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Abstract. Historically, the interest in coalgebras grew out from the study of the notion of
Hopf algebrasintroduced in topology. Now, in the definition of Hopf algebras, the coalgebraic
part is formulated explicitly and is by itself the basis of a rich theory. Separable, Azumaya,
and Frobenius algebras are usually introduced as algebraic structureswithout referring to the
notion of a coalgebra. In this survey we reveal the internal coalgebra structure in these algebras
which may also be used to characterise them and to describe their properties. All these classes
of algebras – including the Hopf algebras – have an associative multiplication and a coassocia-
tive comultiplication; they are distinguished by requiring different compatibility conditions and
properties for units and counits.

1 Modules and algebras over commutative rings

Throughout this paperR will denote a commutative ring with unit. Firstly we recall the basic
notions of algebras and modules overR in a way which allows for an easy translation to coal-
gebras and comodules. For this the language of category theory is extremely helpful and for
convenience we provide the basic notions needed (from [9], [21]).

1.1. Categories. A categoryA consists of a class ofobjectsObj(A) and, for anyA,A′
∈ Obj(A),

a (possibly empty) set MorA(A,A′) of morphismswhich allow for an associative composition.
Furthermore, for any MorA(A,A) the existence of anidentity morphismis required which we
denote byIA (or justI).

A covariant functorF : A → B between categoriesA and B consists of assignments
Obj(A) → Obj(B), A 7→ F (A), and

for all A,A′
∈ Obj(A), MorA(A,A′) → MorB(F (A), F (A′)), f 7→ F (f),

respecting the identity morphism and the composition of morphisms.F is acontravariant func-
tor if it reverses the composition of morphisms.

Given two functorsF,G : A → B, a natural transformationγ : F → G is defined by a family
of morphismsγA : F (A) → G(A), A ∈ Obj(A), such that any morphismf : A → A′ in A

induces commutativity of the diagram

F (A)
F (f)

//

γA

��

F (A′)

γA′

��
G(A)

G(f)
// G(A′).

For functorsL : A → B andR : B → A between any categoriesA andB, apairing is defined
by maps, natural inA ∈ A andB ∈ B,

MorB(L(A), B)
αA,B

−−−→ MorA(A,R(B))
βA,B

−−−→ MorB(L(A), B).

Such a pairing is determined by the images of the identity morphisms ofL(A) andR(B),
respectively,

ηA := αA,L(A)(IL(A)) : A → RL(A),

εB := βR(B),B(IR(B)) : LR(B) → B,
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corresponding to natural transformations

η : IA → RL, ε : LR → IB,

which are calledquasi-unitandquasi-counitof (L,R, α, β), respectively. They allow to recon-
structα andβ.

(L,R) is said to be anadjoint pair providedα ◦ β andβ ◦ α yield the identity maps and this
corresponds to the equalities

L
Lη
−−→ LRL

εL
−−→ L = IL, R

ηR
−−→ RLR

Rε
−−→ R = IR,

known astriangular identities.

Notice that so far we only have put up a framework without using deeperresults from cate-
gory theory. In the course of this talk we will encounter several more concrete examples of these
abstract notions.

1.2. Category of R-modules. For the ringR, denote byMR the category ofR-modules, taking
for objects theR-modules and for morphisms theR-linear maps. This is a category with products
and coproducts, kernels and cokernels, and theR-moduleR as a projective generator.

For anyR-modulesM , N , there is the tensor productM ⊗R N yielding the functors

M ⊗R − : MR → MR, N 7→ M ⊗R N,

HomR(M,−) : MR → MR, N 7→ HomR(M,N),

which form an adjoint pair by the bijection (property of tensor product)

HomR(M ⊗R N,K)
≃
−−→ HomR(N,HomR(M,K)), ϕ 7→ [n 7→ ϕ(−⊗ n)], (1.1)

and unit and counit of this adjunction come out as

ηN : N → HomR(M,M ⊗N), n 7→ [m 7→ m⊗ n],

εN : M ⊗ HomR(M,N) → N, m⊗ f 7→ f(m).

The functorsM⊗R− and HomR(M,−) are naturally isomorphic if and only ifM is a finitely
generated and projectiveR-module: the isomorphism implies that HomR(M,−) preserves epi-
morphisms and direct sums (sinceM ⊗R − does so) and henceM has the properties required.

