Weak Reflections and Remainders in Compactifications

Ceren Sultan ELMALI, Tamer UĞUR and Abdullah KOPUZLU

Communicated by Ayman Badawi

MSC 2010 Classifications: 54D35.

Keywords and phrases: weak reflection, remainder in compactifications, Fan-Gottesman compactification.

Abstract. In this paper, we introduce Fan-Gotttesman remainder. We characterize the spaces having a weak reflection in compact spaces as the spaces with the finite Fan-Gottesman remainder.

1 Introduction and Some Preliminaries

A compactification of a space X is a compact space containing X as a dense subspace. Recall the Fan-Gottesman compactification is defined by Ky Fan and Noel Gottesman. In 1952, they constructed the compactification for a space X with a base β for the open sets, containing \emptyset and satisfying the following conditions:

- (i) $A, B \in \beta$ implies $A \cap B \in \beta$
- (ii) $A \in \beta$ implies $X clA \in \beta$
- (iii) For every open set U in X and every $A \in \beta$ such that $clA \subset U$, there exists a set $B \in \beta$ such that $clA \subset B \subset clB \subset U$

The compactification associated with β is obtained as follows. A centered system x^* is defined as a family of elements in β such that

$$\bigcap_{i=1}^{m} clA_i \neq \emptyset$$

for every finite family $A_1, A_2, ..., A_m$ in x^* . By Teichmuller-Tukey lemma each centered system of β is contained in a maximal one. The set of all maximal centered systems of β is denoted by X^* . For each $A \in \beta, A^*$ is defined as the set of all maximal centered systems x^* such that $B \in x^*$ for some $B \in \beta$ where $clA \subset B$. Namely;

$$A^* = \{x^* \in X^* : \text{there exists a } B \in x^* \text{ with } clA \subset B\}$$

A topology on X^* is defined by taking

$$\beta^* = \{A^* : A \in \beta\}$$

as a base for its open sets. X^* is compact and Hausdorff space with this topology. X^* is called Fan-Gottesman compactification [2].

Now, we will define this compactification via ultra-open filter

 $X^* = X \cup \{cl(G) : G \in y, y \text{ is a nonconvergent ultra-open filter in } X\}$

where "ultra-open" means maximal among all filters, having a base consisting of open sets. The sets

$$S(G) = G \cup \{ cl(G) : y \in X^* - X, cl(G) \in y \}$$

where G is open in X, constitute an open base of X^* .

In this paper, we will say that $X^* - X$ is Fan-Gottesman remainder.

The notion of weak reflection is a natural generalization of the concept of *reflection*. It is well known that any continuous mapping $f : X \to Y$ to compact Hausdorff space Y may be uniquely factorized through the Stone-Cech compactification βcX of the completely regular T_1 -modification cX of X. Then the space BcX is the reflection of X in compact Hausdorff spaces.

Any compactification γX of X is said to be *a weak reflection* of X in the class of compact space if for every compact Y and every continuos mapping $f : X \to Y$ there exists a mapping

 $g: \gamma X \to Y$ continuously extending f. Note that for a compact Hausdorff space Y, the Fan-Gottesman compactification X^* also has the extension property described above.

It is natural to ask whether every topological space has, at least, a weak reflection in general compact space. This question was asked by J. Adámek and J.Rosický [1] and was answered in the negative by M.Huśek [3]. In fact, he described some spaces having a weak reflection in compact spaces and some spaces having no weak reflection in compact spaces. He also fully characterized all normal spaces which have a weak reflection in compact spaces; they are exactly the spaces with the finite Wallman (or, equivalently, Stone-Ćech) remainder. In this paper we show that every space with finite Fan-Gottesman remainder has a weak reflection in compact regular space.

2 Main Results

Theorem 2.1. *If the Fan-Gottesman remainder of X is finite, then the Fan-Gottesman compactification of X is the weak reflection of X in compact space.*

Proof. Let $X^* - X$ is finite, $f : X \to Y$ be continuous, Y be compact. For $x \in X^* - X$ put $f^{\sim}(x)$ to be an accumulation point of $\{A : clA \text{ is in } Y, f^{-1}(A) \in x\}$ for $x \in X$ define $f^{\sim}(x) = f(x)$. We shall prove that $f^{\sim} : X^* \to Y$ is continuous. Clearly, f^{\sim} is continuous on X since the restriction of f^{\sim} to X coincides with f and X is open in X^* . Take $x \in X^* - X$ and an open set G in Y containing $f^{\sim}(x)$. Then $f^{-1}(G)$ is open in X. Since there is some $F \in x$ such that $F \subset f^{-1}(G)$, we can choose an open subset U of $f^{-1}(G)$ such that X - U belongs to all elements of $X^* - X$ but not to x. Then $U \cup (x)$ is neighborhood of in X^* and f^{\sim} maps this neigborhood into G.

