SPACELIKE CURVES OF CONSTANT BREADTH IN SEMI-RIEMANNIAN SPACE E^4_2

Sezin Aykurt Sepet and Hülya Gün Bozkır

Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 53C40, 53C50.

Keywords and phrases: Curves of constant breadth, spacelike curves, semi-Riemannian space.

Abstract In this paper, we investigate curves of constant breadth in E^4_2. Also, we obtain some characterizations according to the state of the spacelike curve in semi-Riemannian space E^4_2.

1 Introduction

The curves of constant breadth were first defined in 1778 by Euler. Then, Solow [12] and Blascke [1] investigated the curves of constant breadth. In Euclidean spaces E^3 and E^4, plane curves of constant breadth were studied by Kose [7], Magden and Yılmaz [8]. In [14], some geometric properties of plane curves of constant breadth in Minkowski 3-space were given. Also, these curves in Minkowski 4-space were obtained by Kazaz, Onder and Kocayigit [5]. A number of authors have, recently, studied the curves of constant breadth under different conditions (see [4, 6]).

In this study, we investigate the spacelike curves of constant breadth with timelike normal and first binormal and with timelike binormal and second binormal in E^4_2. Then we give some differential equations for these curves in semi-Riemannian space.

2 Preliminaries

In this section, we provide a brief view of the theory of curves in the semi-Riemannian space E^4_2. This space is an Euclidean space E^4 provided with the standard flat metric given by

$$g = -dx_1^2 - dx_2^2 + dx_3^2 + dx_4^2$$

where (x_1, x_2, x_3, x_4) is rectangular coordinate system in E^4_2 [14]. An any vector $\mathbf{v} \in E^4_2$ can have one of the three causal characters; it is spacelike if $g(\mathbf{v}, \mathbf{v}) > 0$ or $\mathbf{v} = 0$, timelike if $g(\mathbf{v}, \mathbf{v}) < 0$ and null or lightlike if $g(\mathbf{v}, \mathbf{v}) = 0$ and $\mathbf{v} \neq 0$. Similarly, any an curve $\alpha(s)$ in E^2_2 can locally be spacelike, timelike or null if its velocity vectors $\alpha'(s)$ are spacelike, timelike or null, respectively. Furthermore, the norm of a vector \mathbf{v} is given by $\|\mathbf{v}\| = \sqrt{g(\mathbf{v}, \mathbf{v})}$. Thus, \mathbf{v} is a unit vector if $g(\mathbf{v}, \mathbf{v}) = \pm 1$. The velocity of the curve α is given by $\|\alpha'(s)\|$. Thus, a spacelike or a timelike α is said to be parametrized by arclength function s, if $g(\alpha'(s), \alpha'(s)) = \pm 1$. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}_1, \mathbf{B}_2\}$ be the moving Frenet frame along the curve α in E^4_2. Here $\mathbf{T}, \mathbf{N}, \mathbf{B}_1, \mathbf{B}_2$ are the tangent, the principal normal, the first binormal and the second binormal vector fields, respectively. Recall that a spacelike curve α with timelike principal normal \mathbf{N} and second binormal \mathbf{B}_2. Then the following Frenet equations for the curve α are given by

$$
\begin{bmatrix}
T' \\
N' \\
B'_1 \\
B'_2
\end{bmatrix} =
\begin{bmatrix}
0 & k_1 & 0 & 0 \\
k_1 & 0 & k_2 & 0 \\
0 & k_2 & 0 & k_3 \\
0 & 0 & k_3 & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B_1 \\
B_2
\end{bmatrix}
$$
where \(T, N, B_1 \) and \(B_2 \) are mutually orthogonal vectors satisfying equation \(g(T, T) = 1, \ g(N, N) = -1, \ g(B_1, B_1) = 1, \ g(B_2, B_2) = -1 \) and \(g(T, N) = 0, \ g(T, B_1) = 0, \ g(T, B_2) = 0, \ g(N, B_1) = 0, \ g(N, B_2) = 0, \ g(B_1, B_2) = 0. \)

