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Abstract. Historically, the interest in coalgebras grew out from the study of the matfo
Hopf algebrasntroduced in topology. Now, in the definition of Hopf algebras, the coaklgeb
part is formulated explicitly and is by itself the basis of a rich theory. Sdparazumaya,
and Frobenius algebras are usually introduced as algebraic struaiitinesit referring to the
notion of a coalgebra. In this survey we reveal the internal coalgeéhretsre in these algebras
which may also be used to characterise them and to describe their prepattithese classes
of algebras — including the Hopf algebras — have an associative multipticatid a coassocia-
tive comultiplication; they are distinguished by requiring different comjdatitconditions and
properties for units and counits.

1 Modulesand algebrasover commutative rings

Throughout this papeR will denote a commutative ring with unit. Firstly we recall the basic
notions of algebras and modules ovein a way which allows for an easy translation to coal-
gebras and comodules. For this the language of category theory isnektraelpful and for
convenience we provide the basic notions needed (f8)nfiZ1]).

1.1. Categories. A categoryA consists of a class abjectsObj(A) and, for any4, A’ € Obj(A),
a (possibly empty) set MK A, A”) of morphismswhich allow for an associative composition.
Furthermore, for any Maqr(A4, A) the existence of ardentity morphismis required which we
denote byl 4 (or justr).

A covariant functorF : A — B between categoried and B consists of assignments
Obj(A) — Obj(B), A — F(A), and

forall A, A" € Obj(A), Mory (A, A") — Morg(F(A), F(4")), f — F(f),

respecting the identity morphism and the composition of morphigfis.acontravariant func-
tor if it reverses the composition of morphisms.

Given two functord’, G : A — B, a natural transformation: F — G is defined by a family
of morphismsy4 : F(A4) — G(A), A € Obj(A), such that any morphisnfi: A — A’ in A
induces commutativity of the diagram

Fay —2L pear

YA l/ Yar

c(4) =L aa,

For functorsL : A — B andR : B — A between any categoriédsandB, apairing is defined
by maps, natural il € A andB € B,

*A,B

Mors(L(A), B) 225 Mor, (A, R(B)) 2225 Morg(L(A), B).

Such a pairing is determined by the images of the identity morphisnig.4f and R(B),
respectively,
na = aa ra)Ira))  A— RL(A),

e = Brp),s(Irp)) - LR(B) — B,
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corresponding to natural transformations
n:ly — RL, ¢:LR— I,

which are calledjuasi-unitandquasi-counitof (L, R, «, 3), respectively. They allow to recon-
structa andg.

(L, R) is said to be amdjoint pair provideda o 3 andj o « yield the identity maps and this
corresponds to the equalities

LY R =1, R RLR E5 R= 1,

known agtriangular identities

Notice that so far we only have put up a framework without using deegseits from cate-
gory theory. In the course of this talk we will encounter several monerate examples of these
abstract notions.

1.2. Category of R-modules. For the ringR, denote byM y the category of-modules, taking
for objects thekR-modules and for morphisms tiizlinear maps. This is a category with products
and coproducts, kernels and cokernels, andi#freoduleR as a projective generator.

For anyR-modulesM, N, there is the tensor produsf ® r N yielding the functors

M ®pr—:Mpr —> Mg, N+— M®gN,
HomR<M,—) ‘Mg — Mg, N~ HomR(M,N),

which form an adjoint pair by the bijection (property of tensor product)
Homz(M ®g N, K) — Homg(N,Homz(M, K)), ¢ [n— o(—@n)], (1.1)
and unit and counit of this adjunction come out as

ny : N = Homg(M,M @ N), n— [m— m®n],
ey M @HOMr(M,N) = N, m® f+ f(m).

The functorsM @ p — and Hony (M, —) are naturally isomorphic if and only i¥f7 is a finitely
generated and projectiv@-module: the isomorphism implies that Haif/, —) preserves epi-
morphisms and direct sums (sinté® r — does so) and hendd has the properties required.

FurthermoreM and N can be interchanged by the twist map

TMN M@ N —-NrM, me@n—nem,

which obviously satisfiesy s o Tar v = I
For modules over a fiel@ all these properties are well-known from elementary linear algebra
and the corresponding proofs hold for any commutative base rings.

