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Abstract. In this article, we determine up to isomorphism of rings, rings R such that R has the following proper-
ties: (i) R is a commutative ring with identity which admits at least two nonzero zero-divisors, (ii) the complement
of the zero-divisor graph of R is connected and it admits a cut vertex. Indeed, it is proved that there are exactly two
such rings up to isomorphism of rings.

1 Introduction

The rings considered in this article are commutative rings with identity which admit at least two nonzero zero-
divisors. Let R be a commutative ring with identity which admits at least two non-zero zero-divisors. Recall from [1]
that the zero-divisor of R denoted by Γ(R) is the graph whose vertices is the set of all nonzero zero-divisors of R and
any distinct vertices x, y are joined by an edge in this graph if and only if xy = 0. Many researchers have contributed
to the area of zero-divisor graphs of commutative rings. For an excellent survey of theorems proved on zero-divisor
graphs of commutative rings and for an extensive bibliography on the subject, the reader is referred to [2]. Among
the research work done in this area, several researchers concentrate on the problem of investigating the interplay
between the ring theoretic properties of R and the graph theoretic properties of Γ(R). It was noted in [12, 13] that
the complement of the zero-divisor graph of a commutative ring R with identity denoted by (Γ(R))c also has some
interesting properties. In [4], the authors studied about the cut vertices of zero-divisor graphs of finite commutative
rings with identity. Moreover, in [7], the authors investigated the cut sets of zero-divisor graphs of finite commutative
rings with identity. Let R be a commutative ring with identity which admits at least two nonzero zero-divisors such
that (Γ(R))c is connected. It is useful to mention here that [12, Theorem 1.1] answers when (Γ(R))c is connected.
Motivated by the work on cut vertices of zero-divisor graphs of commutative rings [4,7], in the present article we
give a complete answer to the question of when (Γ((R))c admits a cut vertex. In this article, we prove in theorem 5.1
that if (Γ(R))c is connected, then it admits a cut vertex if and only if either R is isomorphic to Z/4Z×Z/2Z or R is
isomorphic to (Z/2Z)[x]/x2(Z/2Z)[x]× Z/2Z where (Z/2Z)[x] is the polynomial ring in one variable over Z/2Z.

Before we state the results that are proved in this article, it is useful to recall the following definitions from graph
theory. Let G = (V,E) be a simple graph. Recall from [5, Definition 1.1.13] that the complement of G denoted by
Gc, we mean the graph whose vertex set is V and two distinct vertices x, y are joined by an edge in Gc if and only if
there exists no edge joining x and y in G.

Let G = (V,E) be a graph. The induced subgraph of G with vertex set S ⊆ V is called the subgraph of G induced
by S and is denoted by G[S] [5, Definition 1.2.1].

Let G = (V,E) be a graph. Let S be a proper subset of V . The subgraph G[V \S] is said to be obtained form G
by the deletion of S. This subgraph is denoted by G − S. If S = {v}, then G − S is simply denoted by G − v [5,
Definition 1.2.3].

Let G = (V,E) be a connected graph. Recall from [5, Definition 3.1.1 1] that a subset S of V is said to be a
vertex cut of G if G− S is disconnected. Let v ∈ V . v is said to be a cut vertex of G if {v} is a vertex cut of G. That
is, v is a cut vertex of G if G− v is disconnected.

We also recall the following results from commutative ring theory. Let R be a commutative ring with identity. Let
I be an ideal of R. Recall from [10] that a prime ideal P of R is said to be a maximal N -prime of I if P is maximal
with respect to the property of being contained in ZR(R/I) = {r ∈ R|rx ∈ I for some x ∈ R \ I}. Let {Pα}α∈Λ be
the set of all maximal N -primes of (0) in R. It is well known that Z(R) =

⋃
α∈Λ

Pα.
Let R be a commutative ring with identity and let I be an ideal of R. A prime ideal P of R is said to be a B-prime

of I if P = (I :R x) for some x ∈ R [9].

Let R be a commutative ring with identity with at least two nonzero zero-divisors. It was shown in [12, Theorem
1.1] that (Γ(R))c is connected if and only if one of the following condition holds:
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(a) R has exactly one maximal N -prime P of (0) and P is not a B-prime of (0).
(b) R has exactly two maximal N -primes P1, P2 of (0) and P1 ∩ P2 6= (0).
(c) R has more than two maximal N -primes of (0).

Unless otherwise specified we consider commutative rings R with identity which admit at least two nonzero zero-
divisors. Moreover, we assume that (Γ(R))c is connected. In section 2 of this article we consider rings which admit
exactly one maximal N -prime of (0). That is, equivalently rings R such that Z(R) is an ideal of R. We show in
lemma 2.1 that for any nonempty finite subset S of Z(R)∗, (Γ(R))c − S is connected.

In section 3, we consider rings R which admit exactly two maximal N -primes of (0). In theorem 3.14 it is
shown that (Γ(R))c admits a cut vertex if and only if either R is isomorphic to Z/4Z × Z/2Z or R is isomorphic
to (Z/2Z)[x]/x2(Z/2Z)[x]× Z/2Z as rings and this is the main result of this section. Moreover, in this section, we
initially prove several results in the form of lemmas that are needed for proving theorem 3.14.

In section 4 we consider rings R which admit more than two maximal N -primes of (0). Let n ≥ 3. We prove in
lemma 4.1 that if R admits at least n maximal N -primes of (0) and if S is any subset of Z(R)∗ with |S| = n−2, then
(Γ(R))c − S is connected. As a consequence, we deduce in corollary 4.2 that (Γ(R))c does not admit any cut vertex
and we deduce in corollary 4.3 that if there exists a finite subset S of Z(R)∗ such that S is a vertex cut of (Γ(R))c,
then R can have at most |S|+ 1 maximal N -primes of (0).

In section 5 of this article, as is already mentioned in this introduction, in theorem 5.1, we state and prove a
necessary and sufficient condition (the proof of which follows immediately from the results proved in sections 2, 3,
and 4) in order that (Γ(R))c admits a cut vertex.

2 R has exactly one maximal N -prime of (0)

Let R be a commutative ring with identity which admits at least two nonzero zero-divisors. Suppose that (Γ(R))c is
connected. As is mentioned in the introduction, the goal of this article is to characterize rings R such that (Γ(R))c
admits a cut vertex. Towards that goal, we first consider rings which admit exactly one maximal N -prime of (0). We
begin with the following lemma.

Lemma 2.1. Let R be a commutative ring with identity such that R has only one maximal N -prime of (0). Let
P be the unique maximal N -prime of (0) in R. Suppose that Z(R)∗ contains at least two elements and (Γ(R))c is
connected. Let S be any finite nonempty subset of P\{0}. Then (Γ(R))c − S is connected. In particular, (Γ(R))c
does not admit any cut vertex.