If \(\alpha \) is a spacelike curve with a timelike first binormal \(B_1 \) and second binormal \(B_2 \), then we write

\[
\begin{bmatrix}
T' \\
N' \\
B_1' \\
B_2'
\end{bmatrix} =
\begin{bmatrix}
k_1 & 0 & 0 \\
-k_1 & k_2 & 0 \\
0 & k_2 & k_3 \\
0 & 0 & -k_3
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B_1 \\
B_2
\end{bmatrix}
\]

where \(g(T, T) = 1, \ g(N, N) = 1, \ g(B_1, B_1) = -1, \ g(B_2, B_2) = -1 \) and \(g(T, N) = 0, \ g(T, B_1) = 0, \ g(T, B_2) = 0, \ g(N, B_1) = 0, \ g(N, B_2) = 0, \ g(B_1, B_2) = 0. \) Also, here, \(k_1, k_2 \) and \(k_3 \) are first, second and third curvature of the curve \(\alpha \), respectively.

3 Some characterizations of spacelike curves of constant breadth in \(E_2^4 \)

Let \((C) \) be a unit speed regular spacelike curve in \(E_2^4 \), and \(\overrightarrow{X}(s) \) position vector of the curve \((C) \). The normal plane at every point \(X(s) \) on the curve meets the curve at a single point \(X^*(s) \). If the curve \((C) \) has parallel tangents \(\overrightarrow{T} \) and \(\overrightarrow{T^*} \) in opposite direction at the opposite points \(X \) and \(X^* \) of the curve and the distance between the opposite points is always constant then the curve \((C) \) is named a spacelike curve of constant breadth in \(E_2^4 \). Furthermore, a pair of spacelike curves \((C) \) and \((C^*) \), for which the tangent vectors at the corresponding points are in opposite directions and parallel, and the distance between corresponding points is always constant, is called a spacelike curve pair of constant breadth in \(E_2^4 \).

Assume that \(C \) and \(C^* \) be a pair of unit speed spacelike curves in \(E_2^4 \) with position vectors \(\overrightarrow{X}(s) \) and \(\overrightarrow{X^*}(s^*) \), where \(s \) and \(s^* \) are length parameters of the curves, respectively, and let \(C \) and \(C^* \) have parallel tangents in opposite directions at the opposite points. Then the curve \(C^* \) can be written by the following equation

\[
X^*(s) = X(s) + m_1(s)T(s) + m_2(s)N(s) + m_3(s)B_1(s) + m_4(s)B_2(s)
\] \hspace{1cm} (3.1)

where \(m_i(s), \ (1 \leq i \leq 4) \) are differentiable functions of \(s \). Differentiating equation (3.1) with respect to \(s \), we obtain

\[
T^* \frac{ds^*}{ds} = \left(1 + \frac{dm_1}{ds} + m_2k_1\right)T + \left(m_1k_1 + \frac{dm_2}{ds} + m_3k_2\right)N + \left(m_2k_2 + \frac{dm_3}{ds} + m_4k_3\right)B_1 + \left(m_3k_3 + \frac{dm_4}{ds}\right)B_2.
\]

If we consider \(T^* = -T \) at the corresponding points of \(C \) and \(C^* \), we have

\[
1 + \frac{dm_1}{ds} + m_2k_1 = \frac{ds^*}{ds},
\]

\[
m_1k_1 + \frac{dm_2}{ds} + m_3k_2 = 0,
\]

\[
m_2k_2 + \frac{dm_3}{ds} + m_4k_3 = 0
\]

\[
m_3k_3 + \frac{dm_4}{ds} = 0
\] \hspace{1cm} (3.2)

Since the curvature of the curve \(C \) is \(\frac{d\phi}{ds} = k_1(s) \), where \(\phi(s) = \int_0^s k_1 ds \) is the angle between
tangent vectors of the curve \(C \) and a given fixed direction at the point \(\alpha(s) \), from (3.2) we get
\[
\frac{d m_1}{d \phi} = -m_2 - f(\phi) \\
\frac{d m_2}{d \phi} = -m_1 - m_3 \sigma k_2 \\
\frac{d m_3}{d \phi} = -m_2 \sigma k_2 - m_4 \sigma k_3 \\
\frac{d m_4}{d \phi} = -m_3 \sigma k_3
\] (3.3)

