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1 Abstract

In this paper, we study spacelike elastic biharmonic curves with timelike M1 according to Bishop frame in Minkowski
3-space E3

1. We give some characterizations for curvature and torsion of a biharmonic curve in Minkowski 3-space
E3

1. Finally, we use Noether’s theorem to derive some equations.

2 Introduction

Let (N,h) and (M, g) be Riemannian manifolds. Denote by RN and R the Riemannian curvature tensors of N and
M , respectively. We use the sign convention:

RN (X,Y ) = [∇X ,∇Y ]−∇[X,Y ], X, Y ∈ Γ (TN) .

For a smooth map φ : N −→M , the Levi-Civita connection∇ of (N,h) induces a conncetion∇φ on the pull-back
bundle

φ∗TM =p∈N Tφ(p)M.

The section T (φ) := tr∇φdφ is called the tension field of φ. A map φ is said to be harmonic if its tension field
vanishes identically.

A smooth map φ : N −→M is said to be biharmonic if it is a critical point of the bienergy functional:

E2 (φ) =

∫
N

1
2
|T (φ)|2 dvh.

The Euler–Lagrange equation of the bienergy is given by T2(φ) = 0. Here the section T2(φ) is defined by

T2(φ) = −∆φT (φ) + trR (T (φ), dφ) dφ, (2.1)

where R the Riemannian curvature tensors of N,and called the bitension field of φ. The operator ∆φ is the rough
Laplacian acting on Γ(φ∗TM) defined by

∆φ := −
n∑
i=1

(
∇φei∇

φ
ei −∇

φ
∇N

ei
ei

)
,

where {ei}ni=1 is a local orthonormal frame field of N . Obviously, every harmonic map is biharmonic. Non-harmonic
biharmonic maps are called proper biharmonic maps.

In particular, if the target manifold M is the Euclidean space Em, the biharmonic equation of a map φ : N → Em
is

∆h∆hφ = 0,
where ∆h is the Laplace–Beltrami operator of (N,h).

Recently, there have been a growing interest in the theory of biharmonic maps which can be divided into two
main research directions. On the one side, the differential geometric aspect has driven attention to the construction of
examples and classification results. The other side is the analytic aspect from the point of view of PDE: biharmonic
maps are solutions of a fourth order strongly elliptic semilinear PDE.

On the other hand, one of the oldest topics in the calculus of variations is the study of the elastic rod which,
according to Daniel Bernoulli’s idealization, minimizes total squared curvature among curves of the same length and
first order boundary data. The classical term elastica refers to a curve in the plane or R3 which represents such a
rod in equilibrium. While the elastica and its generalizations have long been (and continue to be) of interest in the
context of elasticity theory, the elastica as a purely geometrical entity seems to have been largely ignored.

In this paper, we study spacelike elastic biharmonic curves according to Bishop frame in Minkowski 3-space E3
1.

We give some characterizations for curvature and torsion of a biharmonic curve in Minkowski 3-space E3
1. Finally,

we use Noether’s theorem to derive some equations.
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3 Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 provided with the standard flat metric given by

g = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1.

Minkowski space is originally from the relativity in Physics. In fact, a timelike curve corresponds to the path of
an observer moving at less than the speed of light, a null curves correspond to moving at the speed of light and a
spacelike curves to moving faster than light.

Let {T,N,B} be the Frenet frame field along γ. Then, the Frenet frame satisfies the following Frenet–Serret
equations:

∇TT = κN,

∇TN = κT+ τB,

∇TB = τN,

where κ = |T (γ)| = |∇TT| is the curvature of γ and τ its torsion and

g (T,T) = 1, g (N,N) = −1, g (B,B) = 1,

g (T,N) = g (T,B) = g (N,B) = 0.

In the rest of the paper, we suppose everywhere κ 6= 0 and τ 6= 0.
The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well

defined even when the curve has vanishing second derivative. One can express parallel transport of an orthonormal
frame along a curve simply by parallel transporting each component of the frame. The tangent vector and any
convenient arbitrary basis for the remainder of the frame are used. The Bishop frame is expressed as

∇TT = k1M1 − k2M2,

∇TM1 = k1T, (3.1)

∇TM2 = k2T,

where

g (T,T) = 1, g (M1,M1) = −1, g (M2,M2) = 1, (3.2)

g (T,M1) = g (T,M2) = g (M1,M2) = 0.

Here, we shall call the set {T,M1,M2} as Bishop trihedra and k1 and k2 as Bishop curvatures.
One can show that

κ(s) =
√∣∣−k2

1 + k2
2

∣∣,
θ (s) = arg tanh

k2

k1
,

τ(s) = θ′ (s) ,

so that k1 and k2 effectively correspond to a cartesian coordinate system for the polar coordinates κ, θ with θ =∫
τ(s)ds. The orientation of the parallel transport frame includes the arbitrary choice of integration constant θ0,

which disappears from τ (and hence from the Frenet frame) due to the differentiation.