Proof. Observe that Z(R) = P and hence the vertex set of (Γ(R))c = P\{0}. We are assuming that |Z(R)∗| ≥ 2 and
(Γ(R))c is connected. Hence it follows from [12, Theorem 1.1(a)] that P is not a B-prime of (0) in R. Therefore R
must be infinite. Since Z(R) = P , it follows from [8, Theorem 1] that P must be infinite. Thus Z(R)∗\S is infinite.
We now proceed to prove that (Γ(R))c − S is connected. Let x, y ∈ Z(R)∗\S, x 6= y. We show that there exists a
path in (Γ(R))c − S between x and y. If xy 6= 0, then x− y is a path in (Γ(R))c − S between x and y. Suppose that
xy = 0. Since (Γ(R))c is connected, P is not a B-prime of (0) in R and so it follows that P 6⊆ ((0) :R x)∪((0) :R y).
So there exists z1 ∈ P such that xz1 6= 0 and yz1 6= 0. Observe that if z1 /∈ S, then x− z1−y is a path in (Γ(R))c−S
between x and y. Suppose that z1 ∈ S. For convenience, let us denote z1 by s1. Since xs1 6= 0, ys1 6= 0, and P is
not a B-prime of (0) in R, we obtain that P 6⊆ ((0) :R xs1) ∪ ((0) :R ys1). Hence there exists z2 ∈ P such that
xs1z2 6= 0 and ys1z2 6= 0. As 1 − z2 /∈ P = Z(R) and s1 6= 0, it follows that s1z2 6= s1. Hence x − s1z2 − y is a
path in (Γ(R))c − s1. If s1z2 /∈ S, then x− s1z2 − y is indeed a path in (Γ(R))c − S between x and y. Suppose that
s1z2 ∈ S. Let us denote s1z2 by s2. Again using the fact that P is not a B-prime of (0) in R, it follows that there
exists z3 ∈ P such that z3s2x 6= 0 and z3s2y 6= 0. Observe that z3s2 = z3z2s1 /∈ {s1, s2}. Thus x − z3s2 − y is a
path in (Γ(R))c−{s1, s2} between x and y. It is now clear that on proceeding as above, we obtain in at most n = |S|
steps that there exists w ∈ Z(R)∗\S such that x− w − y is a path in (Γ(R))c − S between x and y. This proves that
if S is any finite nonempty subset of P\{0} = Z(R)∗, then (Γ(R))c − S is connected.

Let s ∈ Z(R)∗ and let S = {s}. Then it follows from what is shown above that (Γ(R))c − s is connected. This
proves that (Γ(R))c does not admit any cut vertex. 2

Let R,P be as in the statement of lemma 2.1. Suppose that |Z(R))∗| ≥ 2 and (Γ(R))c is connected. We verify in
the following remark that Γ(R)− S is connected for any finite nonempty subset S of Z(R)∗.

Remark 2.2. Let R be a commutative ring with identity and suppose that R has exactly one maximal N -prime of
(0). Let P be the unique maximal N -prime of (0) in R. Suppose that |Z(R)∗| ≥ 2 and (Γ(R))c is connected. Then
for any finite nonempty subset S of Z(R)∗, Γ(R)−S is connected. In particular, Γ(R) does not admit any cut vertex.

Proof. Note that Z(R) = P . We are assuming that |Z(R)∗| ≥ 2 and (Γ(R))c is connected. Hence as is observed
in the proof of lemma 2.1, Z(R)∗\S is infinite. Let x, y ∈ Z(R)∗\S with x 6= y. If xy = 0, then x − y is a path
in Γ(R) − S between x and y. Suppose that xy 6= 0. It is well known that Γ(R) is connected and diam(Γ(R)) ≤ 3
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[1,Theorem 2.3]. Let x − x1 − · · · − xm − y be any path between x and y in Γ(R). We want to establish that there
exists a path in Γ(R) − S between x and y. Note that it is enough to prove the following: if a − s − b is a path in
Γ(R) with a ∈ Z(R)∗\S, s ∈ S, and b may be possibly an element of S, with ab 6= 0, then there exists c ∈ Z(R)∗\S
such that a − c − b is a path in Γ(R). Let s = s1. Since P is not a B-prime of (0) in R, there exists z1 ∈ P such
that z1s1 6= 0. For any p ∈ P , 1 − p /∈ P = Z(R) and so (1 − p)r 6= 0 for any r ∈ R\{0}. Hence it follows that
z1s1 6= s1. It is now clear that a − z1s1 − b is a path in Γ(R) with z1s1 6= s1. Let c1 = z1s1. If c1 /∈ S, then we are
done. Suppose that c1 ∈ S. Let c1 = s2. Again using the fact that P is not a B-prime of (0) in R, it follows that there
exists z2 ∈ P such that z2s2 6= 0. That is, z2s2 = z2z1s1 6= 0. Note that z2s2 /∈ {s1, s2} and a − z2s2 − b is a path
in Γ(R). The above argument can be applied repeatedly and in at most n = |S| steps, we arrive at the conclusion
that there exists c ∈ Z(R)∗\S such that a − c − b is a path in Γ(R). From this discussion, it is clear that in the path
x − x1 − · · · − xm − y those xi’s which are in S can be replaced by yi ∈ Z(R)∗\S. Hence there exists a path in
Γ(R)− S between x and y. This proves that Γ(R)− S is connected.

For any s ∈ Z(R)∗, Γ(R)− s is connected. Hence we obtain that Γ(R) does not admit any cut vertex. 2

We next provide some examples to illustrate lemma 2.1.

Example 2.3. (i) Let n ≥ 1. Let V be a valuation domain with dimV = n satisfying the property that the unique
maximal ideal M of V is not finitely generated. Let (0) ⊂ P1 ⊂ · · · ⊂ Pn = M be the unique chain of prime ideals
of V . Let x ∈ P1, x 6= 0. Let R = V/xV . Note that dimR = n − 1. We claim that M/xV = Z(R). Since R is
quasi-local with M/xV as its unique maximal ideal, it follows that Z(R) ⊆M/xV . Let y+xV ∈M/xV \{0+xV }.
Hence y /∈ xV . Since V is a valuation domain, we obtain that x ∈ yV . Thus x = yv for some v ∈ M . Note that
(y+xV )(v+xV ) = x+xV = 0+xV . We assert that v /∈ xV . For if v ∈ xV , then v = xw for some w ∈ V . Hence
we obtain that x = yv = y(xw) and this implies that x(1 − yw) = 0. Since 1 − yw is a unit in V , it follows that
x = 0. This is a contradiction. Thus v /∈ xV and from (y+ xV )(v+ xV ) = 0+ xV , we obtain that y+ xV ∈ Z(R).
This proves that M/xV ⊆ Z(R) and so M/xV = Z(R). This shows that M/xV is the unique maximal N -prime of
(0) in R. Using the fact that M is not a finitely generated ideal of V , it can be verified as in [12, Example 3.1(ii)] that
M/xV is not a B-prime of (0) in R. Hence we obtain from [12, Theorem 1.1(a)] that (Γ(R))c is connected. Now
it follows from lemma 2.1 that for any finite nonempty subset S of Z(R)∗, (Γ(R))c − S is connected. Moreover, it
follows from remark 2.2 that for any finite nonempty subset S of Z(R)∗, Γ(R)− S is also connected.