Here, \(f(\phi) = \sigma + \sigma^* \) and \(\sigma = \frac{1}{k_2} \) and \(\sigma^* = \frac{1}{k^*} \) are the radius of curvatures at the points \(X(s) \) and \(X^*(s^*) \), respectively. Using (3.3), we have following equation
\[
\frac{d}{d \phi} \left(\frac{1}{\sigma^2 k_2 k_3} \left(\frac{d^3 m_1}{d \phi^3} + \frac{d^2 f}{d \phi^2} - \frac{d m_1}{d \phi} \right) \right) \\
- \frac{d}{d \phi} \left(\frac{1}{\sigma^3 k_2^2 k_3} \frac{d (\sigma k_2)}{d \phi} \left(\frac{d^2 m_1}{d \phi^2} + \frac{d f}{d \phi} - m_1 \right) \right) \\
- \frac{d}{d \phi} \left(\frac{k_2}{k_3} \left(\frac{d m_1}{d \phi} + f \right) \right) - \frac{k_3}{k_2} \left(\frac{d^2 m_1}{d \phi^2} + \frac{d f}{d \phi} - m_1 \right) = 0
\] (3.4)

This differential equation is a characterization of constant breadth spacelike curves with timelike principal normal and second binormal in \(E^d_4 \).

If the distance between the opposite points of \(C \) and \(C^* \) is constant, from (3.1) we have
\[
\|X^* - X\|^2 = m_1^2 - m_2^2 + m_3^2 - m_4^2 = k^2, \ k \in \mathbb{R}.
\]

Thus, we write
\[
m_1 \frac{d m_1}{d \phi} - m_2 \frac{d m_2}{d \phi} + m_3 \frac{d m_3}{d \phi} - m_4 \frac{d m_4}{d \phi} = 0
\]

By using (3.3) we obtain
\[
m_1 \left(\frac{d m_1}{d \phi} + m_2 \right) = 0.
\]

Then we have \(m_1 = 0 \) or \(\frac{d m_2}{d \phi} = -m_2 \). Hence we can write following system of equations
\[
m_1 = 0, \\
\frac{d m_2}{d \phi} = -m_3 \sigma k_2, \\
\frac{d m_3}{d \phi} = -m_2 \sigma k_2 - m_4 \sigma k_3, \\
\frac{d m_4}{d \phi} = -m_3 \sigma k_3
\] (3.5)
or
\[
\frac{d m_1}{d \phi} = -m_2, \\
\frac{d m_2}{d \phi} = -m_1 - m_3 \sigma k_2, \\
\frac{d m_3}{d \phi} = -m_2 \sigma k_2 - m_4 \sigma k_3, \\
\frac{d m_4}{d \phi} = -m_3 \sigma k_3
\] (3.6)
Suppose that m_1 is a constant in the system (3.6). Then we write following linear differential equations

$$
\sigma k_3 \frac{d^2 m_3}{d\phi^2} - \frac{d(\sigma k_3)}{d\phi} \frac{dm_3}{d\phi} - m_3 (\sigma k_3)^3 = 0
$$

(3.7)

$$
\sigma k_3 \frac{d^2 m_4}{d\phi^2} - \frac{d(\sigma k_3)}{d\phi} \frac{dm_4}{d\phi} - m_4 (\sigma k_3)^3 = 0
$$

(3.8)

Changing the variable ϕ of the form $\delta = \int_0^\phi \sigma k_3 dt$, we have

$$
\frac{d^2 m_3}{d\delta^2} - m_3 = 0
$$

(3.9)

Thus, general solution of m_3 is

$$
m_3 = c_1 \cosh \int_0^\phi \sigma k_3 dt + c_2 \sinh \int_0^\phi \sigma k_3 dt
$$

(3.10)

Also, if we consider m_4, we obtain

$$
m_4 = -c_2 \cosh \int_0^\phi \sigma k_3 dt - c_1 \sinh \int_0^\phi \sigma k_3 dt
$$

(3.11)

where c_1 and c_2 are arbitrary constants. Thus the general solution is given by

$$
m_3 = c_1 \cosh \int_0^\phi \sigma k_3 dt + c_2 \sinh \int_0^\phi \sigma k_3 dt
$$

$$
m_4 = -c_2 \cosh \int_0^\phi \sigma k_3 dt - c_1 \sinh \int_0^\phi \sigma k_3 dt.
$$

Therefore, the breadth of the curve is denoted with $k^2 = c_1^2 + c_2^2$.