1.3. Algebras over R. An R-algebra(A, m,1,) is defined as?-module A with an associative
R-bilinear multiplicationz : A x A — A (usually written aga, b) — ab) and unit element 4
satisfying lya = al4 foralla € A.

By the properties of the tensor product, the bilinear mapan be replaced by aR-linear
mapm : A®r A — A, and 14 defines amk-linear mapn : R — A,r — rla. With this terms,
associativity and unitality conditions required for an algebra are exguldss commutativity of
the diagrams (writingp for @)

m®Ia TA®n n&Ia
ARARA —= AR A AR — AQA<—RQ®A

S N

AR A A,

Defining R-algebrag A, m, n) in this way we are only using objects and morphisms in the cate-
gory M.
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As well known, the tensor produet ® B of two R-algebrasd and B is again ank-algebra
by componentwise multiplication. For this definition, the twistmgps : B® A - A® B is
needed. Analysing the setting shows that there may be &ttiear maps\ : B A -+ A® B
leading to an associative algebra structuredop B. These are examples dfstributive laws
known from general category theory (e.g])[

1.4. Tensor product of algebras. Consider twoR-algebrag 4, m,n) and(B,m’,n"). Multipli-
cation and unit ord ® B can be defined by

map A9 B@ A B 222490 4o A9 Bo B MM, Aw B,

aRbR@cRdr—aRcRbRd— ab @ cd,

map RIS A9 B, 1pe 1491,

making(A ® B,map,n4p) an associative unital algebra.
Replacingrz, 4 by someR-linear map\ : B® A — A ® B, we observe:

1.5. Distributive laws. Let (A, m,n) and (B, m’,n') be R-algebras with some&:-linear map
A B® A — A® B. Defining a product ol ® B by

myiA®B@A®B A5, Ao A9 Be B ™™ A B

the triple(A ® B,my,n ® 7) is an (associative and unital}-algebra if and only if it induces
commutativity of the diagrams

A®A A®X
BRA®RA — AQRB®A —— ARA®DB

B®m l l meB

B®A A® B

m' QA T T A®m’
B®A A®B

B®B®A —> B®A®B —> A® B® B,

B® A A® B B®A A® B

;D\\ //2; 723\\ //i;

B , A

ModulesM over anA-algebra are defined bi-bilinear maps : A x M — M. Using the
tensor product this can again be expressed by referring only to objedtsiorphisms from the
categoryMg.

1.6. A-modules. Let (A, m,n) be anR-algebra. A (unital) leftA-module is a pai( M, oxr),
whereM is anR-module andby; : A ® M — A (written as(a ® m) — am) is an R-linear map
leading to commutativity of the diagrams

m@In N &I
AQRARM ——= AQ M ROIM —— A M

oM

AQM —— A M.

)
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An A-module morphisnbetween twaA-modules(M, o) and (N, on ) is an R-linear map
f M — N with commutative diagram

Ia®f
AQM ——= ARQN

oM l \L ON
f

M N.

The category of leftA-modules is denoted byM. Similar to Mg, it also has products,
coproducts, kernels and cokernels and a projective generatdy lpat it need not allow for a
tensor product.

For anyR-module X, A ® X is a left A-module by multiplication ofd and this induces the
freeandforgetful functors

¢A :MR%AM, XH(A@X,m@Ix),
Ug: AM%MR, (M,QM) — M.

(¢a,U4) form an adjoint pair by the bijections, fof € Mg, (M, orr) € aM,

Homa(A® X, M) — Homg(X, M), A@X L M X 225 a0 x L M,
Homg (X, M) — Homy(A® X, M), XL Mo Ao X 2295 Ao M S M,
and unit; and couni€ for this adjunction come out as

T X 2255 AR X, EyiA®M 24 M.

The algebra structure on the tensor proddcd B of two algebras may also be seen as a
lifting of functors investigated in a general categorical setting by P. Johns&)ne/iich here
comes out as follows.

1.7. Lifting of functors. Let (A, m,n) and(B,m’,n") be R-algebras and consider the diagram

M - — — — — > gM
s l l s
A®—
rM rML

The following are equivalent:
(a) there exists a functot making the diagram commutative;
(b) there is a distributive law : B® A —+ A ® B (seel.b);
(c) A® B has an algebra structure induced by saainear mapA : B A -+ A® B.