(ii) [12, Example 3.4] provides an example of a quasi-local reduced ring R with its unique maximal ideal as its
only maximal N - prime of its zero ideal such that (Γ(R))c is connected. Hence it follows from lemma 2.1 and remark
2.2 that for any finite nonempty subset S of Z(R)∗, both (Γ(R))c − S and Γ(R)− S are connected. 2

3 R has exactly two maximal N -primes of (0)

Let R be a commutative ring with identity. Suppose that R has exactly two maximal N -primes of (0) and (Γ(R))c

is connected. The purpose of this section is to determine when (Γ(R))c admits a cut vertex. We first provide an
example to illustrate that the complement of zero-divisor graph of a ring with exactly two maximal N -primes of (0)
may admit a cut vertex.

Example 3.1. Let R = Z/4Z × Z/2Z be the direct product of Z/4Z and Z/2Z. For convenience, let us denote
Z/4Z by R1 and Z/2Z by R2. Observe that |R| = 8 and the set of all prime ideals of R is equal to the set of
all maximal N -primes of (0) in R which equals {P1 = (2 + 4Z)R1 × R2, P2 = R1 × {0 + 2Z}}. Note that
Z(R)∗ = {(0+ 4Z, 1+ 2Z), (2+ 4Z, 0+ 2Z), (2+ 4Z, 1+ 2Z), (1+ 4Z, 0+ 2Z), (3+ 4Z, 0+ 2Z)} and moreover,
(2 + 4Z, 0 + 2Z) ∈ P1 ∩ P2. Hence P1 ∩ P2 6= {(0 + 4Z, 0 + 2Z)}. It now follows from [12, Theorem 1.1(b)] that
(Γ(R))c is connected. We assert that any path in (Γ(R))c between (0 + 4Z, 1 + 2Z) and (1 + 4Z, 0 + 2Z) must pass
through (2+ 4Z, 1+ 2Z). Let (0+ 4Z, 1+ 2Z)−x1− · · · −xm− (1+ 4Z, 0+ 2Z) be any path in (Γ(R))c between
(0 + 4Z, 1 + 2Z) and (1 + 4Z, 0 + 2Z). Since x1 ∈ Z(R)∗ with (0 + 2Z, 1 + 2Z)x1 6= (0 + 4Z, 0 + 2Z), it follows
that x1 = (2 + 4Z, 1 + 2Z). This proves that any path in (Γ(R))c between (0 + 4Z, 1 + 2Z) and (1 + 4Z, 0 + 2Z)
passes through (2 + 4Z, 1 + 2Z). Hence it follows from [5, Theorem 3.1.6] that (2 + 4Z, 1 + 2Z) is a cut vertex of
(Γ(R))c.

Let R2 = Z/2Z be as in the previous paragraph. Let T = T1 × T2 be the direct product of the rings T1 =
R2[x]/x2R2[x] and T2 = R2 where R2[x] is the polynomial ring in one variable over R2. Then it can be shown
as in the previous paragraph that T has exactly two maximal N -primes of its zero ideal and (Γ(T ))c is connected.
Moreover, it can be shown that (x+ x2R2[x], 1 + 2Z) is a cut vertex of (Γ(T ))c. 2

Let R be a commutative ring with identity and suppose that R has exactly two maximal N -primes of (0). Let
them be P1 and P2. Suppose that (Γ(R))c is connected. If either P1 or P2 is not a B-prime of (0) in R, then we prove
in lemma 3.3 that (Γ(R))c does not admit any cut vertex. Towards proving lemma 3.3 , we begin with the following.

Lemma 3.2. Let R be a commutative ring with identity and suppose that R has exactly two maximal N -primes of
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(0) and let them be P1 and P2. Suppose that (Γ(R))c is connected. Let S be any nonempty subset of (P1 ∩ P2)\{0}.
Then S is not a vertex cut of (Γ(R))c. In particular, if w ∈ (P1 ∩ P2)\{0}, then w is not a cut vertex of (Γ(R))c.

Proof. Note that Z(R) = P1∪P2. Since (Γ(R))c is connected, we know from [12, Theorem 1.1(b)] that P1∩P2 6= (0).
We now show that if S is any nonempty subset of (P1 ∩ P2)\{0}, then S is not a vertex cut of (Γ(R))c. That is, we
prove that (Γ(R))c − S is connected. Let x, y ∈ Z(R)∗\S, x 6= y. We prove that there exists a path in (Γ(R))c − S
between x and y. This is clear if xy 6= 0. So we may assume that xy = 0. We know from the proof of [12,
Proposition 1.7(i)] that there exist a ∈ P1\P2 and b ∈ P2\P1 such that ab 6= 0. Since Z(R) = P1 ∪P2, it follows that
a + b /∈ Z(R). As x 6= 0, it follows that (a + b)x 6= 0. Hence either ax 6= 0 or bx 6= 0. Similarly, since y 6= 0, it
follows that either ay 6= 0 or by 6= 0. If both ax and ay are nonzero, then it follows that x−a− y is a path in (Γ(R))c

and as a ∈ P1\P2, whereas S ⊆ (P1 ∩ P2)\{0}, it is clear that this path is a path in (Γ(R))c − S. If both bx and by
are nonzero, then it follows that x− b− y is a path in (Γ(R))c and as b ∈ P2\P1, it is clear that this path is a path in
(Γ(R))c − S.

Suppose that ax 6= 0, ay = 0, and bx = 0, by 6= 0. We assert that x /∈ {a, b} and y /∈ {a, b}. Since b ∈ P2\P1,
bx = 0, and ab 6= 0, it is clear that x /∈ {a, b}. Similarly, since a ∈ P1\P2, ay = 0, and ab 6= 0, it is clear that
y /∈ {a, b}. Thus both x and y do not belong to {a, b}. Observe that x− a− b− y is a path in (Γ(R))c between x and
y that does not pass through any element of S.

This shows that if S is any nonempty subset of (P1 ∩ P2)\{0}, then (Γ(R))c − S is connected and so S is not a
vertex cut of (Γ(R))c. Now it is clear that if w is any nonzero element of P1 ∩ P2, then (Γ(R))c − w is connected.
Hence w is not a cut vertex of (Γ(R))c. 2

Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that one between P1 and P2 is not a B-prime of (0) in
R. Assuming without loss of generality that P1 is not a B-prime of (0) in R, we prove in the following lemma that
(Γ(R))c does not admit any cut vertex.

Lemma 3.3. Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that (Γ(R))c is connected and P1 is not a
B-prime of (0) in R. Then the following hold:
(i) If S is any nonempty subset of P2\{0}, then S cannot be a vertex cut of (Γ(R))c.
(ii) Let w ∈ Z(R)∗. Then w is not a cut vertex of (Γ(R))c.