Lemma 2.2. Let X be an infinite topological T_1 space. Then X contains an infinite subspace with discrete space or an infinite subspace with the topology of finite complements [4].

Lemma 2.3. If X contains an infinite family $\{F_i\}$ of closed noncompact subsets such that $F_p \cap F_q$ is compact for $p \neq q$, then X has no weak reflection in compact space [3].

Lemma 2.4. Let X be a topological space. Suppose that $X^* - X$ contains an infinite subspace with discrete topology. Then there exists a sequence F_1, F_2, \ldots of closed noncompact subsets of X which are pairwise disjoint.

Proof. Assume that $\mathbb{N} \subseteq X^* - X$ and the topology of \mathbb{N} , induced from X^* , is discrete. Let \mathcal{B} be collection of all open sets in X. There exist open sets $G_n \in \mathcal{B}$, $n \in \mathbb{N}$ such that $n \in S(G_n)$ and $m \notin S(G_n)$ for $n \neq m$. Since $G_n \in n$, there is some open set U_n such that $U_n \in n$ with $U_n \subseteq G_n$. The sets $F_n = U_n - \bigcup_{i=1}^{n-1} G_i$, where $n \in \mathbb{N}$, constitutes the desired family. \Box

Indeed, every F_n is closed and disjoint from F_m for $n \neq m$. The noncompactness of F_n follows from the fact that every $n \in \mathbb{N} \subseteq X^* - X$ constitutes a nonconvergent ultra-closed filter in X.

Lemma 2.5. Let X be a topological space. Suppose that $X^* - X$ contains an infinite subspace having the topology of finite complements. Then there exists a sequence $H_1, H_2, ... of$ closed noncompact subsets of X which are pairwise disjoint.

Proof. We may assume that $\mathbb{N} \subseteq X^* - X$ and the topology of \mathbb{N} , induced from X^* , is the topology of finite complements. Denote by \mathcal{B} the collection of all open sets in X. By induction we define the desired sequence:

- (i) Let $N_1 = \mathbb{N}, x_1 = 1, y_1 = 2$. There exists an open set $G_1 \in \mathcal{B}$ such that $x_1 \notin S(G_1)$ and $y_1 \in S(G_1)$. Since $N_1 \cap S(G_1) \neq \emptyset$, the set $N_1 - S(G_1)$ is finite and then the set $N_2 = N_1 \cap S(G_1)$ is infinite. Since $x_1 \notin S(G_1)$ it follows that $G_1 \notin x_1$ which implies that $X - G_1 \in x_1$. We put $F_1 = X - G_1$. Evidently, F_1 is closed in X and nonempty since $F_1 \in x_1$. Morever, it is noncompact because x_1 is a nonconvergent ultraclosed filter in X.
- (ii) Suppose that for some $k \ge 1$ there exist open set $G_1, G_2, \ldots, G_k \in \beta$ sets $N_1, N_2, \ldots, N_k \subseteq \mathbb{N}$ and noncompact closed sets $F_1, F_2, \ldots, F_k \subseteq X$ such that

i $G_1 \supseteq G_2 \supseteq \ldots \supseteq G_k$, ii $G_{i+1} = G_i \cap S(G_i)$ for $i = 1, 2, \ldots, k$, iii G_{k+1} is finite, iv $F_i \subseteq (X - G_i) \cap G_{i-1}$ for i = 2, 3, ..., k.

We shall prove that (2) is fullfilled for k + 1.

By (*iii*) there are two distinct points $x_{k+1}, y_{k+1} \in N_{k+1}$ and an open set $G_{k+1} \in \mathcal{B}$ such that $x_{k+1} \notin S(G_{k+1})$ and $y_{k+1} \in S(G_{k+1})$. Because $N_{k+1} \subseteq S(G_k)$ by (*ii*), one can easily check that we may assume $G_k \supseteq G_{k+1}$. Hence (*i*) is fulfilled. We put $N_{k+2} = N_{k+1} \cap S(G_{k+1})$. The set $\mathbb{N} \cap S(G_{k+1})$ is open in \mathbb{N} and nonempty because it contains y_{k+1} . Hence its complement $\mathbb{N} - S(G_{k+1})$ is finite; therefore $N_{k+1} - S(G_{k+1})$ is also finite. It follows that N_{k+2} is infinite. Notice that (*ii*) and (*iii*) are satisfied for k + 1. Since $x_{k+1} \notin S(G_{k+1})$, it follows $G_{k+1} \notin x_{k+1}$ and then $X - G_{k+1} \in x_{k+1}$. On the other hand, since $x_{k+1} \in N_{k+1} \subseteq S(G_k)$, we have $G_k \in x_{k+1}$. Then there exists a set $U_{k+1} \in x_{k+1}$, closed in X, such that $U_{k+1} \subset G_k$. We put