4 Spacelike Biharmonic Curves with Timelike M1 in E3
1

Biharmonic equation for the curve γ reduces to

∇3
TT−R (T,∇TT)T = 0, (4.1)

that is, γ is called a biharmonic curve if it is a solution of the equation
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Theorem 4.1. γ : I −→ E3
1 is a unit speed spacelike biharmonic curve with timelike M1 if and only if

k2
1 − k2

2 = C,

k′′1 + k3
1 − k1k

2
2 = 0, (4.2)

k′′2 − k3
2 + k2k

2
1 = 0,

where C is non-zero constant of integration.

Corollary 4.2. γ : I −→ E3
1 is a unit speed spacelike biharmonic curve with timelike M1 if and only if

k2
1 (s)− k2

2 (s) = C 6= 0,

k′′1 (s) + Ck1 (s) = 0, (4.3)

k′′2 (s) + Ck2 (s) = 0,

where C is constant of integration.

5 Spacelike Elastic Biharmonic Curves According to Bishop Frame in E3
1

Consider regular curves (curves with nonvanishing velocity vector) in Minkowski 3-space E3
1 defined on a fixed

interval I = [a1, a2]:
γ : I −→ E3

1.

We will assume (for technical reasons) that the curvature κ of γ is nonvanishing.
The elastica minimizes the bending energy

℘ (X) =

∫
γ

κ (s)
2
ds

with fixed length and boundary conditions. Accordingly, let α1 and α2 be points in E3
1 and α′1, α

′
2 nonzero vectors.

We will consider the space of smooth curves

Ω = {γ : γ (ai) = αi, γ
′ (ai) = α′i} ,

and the subspace of unit-speed curves
Ωu = {γ ∈ Ω : ‖γ′‖ = 1} .

Later on we need to pay more attention to the precise level of differentiability of curves, but we will ignore that
for now.

℘λ : Ω −→ R is defined by

℘λ (γ) =
1
2

∫
γ

[‖γ′′‖+ Λ (t) (‖γ′‖ − 1)] dt.

One version of the Lagrange multiplier principle says a minimum of ℘ on Ωu is a stationary point for ℘λ for some
Λ (t). (Λ (t) is a pointwise multiplier, constraining speed.) The name ℘λ for the function will be justified later, when
we will see that Λ (t) depends on a constant λ.

Theorem 5.1. (Noether’s Theorem) If γ is a solution curve and W is an infinitesimal symmetry, then

γ′′.W ′ + (Λγ′ − γ′′′) .W

is constant. In particular, for a translational symmetry, W is constant; so

(Λγ′ − γ′′′) .W = constant.

Letting W range over all translations, we get

Λγ′ − γ′′′ = J, (4.1)

for J some constant field.

Theorem 5.2. Let γ : I −→ E3
1 be a spacelike elastic biharmonic curve with timelike M1 according to Bishop

frame. Then, the elastica minimizes the bending energy

℘ (X) = C (a2 − a1) .
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Theorem 5.3. Let γ : I −→ E3
1 be a spacelike elastic biharmonic curve with timelike M1 according to Bishop

frame. Then,

Λs (s) = 0,

k′′1 + (C − Λ (s)) k1 = 0, (5.1)

k′′2 + (C − Λ (s)) k2 = 0,

where k2
1 − k2

2 = C.

Proof. Now it is helpful to assume spacelike biharmonic curve γ is parametrized by arclength s. Then,

γ′ = γs = T,

γ′′ = k1M1 − k2M2, (5.2)

γ′′′ = CT+ k′1M1 − k′2M2,

where k2
1 − k2

2 = C.
Using (4.1) and above equation (5.2), we get

J = γ′′′ − Λ (s) γ′ = (C − Λ (s))T+ k′1M1 − k′2M2, (5.3)

for J some constant field.
Differentiate J to get

Js = (−Λs (s) + k′1k1 − k′2k2)T+ (k′′1 + (C − Λ (s)) k1)M1 (5.4)

+(−k′′2 − (C − Λ (s)) k2)M2.

These, together with (4.1), complete the proof of the theorem.

Theorem 5.4. Let γ : I −→ E3
1 be a spacelike elastic biharmonic curve with timelike M1 according to Bishop

frame. Then,
Λ (s) = 0.

Proof. Using (5.3) and constant field J ,

−Λs (s) + k′1k1 − k′2k2 = 0,

−k′′2 − (C − Λ (s)) k2 = 0,

−k′′2 − (C − Λ (s)) k2 = 0.

From (4.1) and above equation, we have Λ (s) = 0. The proof is completed.

Corollary 5.5. Let γ : I −→ E3
1 be a spacelike elastic biharmonic curve according to Bishop frame. Then,

J = CT+ k′1M1 − k′2M2. (5.4)

Corollary 5.6. Let γ : I −→ E3
1 be a spacelike elastic biharmonic curve with timelike M1. Then,

‖J‖2 = C2 − [k′1]
2
+ [k′2]

2
. (5.5)

Proof. Using (4.1) and (4.6), we have

‖J‖2 = C2 〈T,T〉+ [k′1]
2 〈M1,M1〉+ [k′2]

2 〈M2,M2〉 .

Substituting (3.2) into above equation, we get (5.5). The proof is completed.
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