Proof. (i) Note that Z(R) = P1 ∪ P2. Let S be any nonempty subset of P2\{0}. We prove that (Γ(R))c − S is
connected. Let x, y ∈ Z(R)∗\S, x 6= y. We prove that there exists a path in (Γ(R))c−S between x and y. If xy 6= 0,
then x− y is a path in (Γ(R))c − S. Suppose that xy = 0. By hypothesis, P1 is not a B-prime of (0) in R. Hence it
follows that P1 6⊆ ((0) :R x) ∪ ((0) :R y). Since P1 6⊆ P2, it follows from the prime avoidance lemma [11, Theorem
81] that P1 6⊆ P2 ∪ ((0) :R x) ∪ ((0) :R y). Hence there exists z ∈ P1\P2 such that zx 6= 0 and zy 6= 0. Since
z ∈ P1\P2 whereas S ⊆ P2\{0}, it follows that x − z − y is a path in (Γ(R))c − S. This proves that if S is any
nonempty subset of P2\{0}, then (Γ(R))c − S is connected. Hence S is not a vertex cut of (Γ(R))c.
(ii) Let w ∈ Z(R)∗. We want to show that w is not a cut vertex of (Γ(R))c. Now w ∈ Z(R)∗ = ((P1 ∩ P2)\{0}) ∪
(P1\P2) ∪ (P2\P1). If w ∈ P1 ∩ P2, then it follows from lemma 3.2 that w is not a cut vertex of (Γ(R))c. If
w ∈ P2, then it follows from (i) of this lemma that w is not a cut vertex of (Γ(R))c. Suppose that w ∈ P1\P2. Let
x, y ∈ Z(R)∗\{w}, x 6= y. We want to show that there exists a path in (Γ(R))c between x and y that does not pass
through w. If xy 6= 0, then x− y is a path in (Γ(R))c − w. Suppose that xy = 0. We consider the following cases.
Case(i). P2 6⊆ ((0) :R x) ∪ ((0) :R y). Then there exists z ∈ P2 such that xz 6= 0 and yz 6= 0. Hence x− z − y is a
path in (Γ(R))c and as w ∈ P1\P2 and z ∈ P2, it follows that z 6= w.
Case(ii). P2 ⊆ ((0) :R x) ∪ ((0) :R y). Then either P2 ⊆ ((0) :R x) or P2 ⊆ ((0) :R y). Without loss of
generality, we may assume that P2 ⊆ ((0) :R x). Note that ((0) :R x) ⊆ Z(R) = P1 ∪ P2. Hence we obtain that
P2 ⊆ ((0) :R x) ⊆ P1 ∪ P2, and from this, it follows that P2 = ((0) :R x). By hypothesis, P1 is not a B-prime of
(0) in R. If v ∈ R\{0} is such that vw = 0, then Rw ⊆ ((0) :R v). Hence P1 cannot be a subset of Rw. Observe
that P1 6⊆ P2 = ((0) :R x). Now it follows from the assumption that P1 is not a B-prime of (0) in R and from the
prime avoidance lemma [11, Theorem 81] that P1 6⊆ Rw ∪ ((0) :R x) ∪ ((0) :R y). Hence there exists z ∈ P1 such
that z /∈ Rw, and moreover, xz 6= 0, and yz 6= 0. It is now clear that x− z − y is a path in (Γ(R))c that does not pass
through w.

Thus if P1 is not a B-prime of (0) in R, and if w is any element of Z(R)∗, then w is not a cut vertex of (Γ(R))c.
2

Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that (Γ(R))c is connected and if P1 is not a B-prime
of (0) in R, then it is shown in lemma 3.3 that no nonempty subset of P2\{0} is a vertex cut of (Γ(R))c. Similarly, if
P2 is not a B-prime of (0) in R, then it can be shown that no nonempty subset of P1\{0} is a vertex cut of (Γ(R))c.
The following example illustrates that this result may fail to hold if P2 is a B-prime of (0) in R.

Example 3.4. Let V be a valuation domain with dimV = 1 and V is not discrete. Let M denote the unique maximal
ideal of V . Let x ∈ M,x 6= 0. Let R1 = V/xV and let R2 = Z/4Z. Let R = R1 × R2 be the direct product of the
rings R1 and R2. Note that R has exactly two maximal N -primes of (0) and they are given by P1 = M/xV ×R2 and
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P2 = R1×(2+4Z)R2 (indeed, P1 and P2 are the only prime ideals of R). Note that P1∩P2 = M/xV ×(2+4Z)R2 6=
{(0 + xV, 0 + 4Z)}. Hence we obtain from [12, Theorem 1.1(b)] that (Γ(R))c is connected. It is known from [12,
Example 3.1(ii)] that M/xV is not a B-prime of (0) in R1. Hence it follows that P1 is not a B-prime of the zero
ideal in R. Now it follows from lemma 3.3 (i) that if S is any nonempty subset of P2\{0}, then (Γ(R))c − S is
connected. However we assert that there exists a nonempty subset S of P1\{0} such that S is a vertex cut of (Γ(R))c.
Let S = (M/xV × {1 + 4Z}) ∪ (M/xV × {3 + 4Z}). We now show that S is a vertex cut of (Γ(R))c. That is,
(Γ(R))c−S is not connected. Let v1 = (1+xV, 2+4Z) and v2 = (0+xV, 2+4Z). Note that v1, v2 ∈ Z(R)∗\S. We
now verify that there exists no path in (Γ(R))c−S between v1 and v2. Since (Γ(R))c is connected, there exists a path
in (Γ(R))c between v1 and v2. As v1 and v2 are not adjacent in (Γ(R))c, any path in (Γ(R))c between v1 and v2 must
be of length at least two. Let v1−w1−· · · −wm− v2 be any path in (Γ(R))c between v1 and v2. Let wm = (am, bm)
for some am ∈ R1 and bm ∈ R2. Since wmv2 = (am, bm)(0 + xV, 2 + 4Z) 6= (0 + xV, 0 + 4Z), it follows that
bm(2 + 4Z) 6= 0 + 4Z. Therefore bm ∈ {1 + 4Z, 3 + 4Z}. Since wm ∈ Z(R)∗, it follows that am ∈ M/xV . Thus
wm = (am, bm) ∈ S. This shows that any path in (Γ(R))c between v1 and v2 must pass through at least one element of
S and so there exists no path in (Γ(R))c−S between v1 and v2. Hence S = (M/xV ×{1+4Z})∪(M/xV ×{3+4Z})
is a vertex cut of (Γ(R))c.

Remark 3.5. Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that (Γ(R))c is connected. It follows from
lemma 3.3 that if at least one between P1 and P2 is not a B-prime of (0) in R, then (Γ(R))c does not admit any cut
vertex. Moreover, example 3.1 illustrates that this result may fail to hold if both P1 and P2 are B-primes of (0) in R.
We now assume that both P1 and P2 are B-primes of (0) in R (note that this assumption holds if R is Noetherian [3,
Proposition 7.17]). Under this assumption, we now proceed to give some sufficient condition in order that (Γ(R))c
does not admit any cut vertex. 2

We begin with the following lemma.