~

Hereby, for aB-module(M, p), A(M) is the objectd @ M with the B-module structure

BeAaM 225 AeBo M 125 Ae M,

and one may write
A(-)=(A® B)®p —: pM — M.

2 Coalgebrasover commutativerings

In the paper 7] (1941), H. Hopf pointed out the rich structure of the homology of naldg
which admit a product operation: it allows for a coproduct and a pbdatisfying certain
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compatibility properties. In18] (1965), J.W. Milnor and J.C. Moore analysed the algebraic
parts of this structure and provided an introduction to the theory of coageimd comodules.
The framework we built up for algebras and modules in the precedictgpads suitable for a
natural transition to coalgebras and comodules. This will be described gutisequent section.
Again R will denote a commutative ring.

2.1. Coalgebras. A coalgebraover R is a triple(C, A, €) whereC is an R-module with coasso-
ciative product and counit, that is, there @dinear maps

A:C—-C®C, €:C—R,

inducing commutativity of the diagrams

A

C Cac C
Al lm / l:\
AR T
Cac Cocec, R&C ~—— CoC —= COR
e®Ic Ic®e

Similar to the situation for algebras, the product of tikwoalgebrasC, A, ¢) and(D, A, &)
can be defined using the twist mapp : C ® D — D ® C, the latter can be replaced by a
distributive lawy : C ® D — D & C with commutative diagrams (e.g24, 4.11])

CR¢ Pp&C
CRCRD —(CDRC — DC®C

A® D T T DA

cC®D DeC

o’ l l N RC
Y®D DRy

C®D®D —= DRC®D —> D D®C,

C®D DeC C®D

5& Ae C®e e,
C .

D :

2.2. C-comodules. Let (C, A, ) be anR-coalgebra. A lefC-comodulds a pair(M, p™) where
M is anR-module anp™ : M — C ® M is anR-linear map with commutative diagrams

M

M CeM M

| er ] N
IopM

cCoM L~ CcoCaoM, CoM—= M
e®@Im

A C-comodule morphisretween twaC-comodules(M, p*) and (N, pV) is an R-linear
map f : M — N with commutative diagram
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These data form the category of léftcomodules, denoted ByM. There are the forgetful
and the cofree functors,

UC: M — Mg, (M,pM) s M,
¢C:RM—)CM, X — (C@RX,AQ@I)(,)

and(U%, ¢%) is an adjoint pair by the bijection, fgi/, p) € M, X € Mg,

HOmC(M,C®X) — HomR(M7X), MLC@XHMLC@X e®R1Ix X7

M
Homg (M, X) — HomC (M, C® X), ML X M2 oM 2% 0 X,

and unit;y and counit of this adjunction come out as

M
v MEZsC0eM, Fx:CoX 2% x

From this adjunction a number of properties of comodules and their c&egan be derived.
For example, choosing = R andM = C, we obtain the isomorphisms

Hom® (M, C') ~ Homg (M, R), End”’(C) = Hom®(C,C) ~ Homg(C, R),

showing that the?-dual modules play a significant role here.

3 Frobenius and separable algebras

In [6] (1903), F. Frobenius investigated finite dimensioRahlgebrasA over a fieldK with the
property thatd ~ A* := Homg (A, K) as left A-modules. They can also be characterised by
the existence of a non-degenerate bilinear fermA x A — K with o(ab,c) = o(a, bc) for all
a,b,c € A.

Such algebrasgl were namedFrobenius algebrasy Brauer and Nesbitt (1937); their duality
properties were pointed out by Nakayama (1939); Eilenberg andyldedaobserved (1955) that
the notion makes sense over commutative rings, providedfinitely generated and projective
as anRk-module.

Frobenius algebras are of considerable interest in representation tidaite groups, num-
ber theory, combinatorics, coding theory, etc. Their relation with coadgelvere mentioned by
Lawvere (1967), Quinn (1991), Abrams (1999) e.a. As pointedypijkgraaf (1989), Abrams
(1996), and others, they show up in the framework of topological uarfield theory. An
outline of their categorical formulation, the Frobenius monads, is giyestizet in P0].

3.1. Coalgebra structure of A*. Let (4, m,n) be anR-algebra and assumé to be finitely
generated and projective as &amodule. Then there is aR-linear isomorphism\ : A — A*
and(A®pr A)* ~ A* g A* asR-modules.

