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Abstract. In this article, some ideal-theoretic characterizations are provided concerning
when a commutative ring is nil under certain finiteness conditions of the ring. It is shown that if
R is a finitely generated ring without unity, then R is nil if and only if every proper ideal of R is
nil. It is also shown that if R is a finite ring with every proper ideal irreducible, then R is nil if
and only if every element of R is a zero-divisor.

1 Introduction

Throughout this article, all rings are commutative and do not necessarily have unity. A ring is
called nil if every element of the ring is nilpotent; that is, the ring R is nil if for every element
x of R, there is a positive integer n for which xn = 0. More strongly, the ring R is called
nilpotent if there is a positive integer m such that Rm = {0}. The definitions for an ideal of a
ring to be respectively nil or nilpotent follow the above definitions, mutatis mutandis. Also, for
an element x in the ring R, the ideal of R generated by x will be denoted by (x) and is equal to
{nx+ rx | n ∈ Z, r ∈ R}.

The study of the ideal structure in rings with a significant amount of nilpotency at the level
of elements has a history spanning several decades. In fact, these studies have often focused on
such rings which were either finite or finitely generated. Kruse and Price [4] examined ideals
in finite nilpotent rings as did Leger [5] who determined up to isomorphism all finite nilpotent
rings R whose only two-sided ideals are powers of R. Of course, much of the modern day
study of nil ideals in a ring is motivated by the still-open problem of Koethe, which asks if
every one-sided nil ideal of a ring is contained in a two-sided nil ideal of the ring (for recent
developments along the lines of Koethe’s problem, see [1], [6]). In particular, Smoktunowicz
[7] has established a connection between Koethe’s problem and a certain property of polynomial
rings in one indeterminate over nil rings. While Koethe’s problem has a trivially positive solution
for commutative rings, we are nonetheless motivated to ask about the relationship between the
ideal structure in a commutative ring and the quality of the ring to be nil.

To this end, we provide several characterizations of commutative nil rings under certain finite-
ness conditions of the ring. Our main results show that if R is a finitely generated ring without
unity, then R is nil if and only if every proper ideal of R is nil (Theorem 2.1)and if R is a finite
ring with every proper ideal irreducible, then R is nil if and only if every element of R is a
zero-divisor (Theorem 2.5).

2 Results

We begin with one of our main results that showcases how the structure of proper ideals of a
certain type of commutative ring impacts the behavior of the elements of the ring along the lines
of nilpotency.

Theorem 2.1. Let R be a finitely generated commutative ring without unity. Then the following
are equivalent:

(1) R is nil;
(2) R is nilpotent;
(3) every proper ideal of R is nilpotent;
(4) every proper ideal of R is nil.
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Proof. (1)⇒ (2): Since every element of R is nilpotent, every generator of R is nilpotent. Let
{x1, . . . , xn} be a set of generators for R with corresponding indices of nilpotency k1, . . . , kn.
So, the product of an arbitrary k = k1 + · · ·+ kn factors is

(m1,1x1 + r1,1x1 + · · ·+mn,1xn + rn,1xn) · · · (m1,kx1 + r1,kx1 + · · ·+mn,kxn + rn,kxn)

where each mi,j ∈ Z and each ri,j ∈ R. Observe that this product is a sum where each term is
of the form cxi1 · · ·xik , where c is an integer or an element of R and the xij ’s may be repeated.
So, each term has at least k generator factors. Consider an arbitrary term of the sum. For each
xi, let αi be the number of generator factors equal to xi. So, α1 + · · ·+ αk ≥ k. If αi < ki for
each i, then it would be the case that α1 + · · ·+ αk < k1 + · · ·+ kk = k, a contradiction. Thus,
there is some j with αj ≥ kj . So this term has a factor of xkj

j , which is equal to zero, since xj
has index of nilpotency kj . Thus, each term of the sum is equal to zero, and so the entire sum is
equal to zero. Therefore, the product of any k terms is equal to zero, whence Rk = {0}.

(2)⇒ (3): This implication is clear.
(3)⇒ (4): This implication is clear.
(4)⇒ (1): We proceed by contradiction. Assume that every proper ideal of R is nil. Suppose

that R contains an element a which is not nilpotent. Then a2 is also not nilpotent. Note that
a2 ∈ aR = {ar | r ∈ R}. Thus, aR = R. Hence there is some e ∈ R such that a = ae. Let
r ∈ R. Then there is some x ∈ R such that r = ax. So

re = (ax)e = (ae)x = ax = r.

Thus e is a multiplicative identity of R, a contradiction. Therefore, R is nil.

We now present two characterizations of finite commutative nil rings, the first (Proposition
2.2) based on a result by Frobenius [2] and the second (Proposition 2.3) based on a result [3,
Proposition 1.2.2] by Kruse and Price.

Proposition 2.2. If R is a nil ring, then xy 6= y for all nonzero x, y ∈ R. If R is a finite ring,
then R is nil if and only if for every nonzero x, y ∈ R, it is the case that xy 6= y.