Lemma 3.6. Let R be a commutative ring with identity and let {P1, P2} be the set of all maximal N -primes of (0)
in R. Suppose that (Γ(R))c is connected. Let u, v ∈ R be such that P1 = ((0) :R u) and P2 = ((0) :R v). Then the
following hold:
(i) uv = 0.
(ii) Either u ∈ P1 ∩ P2 or v ∈ P1 ∩ P2.

Proof. (i) This is well known [6 , Lemma 3.6].
(ii) Let x ∈ P1\P2. Note that xu = 0 ∈ P2 and as x /∈ P2, it follows that u ∈ P2. Let y ∈ P2\P1. We have
yv = 0 ∈ P1. As y /∈ P1, it follows that v ∈ P1. Suppose that u /∈ P1 ∩ P2 and v /∈ P1 ∩ P2. Then we obtain that
u ∈ P2\P1 and v ∈ P1\P2. Since Z(R) = P1 ∪ P2, it follows that u + v /∈ Z(R). Now by hypothesis, (Γ(R))c is
connected. Hence we obtain from [12, Theorem 1.1(b)] that P1 ∩P2 6= (0). Let z ∈ (P1 ∩P2)\{0}. Note that zu = 0
and zv = 0. Hence (u+ v)z = 0. Since u+ v /∈ Z(R), it follows that z = 0. This is a contradiction. Hence either
u ∈ P1 ∩ P2 or v ∈ P1 ∩ P2.

2

Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that both P1 and P2 are B-primes of (0) in R. The
following lemma gives a sufficient condition under which (Γ(R))c does not admit any cut vertex.

Lemma 3.7. Let R,P1, P2 be as in the statement of lemma 3.2. Assume that both P1 and P2 are B-primes of (0) in
R. Suppose that (Γ(R))c is connected. If |P1 ∩ P2| ≥ 3, then (Γ(R))c does not admit any cut vertex.

Proof. Let w ∈ Z(R)∗. Note that Z(R) = P1 ∪ P2 = (P1 ∩ P2) ∪ (P1\P2) ∪ (P2\P1). If w ∈ P1 ∩ P2, then we know
from lemma 3.2 that w is not a cut vertex of (Γ(R))c. So we may assume that w /∈ P1 ∩ P2. Hence either w ∈ P1\P2
or w ∈ P2\P1. Suppose that w ∈ P1\P2. We verify that w is not a cut vertex of (Γ(R))c. Since (Γ(R))c is connected,
to prove that w is a cut vertex of (Γ(R))c, it is enough to prove the following: if x− w − y is a path in (Γ(R))c with
xy = 0, then there exists a path in (Γ(R))c between x and y that does not pass through w. Since P1 and P2 are both
B-primes of (0) in R, there exist u, v ∈ R such that P1 = ((0) :R u) and P2 = ((0) :R v).
If P2 6⊆ ((0) :R x) ∪ ((0) :R y), then there exists z ∈ P2 such that zx 6= 0, and zy 6= 0. Since w ∈ P1\P2,
it follows that z 6= w. Note that x − z − y is a path in (Γ(R))c that does not pass through w. Suppose that
P2 ⊆ ((0) :R x) ∪ ((0) :R y). Then it follows that either P2 = ((0) :R x) or P2 = ((0) :R y). Without loss of
generality we may assume that P2 = ((0) :R x). We consider the following cases.
Case(i). Both x and y belong to P1

Since P1 = ((0) :R u), it follows that xu = yu = 0. We know from lemma 3.6(ii) that either u ∈ P1 ∩ P2 or
v ∈ P1 ∩ P2. Suppose that u ∈ P1 ∩ P2. Then, observe that u+ w ∈ P1\P2, u+ w 6= w, and x(u+ w) = xw 6= 0,
y(u+ w) = yw 6= 0. Hence x− (u+ w)− y is a path in (Γ(R))c that does not pass through w.

Suppose that v ∈ P1 ∩ P2. Note that v + w ∈ P1\P2. By assumption, P2 = ((0) :R x). Hence we obtain that
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x(v + w) = xv + xw = xw 6= 0. Since xy = 0, it follows that y ∈ P2. Then yv = 0, and so (v + w)y = yw 6= 0.
Thus we obtain that x− (v + w)− y is a path in (Γ(R))c that does not pass through w.
Case(ii). Both x and y belong to P2

Note that v ∈ P1 and w ∈ P1. Hence v + w ∈ P1 and it is clear that v + w 6= w. Since P2 = ((0) :R v), it follows
that x(v + w) = xw 6= 0, and y(v + w) = yw 6= 0. Observe that x− (v + w)− y is a path in (Γ(R))c that does not
pass through w.
Case(iii): x ∈ P1\P2 and y ∈ P2\P1

By assumption P1 = ((0) :R u) and P2 = ((0) :R v) = ((0) :R x). Since x ∈ P1\P2, it follows that xv 6= 0 and
so v /∈ P2. Hence it follows from lemma 3.6(ii) that u ∈ P1 ∩ P2. Note that u+ v ∈ P1\P2, x(u+ v) = xv 6= 0, and
since y ∈ P2\P1, y(u+ v) = yu 6= 0. Thus if u+ v 6= w, then x− (u+ v)− y is a path in (Γ(R))c that does not pass
through w.

Suppose that u+ v = w. We are assuming that |P1 ∩P2| ≥ 3. Hence there exists z ∈ P1 ∩P2 such that z /∈ {0, u}.
We claim that x− (z+v)−y is a path in (Γ(R))c that does not pass through w. Since z 6= u and w = u+v, it is clear
that z + v 6= w. As z ∈ P1 ∩ P2 and v ∈ P1\P2, it follows that z + v ∈ P1\P2. Now it is clear that x(z + v) ∈ P1\P2
and hence it is nonzero. As x + y /∈ Z(R), it follows that (x + y)z 6= 0. Since P2 = ((0)) :R x), we obtain that
z(x+ y) = zy 6= 0. Now on using the facts that P2 = ((0) :R v) and y ∈ P2, we obtain that (z+ v)y = zy 6= 0. This
shows that x− (z + v)− y is a path in (Γ(R))c that does not pass through w.

This proves that if w ∈ P1\P2, then w is not a cut vertex of (Γ(R))c. Similarly, it follows that if w ∈ P2\P1, then
w is not a cut vertex of (Γ(R))c.

Thus if (Γ(R))c is connected, both P1 and P2 are B-primes of (0) in R, and if |P1 ∩ P2| ≥ 3, then (Γ(R))c does
not admit any cut vertex. 2

Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that (Γ(R))c is connected. If both P1 and P2 are
B-primes of (0) in R, then the following lemma also gives a sufficient condition under which (Γ(R))c does not admit
any cut vertex.