Suppose that $m_1 = 0$. By changing the variable ϕ of the form $\xi = \int_0^\phi \sigma k_3 dt$, we obtain the following linear differential equation

$$
\frac{d^2 m_3}{d\xi^2} + m_3 = \left(\frac{k_2}{k_3} \right)'
$$

(3.12)

which has the solutions as

$$
m_3 = c_1 \cos \int_0^\phi \sigma k_3 dt + c_2 \sin \int_0^\phi \sigma k_3 dt + \int_0^\phi \cos [\xi(\phi) - \xi(t)]\sigma k_2 f(t) dt.
$$

(3.13)

In a similar manner, we have

$$
m_4 = c_2 \cos \int_0^\phi \sigma k_3 dt - c_1 \sin \int_0^\phi \sigma k_3 dt - \int_0^\phi \sin [\xi(\phi) - \xi(t)]\sigma k_2 f(t) dt.
$$

(3.14)

Furthermore, from (3.4) we can write

$$
\frac{d}{d\phi} \left(\frac{1}{\sigma^2 k_2 k_3} \left(\frac{d^2 f}{d\phi^2} \right) \right) - \frac{d}{d\phi} \left(\frac{1}{\sigma^2 k_2 k_3} \frac{d(\sigma k_2)}{d\phi} \left(\frac{df}{d\phi} \right) \right) + \frac{d}{d\phi} \left(\frac{k_2}{k_3} \frac{df}{d\phi} \right) - \frac{k_3}{k_2} \frac{df}{d\phi} = 0
$$

(3.15)

Remark 3.1. If $\frac{k_2}{k_3}$ is a constant in equation (3.15), we get

$$
\frac{d}{d\phi} \left(\frac{1}{\sigma^2 k_2 k_3} \left(\frac{d^2 f}{d\phi^2} \right) \right) - \frac{d}{d\phi} \left(\frac{1}{\sigma^2 k_2 k_3} \frac{d(\sigma k_2)}{d\phi} \left(\frac{df}{d\phi} \right) \right) + \left(\frac{c^2 + 1}{a} \right) \frac{df}{d\phi} = 0
$$

(3.16)

where $\frac{k_2}{k_3} = a$.
Now, suppose that α is a spacelike curve with timelike first binormal and second binormal, then we obtain
\[
\frac{dm_1}{d\phi} = m_2 - f(\phi) \\
\frac{dm_2}{d\phi} = -m_1 - m_3 k_2 \sigma \\
\frac{dm_3}{d\phi} = -m_2 k_2 \sigma + m_4 k_3 \sigma \\
\frac{dm_4}{d\phi} = -m_3 k_3 \sigma
\] \hspace{1cm} (3.17)

From (3.17), we arrive at the following differential equation characterizing constant breadth spacelike curves in E^4_2:
\[
-\frac{d}{d\phi} \left(\frac{1}{\sigma^2 k_2 k_3} \left(\frac{d^2 m_1}{d\phi^2} + \frac{d^2 f}{d\phi^2} + \frac{dm_1}{d\phi} \right) \right) + \frac{d}{d\phi} \left(\frac{1}{\sigma^2 k_2 k_3} \left(\frac{d (\sigma k_2)}{d\phi} \left(\frac{d^2 m_1}{d\phi^2} + \frac{df}{d\phi} + m_1 \right) \right) \right) + \frac{d}{d\phi} \left(\frac{k_2}{k_3} \left(\frac{dm_1}{d\phi} + f \right) \right) - \frac{k_3}{k_2} \left(\frac{d^2 m_1}{d\phi^2} + \frac{df}{d\phi} + m_1 \right) = 0. \hspace{1cm} (3.18)
\]

Also from (3.1), we can write
\[
m_1 = 0, \quad \frac{dm_1}{d\phi} = -m_3 k_2 \sigma, \quad \frac{dm_2}{d\phi} = -m_2 k_2 \sigma + m_4 k_3 \sigma, \quad \frac{dm_4}{d\phi} = -m_3 k_3 \sigma
\]
and
\[
\frac{dm_1}{d\phi} = m_2, \quad \frac{dm_2}{d\phi} = -m_1 - m_3 k_2 \sigma, \quad \frac{dm_3}{d\phi} = -m_2 k_2 \sigma + m_4 k_3 \sigma, \quad \frac{dm_4}{d\phi} = -m_3 k_3 \sigma.
\]