Furthermore,M andN can be interchanged by the twist map

τM,N : M ⊗R N → N ⊗R M, m⊗ n 7→ n⊗m,

which obviously satisfiesτN,M ◦ τM,N = IM⊗N .
For modules over a fieldR all these properties are well-known from elementary linear algebra

and the corresponding proofs hold for any commutative base rings.

1.3. Algebras over R. An R-algebra(A,m,1A) is defined asR-moduleA with an associative
R-bilinear multiplicationm : A × A → A (usually written as(a, b) 7→ ab) and unit element 1A
satisfying 1Aa = a1A for all a ∈ A.

By the properties of the tensor product, the bilinear mapm can be replaced by anR-linear
mapm : A ⊗R A → A, and 1A defines anR-linear mapη : R → A, r 7→ r1A. With this terms,
associativity and unitality conditions required for an algebra are expressed by commutativity of
the diagrams (writing⊗ for ⊗R)

A⊗A⊗A
m⊗IA //

IA⊗m

��

A⊗A

m

��
A⊗A

m // A,

A⊗R
IA⊗η

//

=
$$■

■■
■■

■■
■■

■
A⊗A

m

��

R⊗A
η⊗IA
oo

=
zz✉✉
✉✉
✉✉
✉✉
✉✉

A .

DefiningR-algebras(A,m, η) in this way we are only using objects and morphisms in the cate-
goryMR.
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As well known, the tensor productA ⊗ B of two R-algebrasA andB is again anR-algebra
by componentwise multiplication. For this definition, the twist mapτB,A : B ⊗ A → A ⊗ B is
needed. Analysing the setting shows that there may be otherR-linear mapsλ : B ⊗A → A⊗B

leading to an associative algebra structure onA ⊗ B. These are examples ofdistributive laws
known from general category theory (e.g. [2]).

1.4. Tensor product of algebras. Consider twoR-algebras(A,m, η) and(B,m′, η′). Multipli-
cation and unit onA⊗B can be defined by

mAB : A⊗B ⊗A⊗B
A⊗τB,A⊗B
−−−−−−−→ A⊗A⊗B ⊗B

m⊗m′

−−−−→ A⊗B,

a⊗ b⊗ c⊗ d 7−→ a⊗ c⊗ b⊗ d 7−→ ab⊗ cd,

ηAB : R
η⊗η′

−−−→ A⊗B, 1R 7→ 1A ⊗ 1B ,

making(A⊗B,mAB, ηAB) an associative unital algebra.

ReplacingτB,A by someR-linear mapλ : B ⊗A → A⊗B, we observe:

1.5. Distributive laws. Let (A,m, η) and (B,m′, η′) beR-algebras with someR-linear map
λ : B ⊗A → A⊗B. Defining a product onA⊗B by

mλ : A⊗B ⊗A⊗B
A⊗λ⊗B
−−−−−→ A⊗A⊗B ⊗B

m⊗m′

−−−−→ A⊗B,

the triple(A ⊗ B,mλ, η ⊗ η′) is an (associative and unital)R-algebra if and only if it induces
commutativity of the diagrams

B ⊗A⊗A

B⊗m

��

λ⊗A
// A⊗B ⊗A

A⊗λ
// A⊗A⊗B

m⊗B

��
B ⊗A

λ // A⊗B

B ⊗B ⊗A

m′
⊗A

OO

B⊗λ
// B ⊗A⊗B

λ⊗B
// A⊗B ⊗B,

A⊗m′

OO

B ⊗A
λ // A⊗B

B

η⊗B

<<②②②②②②②②②B⊗η

bb❊❊❊❊❊❊❊❊❊
,

B ⊗A
λ // A⊗B

A

η′
⊗A

bb❊❊❊❊❊❊❊❊❊ A⊗η′

<<②②②②②②②②②
.

ModulesM over anA-algebra are defined byR-bilinear maps̺ : A ×M → M . Using the
tensor product this can again be expressed by referring only to objectsand morphisms from the
categoryMR.