Lemma 3.8. Let R,P1, P2, be as in the statement of lemma 3.2. Suppose that (Γ(R))c is connected and both P1 and
P2 are B-primes of (0) in R. Then the following hold:
(i) If |P1\P2| ≥ 3, then no nonzero element of P1 is a cut vertex of (Γ(R))c.
(ii) If |P2\P1| ≥ 3, then no nonzero element of P2 is a cut vertex of (Γ(R))c.
(iii) If |P1\P2| ≥ 3 and |P2\P1| ≥ 3, then (Γ(R))c does not admit any cut vertex.

Proof. (i) Let w ∈ P1\{0}. We know from lemma 3.2 that no nonzero element of P1 ∩ P2 is a cut vertex of (Γ(R))c.
Hence we may assume that w ∈ P1\P2. In order to prove that w is not a cut vertex of (Γ(R))c, it is enough to prove
the following: if x−w− y is a path in (Γ(R))c with xy = 0, then there exists a path in (Γ(R))c between x and y that
does not pass through w. Let u, v ∈ Z(R)∗ be such that P1 = ((0) :R u) and P2 = ((0) :R v). Proceeding as in the
proof of lemma 3.7, we may assume that P2 = ((0) :R x). If both x and y are in P1, or both x and y are in P2 then it
follows as in the proof of lemma 3.7 that there exists a path in (Γ(R))c between x and y that does not pass through
w. Hence we may assume that x ∈ P1\P2 and y ∈ P2\P1. If u+ v 6= w, then it follows as in the proof of lemma 3.7
that x − (u + v) − y is a path in (Γ(R))c that does not pass through w. So we may assume that u + v = w. Now
xw = x(u+v) = xv 6= 0. Hence v /∈ P2 and so we obtain from lemma 3.6(ii) that u ∈ P1∩P2. If |P1∩P2| ≥ 3, then
it is shown in the proof of lemma 3.7 that there exists a path in (Γ(R))c between x and y that does not pass through
w. Suppose that |P1 ∩ P2| = 2. Now w ∈ P1\P2 and by hypothesis |P1\P2| ≥ 3. Hence there exist distinct elements
w1, w2 ∈ P1\P2 such that wi 6= w for i = 1, 2. Note that xwi ∈ P1\P2 for i = 1, 2. Hence xwi 6= 0 for i = 1, 2. If
yw1 6= 0, then x−w1−y is a path in (Γ(R))c that does not pass through w. Similarly, if yw2 6= 0, then x−w2−y is a
path in (Γ(R))c that does not contain w as a vertex. So we may assume that ywi = 0 for i = 1, 2. Since |P1∩P2| = 2,
either w − w1 /∈ P1 ∩ P2 or w − w2 /∈ P1 ∩ P2. Without loss of generality we may assume that w − w1 /∈ P1 ∩ P2.
Thus w − w1 ∈ P1\P2. Hence x(w − w1) ∈ P1\P2 and so it is nonzero. Moreover, (w − w1)y = wy 6= 0. Observe
that x− (w − w1)− y is a path in (Γ(R))c between x and y that does not pass through w.
(ii) This can be proved as in (i).
(iii) Since Z(R) = P1 ∪ P2, (iii) follows immediately from (i) and (ii). 2

We next proceed to determine commutative rings R with identity such that R has the following properties: (i)
R has exactly two maximal N -primes of (0), (ii) (Γ(R))c is connected, and (iii) (Γ(R))c admits a cut vertex. We
begin with the following lemma.

Lemma 3.9. Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that (Γ(R))c is connected. If (Γ(R))c admits
a cut vertex, then the following hold:
(i) R ∼= R/P 2

1 ×R/P 2
2 as rings.

(ii) Exactly one between R/P 2
1 and R/P 2

2 is an integral domain and the other is either isomorphic to Z/4Z or is
isomorphic to (Z/2Z)[x]/x2(Z/2Z))[x] as rings where (Z/2Z))[x] is the polynomial ring in one variable over Z/2Z.
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:Proof.(i) Note that Z(R) = P1 ∪ P2. Assume that (Γ(R))c is connected and it admits a cut vertex. We know from
lemma 3.3 that both P1 and P2 are B-primes of (0) in R. Moreover, since P1 ∩ P2 6= (0), it follows from lemma 3.7
that |P1 ∩ P2| = 2. Let P1 ∩ P2 = {0, z}. As z2 ∈ P1 ∩ P2, either z2 = z or z2 = 0. If z2 = z, then z(1 − z) = 0.
This implies that z = 0 since 1 − z /∈ P1 ∪ P2 = Z(R). This contradicts the fact that z 6= 0. Hence z2 = 0. Thus
(P1 ∩ P2)2 = (0). We next verify that P1 + P2 = R. Suppose that this does not hold. Then there exists a maximal
ideal M of R such that P1 + P2 ⊆ M . Let a ∈ P1\P2 and b ∈ P2\P1. Let m = a + b. Observe that m ∈ M and
since Z(R) = P1 ∪ P2, it is clear from the choice of the elements a and b that m = a+ b /∈ Z(R). As 1−m /∈M , it
follows from P1 + P2 ⊆M that 1−m /∈ P1 ∪ P2 = Z(R). Now mz ∈ (P1 ∩ P2)\{0}. Hence mz = z. This implies
that z(1 −m) = 0. Hence z = 0. This is a contradiction. This shows that P1 + P2 = R. Hence P 2

1 and P 2
2 are also

comaximal and so (0) = (P1 ∩ P2)2 = P 2
1 P

2
2 = P 2

1 ∩ P 2
2 . Now it follows from the Chinese remainder theorem [3,

Proposition 1.10(ii)] that R ∼= R/P 2
1 ×R/P 2

2 as rings.
(ii) We next prove (ii). It is shown in (i) above with the help of the Chinese remainder theorem that the mapping

f : R→ R/P 2
1 ×R/P 2

2 given by f(r) = (r+P 2
1 , r+P 2

2 ) for any r ∈ R is an isomorphism of rings. Note that under
the isomorphism f , Z(R) = P1 ∪ P2 is mapped onto (P1/P

2
1 ×R/P 2

2 )∪ (R/P 2
1 × P2/P

2
2 ) = Z((R/P 2

1 ×R/P 2
2 )) =

(Z(R/P 2
1 ) × R/P 2

2 ) ∪ (R/P 2
1 × Z(R/P 2

2 )). Hence we obtain that Z(R/P 2
1 ) = P1/P

2
1 and Z(R/P 2

2 ) = P2/P
2
2 .