Applying (—)* := Homg(—,R)tom : A®x A — Aandn : R — Ayields comultiplication
and counit on4d*,

A" (A@p A ~ A" @R A%, A* "SR

Applying A, the coproduct and counit of* can be transferred td:

A—" 0 AopA A
S e A
m* n
A* ﬁA*@KA*v A* HR,

making (4, ¢, ) a counital coalgebra.
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Now, if we assume\ : A — A* to be left A-linear, a little computation shows thais also
left A-linear and - by symmetry - also righit-linear and this means that product and coproduct
on A are related by thérobenius conditionsthat is, commutativity of the diagrams

AgA —" o A AA —" oA (3.1)
I®5l lé 5®Il lé
meI I®m

ARARA — AR A, ARAR®A — AR A.

It follows from general category theory (also shown 1f) [that the categoryM of left A-
modules is isomorphic to the categati of left A-comodules:;yM ~ 4M. This isomorphism
can be seen as a characterising property of Frobenius algebraf & Theorem 3.13]).

The commutativity of the diagrams can be read in different ways.

3.2. Reformulation of the Frobenius conditions. Let (A4, m, d) be given as above.
(1) The following are equivalent:
(@) dom=(m®I4)o(l4®3§) (lefthand diagram);
(b) ¢ is a left A-module morphism;
(c) m is arightA-comodule morphism.
(2) The following are equivalent:
(@) dom=(Ia®@m)o (d®I4)(right hand diagram);
(b) ¢ is a rightA-module morphism;
(c) m is aleft A-comodule morphism.

By these observations one obtains:

3.3. Characterisation of Frobenius algebras. For an R-module A, let (A, m,n) be anR-
algebra and 4, ¢, ¢) a coalgebra. Then the following are equivalent:

(@) (A,m,d) satisfies the Frobenius conditions;

(b) 4 is a left A-module morphism angh is a left A-comodule morphism;
(c) ¢ is aleft A-module morphism and a right-module morphism;

(d) m is a left A-comodule and a righti-comodule morphism;

(e) A®pr — (equivalently— @i A) is adjoint to itself by the unit and counit

LA AA, AA™ ASI,.

Notice that in (b) the conditions only refer to one side, no twist map is nefeddhis prop-
erty. From (c) it follows thabt(a) = ad(14) = §(14)a, foralla € A.

3.4. Frobenius bimodules. Let (A, m,n,d,¢) be a Frobenius algebra. Then &amodule M
is called aFrobenius bimodul@rovided it has am-module and also an-comodule structure,
0:A® M — M andv : M — A® M, inducing commutativity of the diagrams

A M M A M M

IQv l l v oI l l/ v
meI I®o

ARAQM ——= A® M, ARA®M —— A® M.

Taking for objects the Frobenius bimodules and for morphismgtlinear maps which are
A-module and4-comodule morphisms, one obtains ttegegory of Frobenius bimoduleghich
we denote by} M.

Obviously, (A, m, d) itself is a Frobenius bimodule and there is a pair of functors

A@p— 1 rRM —4M, X = (A®X,ma® X,64® X),
Hom (A, —) : 4M — g M, M — Hom4(A, M),
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which form an adjoint pair by the bijection, fof € Mg, (M, o,v) € 4M,
Hom} (A ® X, M) = Homg(X,Hom4 (A, M)), ¢ [z— o(— @ )],
and unity and counit are given by
ix X - Hom{(A4, A2 X), z+ [a— a®a]
Ex i A@HOMY(A, M) = M, a® f+— f(a).
Coinvariantsof a Frobenius modulé/ are defined as the image of
Homi(A, M) — M, f f(14),

and this map is indeed surjective, in particular one hasiEAd ~ A. Thus the pair of functors
(A®g —,Hom}(A, —)) induces an equivalence betweghll and‘{ M.
This can be expressed by showing that, for anydefhodule( M, o), there is am-comodule

structure on/,

v ML Ao M 2L Ae Ao M 2% Ae M,

making (M, o, v) a Frobenius bimodule, and
Wi aM =AM, (M, 0) = (Mo,v),
is an isomorphism of categories.