1.6. A-modules. Let (A,m, η) be anR-algebra. A (unital) leftA-module is a pair(M,̺M),
whereM is anR-module and̺ M : A⊗M → A (written as(a⊗m) 7→ am) is anR-linear map
leading to commutativity of the diagrams

A⊗A⊗M
m⊗IM //

IA⊗̺M

��

A⊗M

̺M

��
A⊗M

̺M
// A,

R⊗M
η⊗IM

//

=
%%❑❑

❑❑
❑❑

❑❑
❑❑

A⊗M

̺M

��
M.
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An A-module morphismbetween twoA-modules(M,̺M) and(N, ̺N ) is anR-linear map
f : M → N with commutative diagram

A⊗M
IA⊗f

//

̺M

��

A⊗N

̺N

��
M

f
// N.

The category of leftA-modules is denoted byAM. Similar toMR, it also has products,
coproducts, kernels and cokernels and a projective generator (=A) but it need not allow for a
tensor product.

For anyR-moduleX , A ⊗X is a leftA-module by multiplication ofA and this induces the
freeandforgetful functors,

φA : MR → AM, X 7→ (A⊗X,m⊗ IX),

UA : AM → MR, (M,̺M) 7→ M.

(φA, UA) form an adjoint pair by the bijections, forX ∈ MR, (M,̺M) ∈ AM,

HomA(A⊗X,M) → HomR(X,M), A⊗X
f
−→ M 7→ X

η⊗IX
−−−−→ A⊗X

f
−→ M,

HomR(X,M) → HomA(A⊗X,M), X
g
−→ M 7→ A⊗X

IA⊗g
−−−→ A⊗M

̺
−→ M,

and unitη and counitε for this adjunction come out as

ηX : X
η⊗IX
−−−−→ A⊗X, εM : A⊗M

̺M
−−→ M.

The algebra structure on the tensor productA ⊗ B of two algebras may also be seen as a
lifting of functors, investigated in a general categorical setting by P. Johnstone [8], which here
comes out as follows.

1.7. Lifting of functors. Let (A,m, η) and(B,m′, η′) beR-algebras and consider the diagram

BM

UB

��

Â //❴❴❴❴❴❴
BM

UB

��

RM
A⊗−

//
RM.

The following are equivalent:

(a) there exists a functor̂A making the diagram commutative;

(b) there is a distributive lawλ : B ⊗A → A⊗B (see1.5);

(c) A⊗B has an algebra structure induced by someR-linear mapλ : B ⊗A → A⊗B.

Hereby, for aB-module(M,ρ), Â(M) is the objectA⊗M with theB-module structure

B ⊗A⊗M
λ⊗I
−−−→ A⊗B ⊗M

I⊗ρ
−−→ A⊗M,

and one may write

Â(−) = (A⊗B)⊗B − : BM → BM.

2 Coalgebras over commutative rings

In the paper [7] (1941), H. Hopf pointed out the rich structure of the homology of manifolds
which admit a product operation: it allows for a coproduct and a product satisfying certain
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compatibility properties. In [18] (1965), J.W. Milnor and J.C. Moore analysed the algebraic
parts of this structure and provided an introduction to the theory of coalgebras and comodules.
The framework we built up for algebras and modules in the preceding section is suitable for a
natural transition to coalgebras and comodules. This will be described in the subsequent section.
AgainR will denote a commutative ring.

2.1. Coalgebras. A coalgebraoverR is a triple(C,∆, ε) whereC is anR-module with coasso-
ciative product and counit, that is, there areR-linear maps

∆ : C → C ⊗ C, ε : C → R,

inducing commutativity of the diagrams

C
∆ //

∆
��

C ⊗ C

I⊗∆
��

C ⊗ C
∆⊗I

// C ⊗ C ⊗ C ,

C

∆
��

R⊗ C

=

::tttttttttt
C ⊗ C

ε⊗IC

oo
IC⊗ε

// C ⊗R

=

dd❏❏❏❏❏❏❏❏❏❏

Similar to the situation for algebras, the product of twoR-coalgebras(C,∆, ε) and(D,∆′, ε′)
can be defined using the twist mapτC,D : C ⊗ D → D ⊗ C; the latter can be replaced by a
distributive lawϕ : C ⊗D → D ⊗ C with commutative diagrams (e.g. [24, 4.11])

C ⊗ C ⊗D
C⊗ϕ

// C ⊗D ⊗ C
ϕ⊗C

// D ⊗ C ⊗ C

C ⊗D
ϕ

//

∆⊗D

OO

C⊗∆′

��

D ⊗ C

D⊗∆

OO

∆′
⊗C

��
C ⊗D ⊗D

ϕ⊗D
// D ⊗ C ⊗D

D⊗ϕ
// D ⊗D ⊗ C,

C ⊗D
ϕ

//

ε⊗D ""❋
❋❋

❋❋
❋❋

❋❋
D ⊗ C

D⊗ε||①①
①①
①①
①①
①

D ,

C ⊗D
ϕ

//

C⊗ε′ ""❋
❋❋

❋❋
❋❋

❋❋
D ⊗ C

ε′⊗C||①①
①①
①①
①①
①

C .