$$F_{k+1} = U_{k+1} \cap (X - G_{k+1})$$

Evidently, F_{k+1} is closed in X and since $F_{k+1} \in x_{k+1}$ it is nonempty. Moreover, it is noncompact because x_{k+1} is a nonconvergent ultraclosed filter in X. Since $U_{k+1} \subset G_k$ it follows that $F_{k+1} \subseteq (X - G_{k+1}) \cap G_k$. Hence (iv) is fulfilled for k + 1, which completes the induction.

Now let $p, r \in \mathbb{N}, p < r$. Then, by (iv) and (i), it follows that $F_r \subseteq G_{r-1} \subseteq \cdots \subseteq G_p$. On the other hand, by (iv) we have $F_p \subseteq X - G_p$, which implies that $F_p \cap F_s = \emptyset$. It follows that $\{F_i\}_{i \in \mathbb{N}}$ is the desired sequence.

Theorem 2.6. Let X be a topological space. Then the following statements are equivalent:

- (i) The Fan-Gotteman compactification of X is its weak reflection in compact spaces.
- (ii) The space X has a weak reflection in compact spaces.
- (iii) There exists such that any pairwise disjoint family of closed sets in X contains at most k noncompact elements.
- (iv) Every infinite sequences $F_1, F_2, ...$ of closed sets such that $F_p \cap F_q$ is compact for $p \neq q$ has a compact member
- (v) The Fan-Gottesman remainder of X is finite.

Proof. We will show that $(i) \Rightarrow (ii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (i)$ and $(vi) \Rightarrow (iii) \Rightarrow (v)$. But $(i) \Rightarrow (ii), (iii) \Rightarrow (v)$ and $(iv) \Rightarrow (v)$ are clear; Lemma 2.2 implies that $(ii) \Rightarrow (iv)$. The implication $(vi) \Rightarrow (i)$ follows from Theorem 2.1

 $(v) \Rightarrow (vi)$ Suppose that Fan-Gottesman remainder is infinite. Since the Fan-Gottesman remainder is a T_1 -space, it follows from Lemma 2.1 that Fan-Gottesman remainder contains an infinite discrete subspace or an infinite subspace with the topology of finite complements. Then by Lemma 2.3 or Lemma 2.4, we obtain that there is a sequence $F_1, F_2, ...$ of subsets of X which are closed, noncompact and pairwise disjoint.

 $(vi) \Rightarrow (iii)$ Let $k \in \mathbb{N}$ be the cardinality of Fan-Gottesman remainder. Assume that for $m \in \mathbb{N}$ there are pairwise disjoint, closed and noncompact sets $F_1, F_2, ..., F_m \subseteq X$. Then since every F_i is noncompact and closed, there are nonconvergent ultra-closed filters $y_1, y_2, ..., y_m \in X^* - X$ such that $F_i \in y_i$ for every i = 1, 2, ..., m. Since $F_p \cap F_q = \emptyset$ for $p \neq q$, it follows that $y_p \neq y_q$. Therefore $m \leq k$, which completes the proof.

References

- Adamek J., Rosický J., On injectivity in locally presentable categories, Trans. Amer. Math. Soc. 336,2 (1993), 785-804.
- [2] Fan K. and Gottesman N., On compactification of freudenthal and Wallman. Indag. Math. 13 (1952) 184-192.
- [3] Huśek M., Ćech-Stone-like compactification for general topological spaces, Comment. Math. Univ. Caroline 33,1 (1991) 159-163.
- [4] Kovàr M., Which topological spaces have a weak reflection in compact spaces?, Comment. Math. Univ. Caroline 36,3 (1995) 529-536.

Author information

Ceren Sultan ELMALI, Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, 25100, Turkey. E-mail: ceren.elmali@erzurum.edu.tr Tamer UĞUR, Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey. E-mail: tugur@atauni.edu.tr

Abdullah KOPUZLU, Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey. E-mail: akopuzlu@atauni.edu.tr

Received: May 20, 2013.

Accepted: September 23, 2013