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Abstract. In this paper, we introduce a class k − SPα[A,B] of analytic function in ge-
ometrical starlike of oval and petal type regions ∆k(A,B) which unifies a number of classes
studied earlier by Janowski, Kanas, Wisnowska, Shams etc. Thus our class includes k-uniformly
Janowskl convex functions, k-uniformly Janowski starlike functions, k-uniformly convex func-
tions, k-uniformly starlike functions, Janowski starlike and Janowski convex functions etc. We
deduce sufficient condition for a function to be in k − SPα[A,B] and also coefficient bound for
functions of k − SPα[A,B].

1 Introduction

Kanas and Wisniowska [5,15] generalized the parabolic region ∆ = {w : <{w} > |w − 1|}
introduced by Goodman [4] introducing ∆k k ≥ 0 by

∆k = {u+ iv : u > k
√
(u− 1)2 + v2}.

This domain represents the right half plane for k = 0, hyperbola for 0 < k < 1, a parabola for
k = 1 and ellipse for k > 1 .
The functions pk(z) play the role of extremal functions for these conic regions where

pk(z) =
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where u(z) = z−
√
t

1−
√
tx
, t ∈ (0, 1), z ∈ U and z is chosen such that k = cosh

(
πR′(t)
4R(t)

)
, R(t) is the

Legendre’s complete elliptic integral of the first kind and R′(t) is complementary integral R(t).
pk(z) = 1 + δkz + ...., [14] where
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(1.2)

It was Janowski [1] who introduced the circular domain by defining the following:

Definition 1.1. Let P [A,B], where −1 ≤ B < A ≤ 1, denote the class of analytic function p
defined on U with the representation p(z) = 1+Aw(z)

1+Bw(z) , z ∈ U , w(0) = 0, |w(z)| < 1. In terms
of subordination p ∈ P [A,B] if and only if p(z) ≺ 1+Az

1+Bz .

Geometrically, a function p(z) ∈ P [A,B] maps the opine unit onto the disk defined by the
domain,

∆[A,B] =

{
w :

∣∣∣∣w − 1−AB
1−B2

∣∣∣∣ < A−B
1−B2

}
.
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The class P [A,B] is connected the class P of functions with positive real part by the relation,

p(z) ∈ P ⇔ (A+ 1)p(z)− (A− 1)
(B + 1)p(z)− (B − 1)

∈ P [A,B].

Now using the concepts of Janowski functions and the conic regions, we define the following.

Definition 1.2. A function p is said to be in the class k − P [A,B], if and only if,

p(z) ≺ (A+ 1)pk(z)− (A− 1)
(B + 1)pk(z)− (B − 1)

, k ≥ 0,

where pk(z) is defined by (1.1) and −1 ≤ B < A ≤ 1.

Geometrically, the function p ∈ k − P [A,B] takes all values from the domain ∆k[A,B],
−1 ≤ B < A ≤ 1, k ≥ 0 which is defined as

∆k[A,B] =

{
w : <

(
(B − 1)w(z)− (A− 1)
(B + 1)w(z)− (A+ 1)

)
> k

∣∣∣∣ (B − 1)w(z)− (A− 1)
(B + 1)w(z)− (A+ 1)

− 1
∣∣∣∣}

or equivalently

∆k[A,B] = {u+ iv : [(B2 − 1)(u2 + v2)− 2(AB − 1)u+ (A2 − 1)]2

> k2[(−2(B + 1)(u2 + v2) + 2(A+B + 2)u− 2(A+ 1))2 + 4(A−B)2v2]}.

The domain ∆k[A,B] retains the conic domain ∆k inside the circular region defined by ∆[A,B].
the impact of ∆[A,B] on the conic domain ∆k changes the original shape of the conic regions
. The ends of hyperbola and parabola get closer to each other but never meet anywhere and the
ellipse gets the oval shape. When A → 1, B → −1, the radius of the circular disk defined
by ∆[A,B] tends to infinity, consequently the arms of hyperbola and parabola expand and the
oval turns into ellipse . we see that ∆k[1,−1] = ∆k, the conic domain defined by Kanas and
Wisniowska[15]. The authors in [9,. . . ,13] studied classes which are related to conic region.