Similarly, any leftA-comodule( M, v) allows for a right comodule structure

0 A M 225 A A M 224 4w M =2 N,

leading to the isomorphism of categories
O AM - 4M, (M, v) — (Mo,v).
Combining these functors, we obtain the isomorphisms of4hmodule and thed-comodule
categories mentioned before,
M EAn Y ang o An @ am Y ML

Because of these isomorphisms, the category of Frobenius bimodayese®m to be of little
interest for Frobenius algebrag, m, 7, §, ). However, the approach sketched above also allows
to deal with more general situations, for example, when no counit (Orisrat hand (seef)]).

3.5. Separablealgebras. An R-algebra( A, m, n) is calledseparabléf there is somed-bimodule
mapd : A — A® Awith mod = I4. Thisimplies that A, m, ¢) satisfies the Frobenius condition
(3.1 and yields a (comparison) functor

Ka: gM — sMy, XH(A@X,WLA@)X),

which is right adjoint to the functos Homa(A, —) : aM4 — rM by the bijection (derived
from (1.1))
AHomu (A ® X, M) == Homg(X, AHom4 (A, M)).

Here the coinvariants of anyl € 1M 4 are defined as the image of
aHomu (A, M) — M, [+ f(1a),
andZ(A) := 4End4(A) is the center ofd leading to the equivalence
ARz = z2)M = aMa, N = (A®z) N,m® In).

The R-algebraA is calledcentral if the mapR — A, r — rl,, induces an isomorphism
R ~ Z(A) and a central separable algebra is calledmaya algebraMore about this kind of
algebras can be found, for example, 22]and [16].

In general categories, separable functors are considerdd®finfpr Azumaya monads and
comonads we refer td.[] for a recent account.
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4 Bialgebrasand Hopf algebras

In this section, we will again considgt-modules endowed with an algebra and a coalgebra
structure but with different compatibility conditions.

4.1. Bialgebras. Let B be ankR-module with an algebra structui= (B, m,7) and a coalgebra
structureB = (B, A, e). Then(B,m,n,A,¢) is called abialgebraif

A ande are algebra morphisms, or, equivalently,
1 andn are coalgebra morphisms.

To makeA an algebra morphism one needs commutativity of the outer path in the miagra

m A
B®B B B®B
B®Al/ T B®m
w®B
BRB®B — — — — — — — — - BeB®B
ARB®B l/ T mBYB

B®T®B
BRBRB®B — > B B® B® B.

Defining anR-linear map

w:BeB22. BeBeB 2% BB ™8 Be B,

the condition reduces to commutativity of the upper rectangle. With the map

T:BoBEl* % BoBeB 2% BeB 22" Bo B

one obtains a similar rectangle (sides interchanged). These morphigyberconsidered as
entwiningsbetween algebras and coalgebras (see Seb}jon

w:B®B—+B®B, W:B®B— B®B.
They can be applied to defitemoduleswhich fit into the setting.

4.2. Hopf modules and algebras. Given a bialgebréB, B, w), an R-module) is called aHopf
moduleprovided it is aB-modulep : Bo M — M and aB-comoduler : M — B® M inducing
commutativity of the diagram

BoM — M —" ~ BaoM

B®uv l T B®p

B®B®M B®B® M.

The category of Hopf moduleslenoted by2ZM, has the Hopf modules as objects and as mor-
phisms thosek-linear maps, which ar8-module as well a&-comodule morphisms. As can be
shown easily, for anyz-module X, B @z X is a Hopf module and this observation leads to the
functor

Bor—:rM—=BEM, X — (Bo®X,moX,AX),

which is left adjoint to Hon (B, —) : BM — zM by the bijection (derived fromi( 1))
Hom% (B ® X, M) == Homg(X, HomE (B, M)).

For anyM ¢ BM, thecoinvariantsare the image of Hom(B, M) — M, f — f(1z), and
the coinvariants oB come out as Engi(B) ~ R.
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A bialgebra(B, B, w) is called aHopf algebraprovidedB ®x — : xkM — BM is an equiv-
alence (known agundamental Theoreln This can be characterised by the existence of an
antipode and is also equivalent to require that the (fusion) morphism

(m®Ip) - (Ig@A):B®B— B®B

is an isomorphism (e.g.5]). The corresponding constructions for monads and comonads on
categories can be found it7].

