}^M_M(G) \cong \text{Hom}(G/M, M) \).
Theorem 3.7. Let G be a finite p-group such that G/M is abelian. Then the following are equivalent:

1. $\text{Aut}_M^G(G) = \text{Inn}(G)$.
2. $\text{Hom}(G/M, M) \cong G/Z(G)$.
3. G is cyclic and $\text{Hom}(G/M, M) \cong \text{Hom}(G/Z(G), M)$.

Proof. (1) \Rightarrow (2) By Lemma 3.6, and since $\text{Aut}_M^G(G) = \text{Inn}(G)$ we have, $\text{Hom}(G/M, M) \cong \text{Inn}(G) \cong G/Z(G)$.

(2) \Rightarrow (1) By Lemma 3.6, and since $\text{Hom}(G/M, M) \cong G/Z(G)$, thus $\text{Aut}_M^G(G) \cong \text{Inn}(G)$, also since G/M is abelian we have $G' \leq M$ and so $\text{Inn}(G) \leq \text{Aut}_M^G(G)$, also for every $\alpha \in \text{Inn}(G)$ and $m \in M$, we have $\alpha(m) = m$, therefore $\text{Inn}(G) \leq \text{Aut}_M^G(G)$ and so $\text{Aut}_M^G(G) = \text{Inn}(G)$.

(1) \Rightarrow (3) Since $\text{Aut}_M^G(G) = \text{Inn}(G)$, every $f \in \text{Aut}_M^G(G)$ is an inner one, and so fixes each element of $Z(G)$. Therefore, for every $f \in \text{Aut}_M^G(G)$, the map $\sigma_f : G/Z(G) \rightarrow M$ defined by $\sigma_f(gZ(G)) = g^{-1}f(g)$ is well defined. Now consider the map $\sigma : f \mapsto \sigma_f$. It is easy to check that σ is an isomorphism from $\text{Aut}_M^G(G)$ onto $\text{Hom}(G/Z(G), M)$. Thus $\text{Hom}(G/Z(G), M) \cong G/Z(G)$, so G is nilpotent of class 2, and $\text{exp}(G/Z(G)) = \text{exp}(G)$. Now by Lemma 3.2, $|\text{Hom}(G/Z(G), C_{p^e})| = |G/Z(G)|$. Therefore

$$\text{Hom}(G/Z(G), M) = |G/Z(G)||\text{Hom}(G/Z(G), N)|,$$

which is a contradiction. Hence M is cyclic.

(3) \Rightarrow (1) Since M is cyclic and $G/Z(G)$ is an abelian p-group of exponent $|G'|$ and G' is cyclic, it follows that $\text{Hom}(G/Z(G), M) \cong G/Z(G)$. By Lemma 3.6, $\text{Aut}_M^G(G) \cong \text{Hom}(G/M, M)$ and also $\text{Inn}(G) \leq \text{Aut}_M^G(G)$. Thus $\text{Aut}_M^G(G) = \text{Inn}(G)$.

References

Author information

Mohammad Mehdi Nasrabadi and Parisa Seifizadeh, Department of Mathematics, University of Birjand, South Khorasan, Birjand, Iran.

E-mail: (Corresponding Author) paris.seifizadeh@birjand.ac.ir

Received: November 11, 2018.

Accepted: January 30, 2019.