Let A denote the class of functions of form

f(z) = z +
∞∑
n=2

anz
n, (1.3)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}, and S denote the subclass
of A consisting of all function which are univalent in U .
The fractional derivative of order α in the sense of Riemann Liouville is defined [2] by

Dα
z f(z) =

1
Γ(1− α)

d

dz

∫ z

0

f(ζ)

(z − ζ)α
dζ. 0 ≤ α < 1,

where f is an analytic function in a simply connected domain of the z-plane containing the origin
and the multiplicity of (z − ζ)−α is removed by requiring log(z − ζ) to be real when z − ζ > 0.
Fractional derivative of higher order are defined by

Dα+β
z f(z) =

dβ

dzβ
Dα
z f(z), β ∈ N0.

Using the fractional derivative Dα
z f Owa and Srivastava [3] introduced the operator Ωα :

A → A,which is known as an extension of fractional derivative and fractional integral as follows

Ω
αf(z) = Γ(2− α)zαDα

z f(z), α 6= 2, 3, 4, ... (1.4)

= z +
∞∑
n=2

Γ(n+ 1)Γ(2− α)
Γ(n+ 1− α)

anz
k

Now using the concepts of the fractional derivative and conic regions we define the following:
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Definition 1.3. A function f ∈ A is said to be in the class k − SPα[A,B] , k ≥ 0, α 6=
2, 3, 4, ..., − 1 ≤ B < A ≤ 1, if and only if

<

 (B − 1) z(Ω
αf(z))′

Ωαf(z) − (A− 1)

(B + 1) z(Ω
αf(z))′

Ωαf(z) − (A+ 1)

 > k

∣∣∣∣∣∣
(B − 1) z(Ω

αf(z))′

Ωαf(z) − (A− 1)

(B + 1) z(Ω
αf(z))′

Ωαf(z) − (A+ 1)
− 1

∣∣∣∣∣∣ , (1.5)

where Ωαf(z) is defined by (1.4).
Or equivalently,

z(Ωαf(z))′

Ωαf(z)
∈ k − P [A,B].

The following special cases are of interest
(i)0− SPα[1,−1] = SPα, the class introduced by Srivastava and Mishra in [??].
(ii) k − SP0[A,B] = k − ST [A,B] introduced by Khalida Inyat Noor and Sarfraz Nawaz Malik
[8].
(iii)k−SP1[A,B] = k−UCV [A,B] introduced also by Khalida Inyat Noor and Sarfraz Nawaz
Malik [8].
(iv)k−SP0[[1,−1] = k−ST the well-known class of k-uniformly starlike functions introduced
by Kanas and Wisniowska [5].
(v)k−SP1[[1,−1] = k−UCV the well-known class of k-uniformly convex functions introduced
by Kanas and Wisniowska [5].
(vi)k − SP0[1− 2β,−1] = SD(k, β), this class introduced by Shams [6].
(vii)k − SP1[1− 2β,−1] = KD(k, β), this class introduced by Shams [6].
(viii)0− SP0[A,B] = S∗[A,B], the well-known class of Janowski starlike functions introduced
by Janowski [1].
(ix)0 − SP1[A,B] = S∗[A,B], the well-known class of Janowski convex functions introduced
by Janowski [1].
We need the following lemma to prove our main results.

Lemma 1.4. [8] Let h(z) = 1 +
∑∞
n=1 cnz

n ∈ P [A,B]. Then

|cn| ≤
|δk|(A−B)

2
,

where δk is defined by (1.2).

2 Main results

Theorem 2.1. A function f ∈ A and of the form (1.3) is in the class k− SPα[A,B], if it satisfies
the condition

∞∑
n=2

{2(k + 1)(n− 1) + |n(B + 1)− (A+ 1)|}δn(α)|an| < |B −A|, (2.1)

where

δn(α) =
Γ(n+ 1)Γ(2− α)

Γ(n+ 1− α)
. (2.2)

and
−1 ≤ B < A ≤ 1, k ≥ 0

.