Therefore we get
\[
\sigma k_3 \frac{d^2 m_3}{d\sigma^2} - \frac{d (\sigma k_3)}{d\phi} \frac{dm_3}{d\phi} + m_3 (\sigma k_3)^3 = 0 \hspace{1cm} (3.19)
\]
or
\[
\sigma k_3 \frac{d^2 m_4}{d\sigma^2} - \frac{d (\sigma k_3)}{d\phi} \frac{dm_4}{d\phi} + m_4 (\sigma k_3)^3 = 0. \hspace{1cm} (3.20)
\]

Changing the variable ϕ of the form ξ, we have
\[
\frac{d^2 m_3}{d\xi^2} + m_3 = 0 \quad \text{and} \quad \frac{d^2 m_4}{d\xi^2} + m_4 = 0 \hspace{1cm} (3.21)
\]

Using (3.21), the general solutions of the differential equations are
\[
m_3 = c_1 \cos \left(\int_0^\phi \sigma k_3 dt \right) + c_2 \sin \left(\int_0^\phi \sigma k_3 dt \right) \\
m_4 = -c_1 \cos \left(\int_0^\phi \sigma k_3 dt \right) + c_2 \sin \left(\int_0^\phi \sigma k_3 dt \right).
\]

Thus, the solution of the system (3.21) can be written as
\[
m_1 = c = \text{constant}, \quad m_2 = 0, \\
m_3 = c_1 \cos \left(\int_0^\phi \sigma k_3 dt \right) + c_2 \sin \left(\int_0^\phi \sigma k_3 dt \right) \\
m_4 = -c_1 \cos \left(\int_0^\phi \sigma k_3 dt \right) + c_2 \sin \left(\int_0^\phi \sigma k_3 dt \right).
\]
Here the breadth of the curve is denoted with $k^2 = c^2 - c_1^2 - c_2^2$. Also, for $m_1 = 0$, we arrive at the following linear differential equation

$$\frac{d^2 m_3}{d\xi^2} + m_3 = \left(\frac{f_{k_2}}{k_3} \right)'$$

having the solution as

$$m_3 = c_1 \cosh \int_0^\phi \sigma k_3 dt + c_2 \sinh \int_0^\phi \sigma k_3 dt - \int_0^\phi \cosh (\xi(\phi) - \xi(t)) \sigma k_2 f(t) dt$$

In a similar manner, we have

$$m_4 = -c_2 \cosh \int_0^\phi \sigma k_3 dt - c_1 \sinh \int_0^\phi \sigma k_3 dt + \int_0^\phi \sinh (\xi(\phi) - \xi(t)) \sigma k_2 f(t) dt$$

Furthermore, since $m_1 = 0$, we can write

$$-\frac{d}{d\phi} \left(\frac{1}{\sigma^2 k_2 k_3} \left(\frac{d^2 f}{d\phi^2} \right) \right) + \frac{d}{d\phi} \left(\frac{1}{\sigma^3 k_2^2 k_3} \frac{d}{d\phi} (\sigma k_2) \left(\frac{df}{d\phi} \right) \right)$$

$$+ \frac{d}{d\phi} \left(\frac{k_2}{k_3} (f) \right) - \frac{k_3}{k_2} \left(\frac{df}{d\phi} \right) = 0. \quad (3.22)$$

Remark 3.2. If $\frac{k_2}{k_3}$ is a constant in equation (3.22), then we write

$$-\frac{d}{d\phi} \left(\frac{1}{\sigma^2 k_2 k_3} \left(\frac{d^2 f}{d\phi^2} \right) \right) + \frac{d}{d\phi} \left(\frac{1}{\sigma^3 k_2^2 k_3} \frac{d}{d\phi} (\sigma k_2) \left(\frac{df}{d\phi} \right) \right)$$

$$+ \left(\frac{a^2 - 1}{a} \right) \frac{df}{d\phi} = 0.$$

where $\frac{k_2}{k_3} = a$.

References

Author information

Sezín Aykurt Sepet and Hülya Güm Bozk, Department of Mathematics, Art and Science Faculty, Ahi Evran University, Kirşehir 37996-1320, TURKEY.

E-mail: sezinaykurt@hotmail.com

Received: January 26, 2016.

Accepted: April 21, 2016.