Moreover, f(P1 ∩ P2) = P1/P
2
1 × P2/P

2
2 . Hence 2 = |P1 ∩ P2| = |P1/P

2
1 × P2/P

2
2 |. Therefore, either |P1/P

2
1 | = 2

and |P2/P
2
2 | = 1 or |P1/P

2
1 | = 1 and |P2/P

2
2 | = 2. Without loss of generality we may assume that |P1/P

2
1 | = 2 and

|P2/P
2
2 | = 1. This implies that |Z(R/P 2

1 )| = |P1/P
2
1 | = 2 and P2 = P 2

2 . Hence Γ(R/P 2
1 ) is a graph with a single

vertex and so R/P 2
1 is either isomorphic to Z/4Z or is isomorphic to (Z/2Z)[x]/x2(Z/2Z)[x] as rings [1, Example

2.1]. As P2 = P 2
2 , it follows that R/P 2

2 is an integral domain. This proves (ii). 2

Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that (Γ(R))c is connected. Theorem 3.12 provides
a necessary and sufficient condition in order that (Γ(R))c admits a cut vertex. We next have the following lemma
which is used in the proof of theorem 3.12.

Lemma 3.10. Let R,P1, P2 be as in the statement of lemma 3.2. Suppose that (Γ(R))c is connected. If |P2\P1| = 2
and |P1\P2| ≥ 3, then (Γ(R))c admits a cut vertex if and only if P1 = ((0) :R b) for some b ∈ P2\P1.

Proof. By hypothesis, (Γ(R))c is connected, |P2\P1| = 2, and |P1\P2| ≥ 3. Suppose that (Γ(R))c admits a cut
vertex. We know from lemma 3.3 that both P1 and P2 are B-primes of (0) in R. Let u, v ∈ Z(R)∗ be such that
P1 = ((0) :R u) and P2 = ((0) :R v). Let w ∈ Z(R)∗ be a cut vertex of (Γ(R))c. It follows from lemma 3.2 and
lemma 3.8(ii) that w ∈ P2\P1. We want to prove that P1 = ((0) :R b) for some b ∈ P2\P1. This is immediate
if u ∈ P2\P1. Suppose that u ∈ P1 ∩ P2. Since w is a cut vertex of (Γ(R))c, it follows from [5, Theorem 3.1.6]
that there exist x, y ∈ Z(R)∗\{w}, x 6= y such that every path in (Γ(R))c between x and y passes through w. Let
x − · · · − x1 − w − y1 − · · · − y be any path in (Γ(R))c between x and y. Observe that x1y1 = 0. We claim that
either P1 = ((0) :R x1) or P1 = ((0) :R y1). Suppose that this does not hold. Then P1 6⊆ ((0) :R x1) ∪ ((0) :R y1).
Hence there exists z ∈ P1 such that zx1 6= 0 and zy1 6= 0. Now on replacing w by z in the above path, we obtain a
path in (Γ(R))c between x and y that does not pass through w. This is impossible. Thus either P1 = ((0) :R x1) or
P1 = ((0) :R y1). Without loss of generality we may assume that P1 = ((0) :R x1). Since x1y1 = 0, it follows that
y1 ∈ P1. If x1 ∈ P1, then on replacing w by u + w in the above path we obtain a path in (Γ(R))c between x and y
that does not pass through w. This is a contradiction. Thus x1 /∈ P1. Thus P1 = ((0) :R x1) and x1 ∈ P2\P1.

Conversely assume that P1 = ((0) :R b) for some b ∈ P2\P1. Let a ∈ P1\{0}. Note that ab = 0. Let
P2\P1 = {b, c}. We now show that c is a cut vertex of (Γ(R))c by verifying that any path in (Γ(R))c between a and
b passes through c. Let a − y1 − · · · − ym − b be any path in (Γ(R))c between a and b. Since P1 = ((0) :R b) and
ymb 6= 0, it follows that ym /∈ P1. Hence ym ∈ P2\P1 = {b, c}. As ym 6= b, it follows that ym = c. This proves that
(Γ(R))c admits a cut vertex. 2

The following lemma is also needed for proving theorem 3.12.

Lemma 3.11. Let T = T1 × T2 be the direct product of the rings T1 and T2 where either T1 = Z/4Z or T1 =
(Z/2Z)[x]/x2(Z/2Z)[x] and T2 is an integral domain. Then the following hold:
(i) (Γ(T ))c is connected.
(ii) (Γ(T ))c admits a cut vertex if and only if T2 ∼= Z/2Z as rings.

Proof. Suppose that T1 = Z/4Z.
(i) Note that T has exactly two maximal N -primes of the zero ideal of T and they are given by P1 = (2+4Z)T1×

T2 and P2 = T1×{0}. Note that (2+ 4Z, 0) ∈ P1 ∩P2 and hence P1 ∩P2 is nonzero. Therefore, we obtain from [12,
Theorem 1.1(b)] that (Γ(T ))c is connected.

(ii) Suppose that (Γ(T ))c admits a cut vertex. Let P1, P2 be as in the proof of (i). Note that P2\P1 = {(1 +
4Z, 0), (3+4Z, 0)} and P1\P2 = (2+4Z)T1×T2\{0}. Thus |P2\P1| = 2. We want to establish that |T2| = 2. Suppose
that |T2| ≥ 3. Then it follows that |P1\P2| ≥ 3. Now we obtain from lemma 3.10 that P1 = ((0+4Z, 0) :T (t1, t2)) for
some (t1, t2) ∈ P2\P1. Note that either (t1, t2) = (1+ 4Z, 0) or (t1, t2) = (3+ 4Z, 0). Observe that (2+ 4Z, 0) ∈ P1
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and is such that (2+4Z.0)(t1, t2) = (2+4Z, 0). This is in contradiction to the fact that P1 = ((0+4Z, 0) :T (t1, t2)).
Hence |T2| = 2 and so T2 ∼= Z/2Z as rings.

It is verified in example 3.1 that the ring Z/4Z× Z/2Z admits a cut vertex.
The proof of (i) and (ii) in the case T1 = (Z/2Z)[x]/x2(Z/2Z)[x] is similar. 2

The following theorem determines commutative rings R with identity such that R has exactly two maximal N -
primes of (0), ((Γ(R))c is connected, and (Γ(R))c admits a cut vertex.

Theorem 3.12. Let R be a commutative ring with identity. Suppose that R has exactly two maximal N -primes of (0).
Let them be P1 and P2. Suppose that (Γ(R))c is connected. Then (Γ(R))c admits a cut vertex if and only if either R
is isomorphic to Z/4Z× Z/2Z or R is isomorphic to (Z/2Z)[x]/x2(Z/2Z)[x]× Z/2Z as rings where (Z/2Z)[x] is
the polynomial ring in one variable over Z/2Z.