Proof. Assuming that (2.1) holds, then it suffices to show that

k

∣∣∣∣∣∣
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(B + 1) z(Ω
αf(z))′
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− 1

∣∣∣∣∣∣−<
 (B − 1) z(Ω
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 < 1,
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we get

k

∣∣∣∣∣∣
(B − 1) z(Ω
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(B + 1) z(Ω
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− 1
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
≤ (k + 1)

∣∣∣∣(B − 1)z(Ωαf(z))′ − (A− 1)Ωαf(z)

(B + 1)(Ωαf(z))′ − (A+ 1)Ωαf(z)
− 1
∣∣∣∣

= 2(k + 1)
∣∣∣∣ Ωαf(z)− z(Ωαf(z))′

(B + 1)z(Ωαf(z))′ − (A+ 1)Ωαf(z)

∣∣∣∣
= 2(k + 1)

∣∣∣∣ ∑∞
n=2(1− n)δn(α)anzn

(B −A)z +
∑∞
n=2[n(B + 1)− (A+ 1)]δn(α)anzn

∣∣∣∣
≤ 2(k + 1)

∑∞
n=2 |1− n|δn(α)|an|

|B −A| −
∑∞
n=2 |n(B + 1)− (A+ 1)|δn(α)|an|

.

The last expression is bounded above by 1, then

∞∑
n=2

{2(k + 1)(n− 1) + |n(B + 1)− (A+ 1)|}δn(α)|an| < |B −A|,

and this completes the proof.

When α = 0, we have the following known result, proved by Khalida Inayat Noor and Sarfraz
Nawaz Malik in [8].

Corollary 2.2. A function f ∈ A and form (1.3) in the class k − ST [A,B], if it satisfies the
condition

∞∑
n=2

{2(k + 1)(n− 1) + |n(B + 1)− (A− 1)|}|an| < |B −A|, (2.3)

where −1 ≤ B < A ≤ 1 and k ≥ 0.

For α = 0, A = 1 and B = −1, we have following result due to Kanas and Wisniowska [5].

Corollary 2.3. A function f ∈ A and form (1.3) in the class k − ST , if it satisfies the condition

∞∑
n=2

{n+ k(n− 1)}|an| < 1, k ≥ 0. (2.4)

For α = 0, A = 1− 2β and B = −1 with 0 ≤ β < 1, we arrive at Shams et result in [6].

Corollary 2.4. A function f ∈ A and form (1.3) in the class SD(k, β), if it satisfies the condition

∞∑
n=2

{n(k + 1)− (k + β)}|an| < 1− β, (2.5)

where 0 ≤ β < 1 and k ≥ 0.

Also for α = 0, A = 1 − 2β and B = −1, k = 0 with 0 ≤ β < 1, then we get the well-
known Silverman’s result [7].

Corollary 2.5. A function f ∈ A and form (1.3) in the class S∗(β), if it satisfies the condition

∞∑
n=2

{(n− β)}|an| < 1− β, (2.6)

where 0 ≤ β < 1.
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Theorem 2.6. Let f ∈ k − SPα[A,B] and is of the form (1.3). Then for n ≥ 2.

|an| ≤
1

δn(α)

n−2∏
j=0

|δk(A−B)− 2jB|
2(j + 1)

, (2.7)

where δk is defined (1.2) and δn(α) is defined by (2.2).

Proof. By the definition we have

z(Ωαf(z))′

Ωαf(z)
= p(z), (2.8)

where
p(z) ∈ P [A,B].

Since p(z) = 1 +
∑∞
n=1 cnz

n, and from (2.8), we have

z +
∞∑
n=2

nδn(α)anz
n =

[
z +

∞∑
n=2

δn(α)anz
n

][
1 +

∞∑
n=1

cnz
n

]
.

Equating coefficients of zn on both sides, we have

(n− 1)δn(α)an =
n−1∑
j=1

δn−j(α)an−jcj , a1 = δ1(α) = 1.

This implies that

|an| ≤
1

(n− 1)δn(α)

n−1∑
j=1

δn−j(α)an−jcj , a1 = δ1(α) = 1.