5 Entwining algebras and coalgebras

Suitable distributive laws (e.g. the twist map) allow for giving the tensodypecbof two algebras
an algebra structure and the tensor product of two coalgebras aloaasgeaicture. The question
arises: which structure can be given to the tensor product of an algelra coalgebra? This
leads to the notions of mixed distributive laws and corings over non-cdativeirings (e.g.4l,
[5D).

Let (A, m,n) be anR-algebra andC, 4, €) an R-coalgebra.

5.1. Entwiningfrom A to C. An R-linear mapw : A® C — C ® A is called arentwining from
the algebraA to the coalgebraC provided it induces commutativity of the diagrams

ARw WA
ARARC —= ARC®A — CRA®A

mC l l/ cm

A®C C®A

A®6l lé@A
w®C CRw

ACeC 25 cedec 2L ol e A,

AxC C®A A C C®A

nk % n & A
A .

¢ :

The Hopf modules for bialgebras can be generalised to bimodulestfeinenl structures.

5.2. Bimodules for entwinings from A to C. For an entwiningy : A® C — C ® A, an
R-module M with an A-module structurey,; : A ® M — M and aC-comodule structure
o™ M — C ® M is called arentwined modulé one gets commutativity of the diagram

M

oM o
AR M M CeoM
Ia®0M l T Ic®om
w®In
A C oM CA® M.

Taking as morphisms th-linear maps which ard-module as well a€’-comodule morphisms
defines the categofyM of entwined modules. There is an (induction) functor (e5g3p.7])

Co®rp—:aM - SM, M- CerM,

that is right adjoint to the forgetful functét : {M — 4 M.
Now assumet belongs td; M, that is, A is aC-comodulep : A — C ®r A with grouplike
elementp(14), and putS := End} (A) (a subalgebra afl). Then there is a (comparison) functor

sM— M, X (A®s X, m®sIx,0®s Ix),
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and this is an equivalence providét; is flat andC ® A is aGalois coring(see e.g. %], [13],
[23)). In caseA = C' = B, we getS = R and this brings us back to the Hopf modules and the
Fundamental Theorem (sée?).

5.3. Entwining from C' to A. An R-linear mapw : C @ A — A ® C'is anentwining from the
coalgebraC to the algebraA if it induces commutativity of the diagrams

TRA AQw
CRARA —= ARCQRA ——= AR ARC

c®®m l/ l/ mC
w

C®A A C

son | | 209
CRw w

wRC
CRORA —(CRARC —= A Ce(C,

C®A AC C®A AxC

C®n %C EA A&
C A i

)

It was observed in Sectiah7that the distributive laws between two algebras may be under-
stood as liftings of functors to module categories. The situation for entwarbegyveen algebras
and coalgebras is quite similar.

5.4. Liftings and entwinings from A to C. An entwiningw : A® C — C ® A from Ato C
corresponds to a lifting’ of C @z — to 4M and also to a liftingd of A @z — to M, that is,
there are commutative diagrams

aM aM M M
S
CcR® ARQ—
rM rM, rM rM,

where thelU’s denote the forgetful functors. The reader can find a more detadlectigtion of
liftings for tensor functors in29).

For entwinings from a coalgebra to an algebra the situation is slightly diffettegy do not
correspond to liftings to the (Eilenberg-Moore) categorigs and“M but to extensions to the
Kleisli categorlesAM and®M (which may be seen as subcategories determined by the (co)free
objects of the Eilenberg-Moore categories, e3j). [

5.5. Liftings and entwining from C to A. An entwining : C ® A - A® C fromC'to A
corresponds to an extensiohof C @ — to AM and also to an extensiohof A @5 — to CM
that is, there are commutative diagrams

C®— AR—
rM rM rM rM
N A
AM c AM ) CM - CM )

where thep's denote the (co)free functors.
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The notions in the preceding section can be readily transferred fromategaryMp of
R-modules to arbitrary categorigs HerebyA @p — : M — Mg is to be replaced by any
monadF : A — A andC ®p — is to be replaced by angomonadG : A — A. The role of an
entwiningw : A®r C — C ®@g A is taken by a natural transformatian. FG — GF requiring
commutativity of the corresponding diagrams and the definition of entwireatliles is obvious.
This allows to apply the basic theory in fairly general situations (6.4, [13]).
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