Proof. Suppose that (Γ(R))c admits a cut vertex. Then it follows from lemma 3.9(i) and (ii) that R is isomorphic
to the direct product of rings T1 and T2 where either T1 = Z/4Z or T1 = (Z/2Z)[x]/x2(Z/2Z)[x] and T2 is an
integral domain. Hence (Γ(R))c admits a cut vertex if and only if (Γ(T1 × T2))c admits a cut vertex. We know
from lemma 3.11(ii) that (Γ(T1 × T2))c admits a cut vertex if and only if T2 is isomorphic to Z/2Z as rings. This
proves that (Γ(R))c admits a cut vertex if and only if either R is isomorphic to Z/4Z× Z/2Z or R is isomorphic to
(Z/2Z)[x]/x2(Z/2Z)[x]× Z/2Z as rings. 2

4 R has more than two maximal N -primes of (0)

Let R be a commutative ring with identity with at least three maximal N -primes of (0). If there exists a nonempty
finite subset S of Z(R)∗ such that S is a vertex cut of (Γ(R))c, then we prove in proposition 4.3 that R can admit
only a finite number of maximal N -primes of (0). We make use of the following lemma in the proof of proposition
4.3 and moreover, we deduce as a corollary to this lemma that (Γ(R))c does not admit any cut vertex.

Lemma 4.1. Let R be a commutative ring with identity. Let n ≥ 3. Suppose that R has at least n maximal N -primes
of (0). Let S be any subset of Z(R)∗ such that |S| = n− 2. Then (Γ(R))c − S is connected.

Proof. Let P denote the set of all maximal N -primes of (0) in R. By hypothesis |P| ≥ n where n ≥ 3. Let S be
a subset of Z(R)∗ such that |S| = n − 2. We want to establish that (Γ(R))c − S is connected. We know from [12,
Theorem 1.1 (c)] that (Γ(R))c is connected. Hence in order to show that (Γ(R))c − S is connected, it is enough to
prove the following: if x− w − y is a path in (Γ(R))c with x ∈ Z(R)∗\S, w ∈ S, and y ∈ Z(R)∗(y may be possibly
in S) satisfying the further condition that xy = 0, then there exists a path in (Γ(R))c between x and y whose vertices
except possibly y, do not belong to S. Let S = {w1, w2, . . . , wn−2}. Note that w = wi for some i ∈ {1, 2, . . . , n−2}.
Let Pj ∈ P for j = 1, 2, . . . , n−2 be such that wj ∈ Pj . It may happen that for some distinct s, t ∈ {1, 2, . . . , n−2},
Ps = Pt. Since the number of maximal N -primes of (0) in R is at least n, it is possible to find distinct elements
Pn−1, Pn ∈ P \{Pj |j = 1, 2, . . . n−2}. Let k ∈ {n−1, n}. If Pk 6⊆ ((0) :R x)∪ ((0)) :R y), then it follows from the
prime avoidance lemma [11, Theorem 81] that there exists zk ∈ Pk such that zk /∈ ∪n−2

j=1 Pj , zkx 6= 0, and zky 6= 0.
Note that zk /∈ S and x− zk − y is a path in (Γ(R))c.

Suppose that Pk ⊆ ((0) :R x) ∪ ((0) :R y) for each k ∈ {n− 1, n}. (1)
Since ((0) :R x) ∩ (R\Z(R)) = ∅ and ((0) :R y) ∩ (R\Z(R)) = ∅, it follows from Zorn’s lemma and [11,

Theorem 1] that there exist P,Q ∈ P such that ((0) :R x) ⊆ P (2)
and ((0) :R y) ⊆ Q. (3)

Now it follows from (1), (2), and (3) that {Pn−1, Pn} = {((0) :R x), ((0) :R y)} = {P,Q}. Without loss of
generality we may assume that Pn−1 = ((0) :R x) and Pn = ((0) :R y). It follows from the prime avoidance lemma
that there exist x1 ∈ Pn\(∪n−1

j=1 Pj) and y1 ∈ Pn−1\((∪n−2
j=1 Pj) ∪ Pn). Now it is clear from the choice of the elements

x1, y1 that x1, y1 /∈ S, x1x 6= 0, y1y 6= 0, and x1 6= y1. Since both x1 and y1 are not in P1, it follows that x1y1 /∈ P1
and so x1y1 6= 0.

If both x1 and y1 are not in {x, y}, then it is clear that x− x1 − y1 − y is a path in (Γ(R))c between x and y with
x1, y1 /∈ S. Suppose that x1 ∈ {x, y}. Since xy = 0 whereas xx1 6= 0, it follows that x1 = x. Again since xy = 0 but
x1y1 6= 0, it follows that y1 6= y. Observe that x = x1 − y1 − y is a path in (Γ(R))c between x and y with y1 /∈ S.
Suppose that y1 ∈ {x, y}. We have xy = 0 but yy1 6= 0, it follows that y1 = y. Since xy = 0, whereas x1y1 6= 0, we
obtain that x1 6= x. Note that x− x1 − y1 = y is a path in (Γ(R))c between x and y with both x1 and y1 = y are not
in S.

This shows that if R has at least n maximal N -primes of (0) with n ≥ 3, then for any subset S of Z(R)∗ with
|S| = n− 2, (Γ(R))c − S is connected. 2

We next have the following corollary.
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Corollary 4.2. Let R be as in the statement of lemma 4.1. Then (Γ(R))c does not admit any cut vertex.

Proof. On applying lemma 4.1 with n = 3, it follows that (Γ(R))c−w is connected for any w ∈ Z(R)∗. This proves
that (Γ(R))c does not admit any cut vertex. 2

The following result is also a consequence of lemma 4.1.

Proposition 4.3. Let R be a commutative ring with identity such that R has at least three maximal N -primes of (0).
Let S be a finite nonempty subset of Z(R)∗ such that (Γ(R))c−S is not connected. Then R can have at most |S|+ 1
maximal N -primes of (0).

Proof. Suppose that R has at least n = |S| + 2 maximal N - primes of (0). Note that |S| = n − 2. Now it follows
from lemma 4.1 that (Γ(R))c − S is connected. This is in contradiction to the hypothesis that (Γ(R))c − S is not
connected. Hence R can have at most |S|+ 1 maximal N -primes of (0). 2

5 Conclusion

Let R be a commutative ring with identity such that R contains at least two nonzero zero-divisors. Suppose that
(Γ(R))c is connected. The following theorem characterizes rings R such that (Γ(R))c admits a cut vertex.

Theorem 5.1. Let R be a commutative ring with identity admitting at least two nonzero zero-divisors. Suppose that
(Γ(R))c is connected. Then (Γ(R))c admits a cut vertex if and only if either R is isomorphic to Z/4Z× Z/2Z or R
is isomorphic to (Z/2Z)[x]/x2(Z/2Z)[x] × Z/2Z as rings where (Z/2Z)[x] is the polynomial ring in one variable
over Z/2Z.

Proof. Suppose that (Γ(R))c is connected and admits a cut vertex. Then it follows from lemma 2.1 and corollary 4.2
that R must have exactly two maximal N -primes of (0). Now it follows from theorem 3.12 that (Γ(R))c admits a cut
vertex if and only if either R is isomorphic to Z/4Z× Z/2Z or R is isomorphic to (Z/2Z)[x]/x2(Z/2Z)[x]× Z/2Z
as rings. 2
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