By Lemma 1.4, we get

|an| ≤
|δk|(A−B)

2(n− 1)δn(α)

n−1∑
j=1

δj(α)|aj |, a1 = δ1(α) = 1. (2.9)

Now we prove that

|δk|(A−B)
2(n− 1)δn(α)

n−1∑
j=1

δj(α)|aj | ≤
1

δn(α)

n−2∏
j=0

|δk(A−B)− 2jB|
2(j + 1)

. (2.10)

For this, we use the induction method.
For n = 2: from (2.9), we have

|a2| ≤
|δk|(A−B)

2
.

From (2.7), we have

|a2| ≤
|δk|(A−B)

2
.

For n = 3: from (2.9), we have

|a3| ≤
|δk|(A−B)

4δ3(α))

[
1 +
|δk|(A−B)

2

]
.

From (2.7), we have

|a3| ≤
1

δ3(α)

|δk|(A−B)
2

|δk(A−B)− 2B|
4
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|a3| ≤
1

δ3(α)

|δk|(A−B)
2

|δk(A−B) + 2B|
4

≤ |δk|(A−B)
2δ3(α)

[
1 +
|δk|(A−B)

2

]
.

Let the hypothesis be true for n = m. From (2.9), we have

|am| ≤
|δk|(A−B)

2(m− 1)δm(α)

m−1∑
j=1

δj(α)|aj |, a1 = δ1(α) = 1.

From (2.7), we have

|am| ≤
1

δm(α)

m−2∏
j=0

|δk(A−B)− 2jB|
2(j + 1)

.

≤ 1
δm(α)

m−2∏
j=0

|δk|(A−B) + 2j
2(j + 1)

.

By the induction hypothesis, we have

|δk|(A−B)
2(m− 1)δm(α)

m−1∑
j=1

δj(α)|aj | ≤
1

δm(α)

m−2∏
j=0

|δk|(A−B) + 2j
2(j + 1)

.

Multiplying both sides by δm(α)
δm+1(α)

|δk|(A−B)+2(m−1)
2m , we have

1
δm+1(α)

m−1∏
j=0

|δk|(A−B) + 2j
2(j + 1)

≥ |δk|(A−B)
2(m− 1)δm(α)

.
δm(α)

δm+1(α)

|δk|(A−B) + 2(m− 1)
2m

m−1∑
j=1

δj(α)|aj |,

=
|δk|(A−B)
2mδm+1(α)

 |δk|(A−B)
2(m− 1)

m−1∑
j=1

δj(α)|aj |+
m−1∑
j=1

δj(α)|aj |

 ,
≥ |δk|(A−B)

2mδm+1(α)

δm(α)|am|+ m−1∑
j=1

δj(α)|aj |

 ,
=
|δk|(A−B)
2mδm+1(α)

m∑
j=1

δj(α)|aj |.

That is
|δk|(A−B)
2mδm+1(α)

m∑
j=1

δm(α)|aj | ≤
1

δm+1(α)

m−1∏
j=0

|δk|(A−B) + 2j
2(j + 1)

.

Which shows that inequality (2.10) is true for n = m+ 1. Hence the required result.

When α = 0 we get result introduced by Khalida Inayat Noor and Sarfraz Nawaz Malik in
[8].

Corollary 2.7. Let f ∈ k − ST [A,B] and is of the form (1.3). Then

|an| ≤
n−2∏
j=0

|δk(A−B)− 2jB|
2(j + 1)

, − 1 ≤ B < A ≤ 1, n ≥ 2.

For α = 0, A = 1 B = −1 we arrive at Kanas and Wisniowska result in [5].

Corollary 2.8. Let f ∈ k − ST and is of the form (1.3). Then

|an| ≤
n−2∏
j=0

|δk + j|
(j + 1)

, n ≥ 2.
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Also for α = 0, k = 0 δk = 2 , we get result due to Janowski in [1].

Corollary 2.9. Let f ∈ S∗[A,B] and is of the form (1.3). Then

|an| ≤
n−2∏
j=0

|(A−B)− jB|
(j + 1)

, − 1 ≤ B < A ≤ 1, n ≥ 2.
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