2.2. C-comodules. Let (C,∆, ε) be anR-coalgebra. A leftC-comoduleis a pair(M,ρM) where
M is anR-module andρM : M → C ⊗M is anR-linear map with commutative diagrams

M
ρM

//

ρM

��

C ⊗M

∆⊗I

��
C ⊗M

I⊗ρM

// C ⊗ C ⊗M,

M

=

##●
●●

●●
●●

●●

ρM

��
C ⊗M

ε⊗IM

// M.

A C-comodule morphismbetween twoC-comodules(M,ρM) and (N, ρN) is anR-linear
mapf : M → N with commutative diagram

M
f

//

ρM

��

N

ρN

��
C ⊗M

I⊗f
// C ⊗N.
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These data form the category of leftC-comodules, denoted byCM. There are the forgetful
and the cofree functors,

UC : CM → MR, (M,ρM) 7→ M,

φC : RM →
CM, X 7→ (C ⊗R X,∆ ⊗ IX , )

and(UC , φC) is an adjoint pair by the bijection, for(M,ρM) ∈ CM, X ∈ MR,

HomC(M,C ⊗X) → HomR(M,X), M
f
−→ C ⊗X 7→ M

f
−→ C ⊗X

ε⊗IX
−−−→ X,

HomR(M,X) → HomC(M,C ⊗X), M
g
−→ X 7→ M

ρM

−−→ C ⊗M
IC⊗g
−−−→ C ⊗X,

and unitη̃ and counit̃ε of this adjunction come out as

η̃M : M
ρM

−−→ C ⊗M, ε̃X : C ⊗X
ε⊗IX
−−−−→ X.

From this adjunction a number of properties of comodules and their categories can be derived.
For example, choosingX = R andM = C, we obtain the isomorphisms

HomC(M,C) ≃ HomR(M,R), EndC(C) = HomC(C,C) ≃ HomR(C,R),

showing that theR-dual modules play a significant role here.

3 Frobenius and separable algebras

In [6] (1903), F. Frobenius investigated finite dimensionalK-algebrasA over a fieldK with the
property thatA ≃ A∗ := HomK(A,K) as leftA-modules. They can also be characterised by
the existence of a non-degenerate bilinear formσ : A × A → K with σ(ab, c) = σ(a, bc) for all
a, b, c ∈ A.

Such algebrasA were namedFrobenius algebrasby Brauer and Nesbitt (1937); their duality
properties were pointed out by Nakayama (1939); Eilenberg and Nakayama observed (1955) that
the notion makes sense over commutative rings, providedA is finitely generated and projective
as anR-module.

Frobenius algebras are of considerable interest in representation theory of finite groups, num-
ber theory, combinatorics, coding theory, etc. Their relation with coalgebras were mentioned by
Lawvere (1967), Quinn (1991), Abrams (1999) e.a. As pointed outby Dijkgraaf (1989), Abrams
(1996), and others, they show up in the framework of topological quantum field theory. An
outline of their categorical formulation, the Frobenius monads, is given by Street in [20].

3.1. Coalgebra structure of A∗. Let (A,m, η) be anR-algebra and assumeA to be finitely
generated and projective as anR-module. Then there is anR-linear isomorphismλ : A → A∗

and(A⊗R A)∗ ≃ A∗
⊗R A∗ asR-modules.

Applying (−)∗ := HomR(−, R) tom : A⊗K A → A andη : R → A yields comultiplication
and counit onA∗,

A∗ m∗

−→ (A⊗R A)∗ ≃ A∗
⊗R A∗, A∗ η∗

−→ R.