Proof. Let x and y be nonzero elements of the nil ring R. So xn = 0 for some positive integer
n. If xy = y then

0 = (xn)y = (xn−1)(xy) = (xn−1)y = (xn−2)(xy) = (xn−2)(y) = . . . = xy = y,

a contradiction. Thus, xy 6= y.
Now, assume that R is finite and suppose that for every nonzero x, y ∈ R, xy 6= y. Let x ∈ R.

Let n,m be positive integers with n < m. So, if xn 6= 0 and xm 6= 0, then xn 6= xnxm−n = xm.
So, each positive power of x which is not zero must be distinct. But, R is finite, so it must be the
case that xk = 0 for some k. Thus, every element of R is nilpotent.

Proposition 2.3. If R is a finitely generated nil ring, then IJ $ I for all nonzero ideals I and J
of R. If R is finite, then R is nil if and only if IJ $ I for all nonzero ideals I and J of R.

Proof. Since R is a finitely generated nil ring, we that Rk = {0} for some positive integer k.
Suppose by way of contradiction that R contains nonzero ideals I and J with IJ = I . But then

{0} = IJk = (IJ)Jk−1 = IJk−1 = (IJ)Jk−2 = . . . = IJ = I,

a contradiction. Therefore, IJ $ I .
Now assume that R is finite, and that IJ $ I for all nonzero ideals I and J of R. Then by

assumption, Rk = Rk−1R $ Rk−1 for all positive integers k. So, R % R2 % · · · . Then since R
is finite, Rn = {0} for some positive integer n, whence R is nilpotent.

Since a nil ring will contain no prime ideals, it is worth considering the question of whether a
nil ring can contain anything like a prime ideal. To do this, we next look at two generalizations of
the concept of “prime ideal” in the context of nil rings, namely "primary ideal" and "irreducible
ideal". A proper ideal P of the ring R is a primary ideal if ab ∈ P implies that a ∈ P or bn ∈ P
for some positive integer n, where a, b ∈ R. It is easy to prove that while a nil ring will contain
no prime ideals, every proper ideal of a nil ring will be primary. Proposition 2.4 establishes
precisely when such rings are nil.

Proposition 2.4. If R is a ring such that every proper ideal of R is primary, then R is nil if and
only if every element of R is a zero-divisor.
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Proof. (⇒) This implication is clear.
(⇐) Suppose every element of R is a zero-divisor. Let a be a nonzero element of R. So, a is

a zero-divisor. That is, there is some b 6= 0 in R with ab = 0. By assumption, {0} is primary. It
is the case that ab ∈ {0} and b /∈ {0}, and so an ∈ {0} for some integer n. That is, an = 0. So,
a is nilpotent. Thus, each element of R is nilpotent.

Another common generalization of the concept of “prime ideal” is the concept of “irreducible
ideal”. A proper ideal P of the ring R is irreducible if it cannot be written as the intersection
of ideals of R properly containing it. Unlike the situation with primary ideals, it is not the case
that in a nil ring every proper ideal is irreducible. For example, Z2 × Z2 with multiplication
of any two elements defined to be (0, 0) has no prime ideals. However, the ideal {(0, 0)} =
{(0, 0), (1, 0)} ∩ {(0, 0), (0, 1)}. Nonetheless, we provide a final characterization result that
concerns when finite rings such that every proper ideal of the ring is irreducible are nil.

Theorem 2.5. If R is a finite ring such that every proper ideal of R is irreducible, then R is nil if
and only if every element of R is a zero-divisor.

Proof. (⇒) This implication is clear.
(⇐) Suppose every element of R is a zero-divisor. We proceed by way of contradiction.

Suppose that there is some element a of R with a not nilpotent. Let Nil(R) and Spec(R) denote
the nilradical and spectrum of R, respectively. Since every proper ideal of R is irreducible and
Nil(R) =

⋂
P∈Spec(R) P , it follows that Nil(R) ∈ Spec(R) since any two prime ideals of R

must be comparable. Consider the ideal aR = {ar | r ∈ R}. If a · a ∈ Nil(R), then a ∈ Nil(R)
since Nil(R) is prime, but, by assumption, a /∈ Nil(R). So, aR contains a non-nilpotent element.
Thus, aR * Nil(R).

Since R is finite, Nil(R) is finite, say Nil(R) = {0, n1, . . . , nk}. Note that a · s /∈ Nil(R) if
s /∈ Nil(R) since Nil(R) is prime. So, in order for an element ni of Nil(R) to be in aR, there
must be some nj ∈ Nil(R) for which anj = ni. By assumption, a is a zero-divisor. So, there
is some 0 6= b ∈ R such that ab = 0. Then ab ∈ Nil(R) with a /∈ Nil(R) which implies that
b ∈ Nil(R). Then ab = 0 and a · 0 = 0. So, since Nil(R) is finite, it must be the case that
aNil(R) $ Nil(R). So, Nil(R) * aR. Thus, Nil(R) * aR and aR * Nil(R), a contradiction.
Therefore, every element of R is nilpotent.
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