Applying λ, the coproduct and counit ofA∗ can be transferred toA:

A
δ //

λ

��

A⊗K A

A∗
m∗

// A∗
⊗K A∗ ,

λ−1
⊗λ−1

OO
A

λ

��

ε

  ❆
❆❆

❆❆
❆❆

❆

A∗
η∗

// R,

making(A, δ, ε) a counital coalgebra.
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Now, if we assumeλ : A → A∗ to be leftA-linear, a little computation shows thatδ is also
left A-linear and - by symmetry - also rightA-linear and this means that product and coproduct
onA are related by theFrobenius conditions, that is, commutativity of the diagrams

A⊗A
m //

I⊗δ

��

A

δ

��
A⊗A⊗A

m⊗I
// A⊗A ,

A⊗A
m //

δ⊗I

��

A

δ

��
A⊗A⊗A

I⊗m
// A⊗A.

(3.1)

It follows from general category theory (also shown in [1]) that the categoryAM of left A-
modules is isomorphic to the categoryAM of left A-comodules:AM ≃

AM. This isomorphism
can be seen as a characterising property of Frobenius algebras (e.g. [15, Theorem 3.13]).

The commutativity of the diagrams can be read in different ways.

3.2. Reformulation of the Frobenius conditions. Let (A,m, δ) be given as above.

(1) The following are equivalent:

(a) δ ◦m = (m⊗ IA) ◦ (IA ⊗ δ) (left hand diagram);
(b) δ is a leftA-module morphism;
(c) m is a rightA-comodule morphism.

(2) The following are equivalent:

(a) δ ◦m = (IA ⊗m) ◦ (δ ⊗ IA) (right hand diagram);
(b) δ is a rightA-module morphism;
(c) m is a leftA-comodule morphism.

By these observations one obtains:

3.3. Characterisation of Frobenius algebras. For anR-moduleA, let (A,m, η) be anR-
algebra and(A, δ, ε) a coalgebra. Then the following are equivalent:

(a) (A,m, δ) satisfies the Frobenius conditions;
(b) δ is a leftA-module morphism andm is a leftA-comodule morphism;
(c) δ is a leftA-module morphism and a rightA-module morphism;
(d) m is a leftA-comodule and a rightA-comodule morphism;
(e) A⊗R − (equivalently−⊗R A) is adjoint to itself by the unit and counit

IA
η
−→ A

δ
−→ A⊗A, A⊗A

m
−→ A

ε
−→ IA.

Notice that in (b) the conditions only refer to one side, no twist map is neededfor this prop-
erty. From (c) it follows thatδ(a) = aδ(1A) = δ(1A)a, for all a ∈ A.

3.4. Frobenius bimodules. Let (A,m, η, δ, ε) be a Frobenius algebra. Then anR-moduleM
is called aFrobenius bimoduleprovided it has anA-module and also anA-comodule structure,
̺ : A⊗M → M andν : M → A⊗M , inducing commutativity of the diagrams

A⊗M
̺

//

I⊗ν

��

M

ν

��
A⊗A⊗M

m⊗I
// A⊗M ,

A⊗M
̺

//

δ⊗I

��

M

ν

��
A⊗A⊗M

I⊗̺
// A⊗M.

Taking for objects the Frobenius bimodules and for morphisms theR-linear maps which are
A-module andA-comodule morphisms, one obtains thecategory of Frobenius bimoduleswhich
we denote byAAM.

Obviously,(A,m, δ) itself is a Frobenius bimodule and there is a pair of functors

A⊗R − : RM →
A
AM, X 7→ (A⊗X,mA ⊗X, δA ⊗X),

HomA
A(A,−) : A

AM → RM, M 7→ HomA
A(A,M),
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which form an adjoint pair by the bijection, forX ∈ MR, (M,̺, ν) ∈ A
AM,

HomA
A(A⊗X,M)

≃
−−→ HomR(X,HomA

A(A,M)), ϕ 7→ [x 7→ ϕ(−⊗ x)],

and unitη̂ and counit̂ε are given by

η̂X : X → HomA
A(A,A⊗X), x 7→ [a 7→ a⊗ x],

ε̂M : A⊗ HomA
A(A,M) → M, a⊗ f 7→ f(a).

Coinvariantsof a Frobenius moduleM are defined as the image of

HomA
A(A,M) → M, f 7→ f(1A),

and this map is indeed surjective, in particular one has EndA
A(A) ≃ A. Thus the pair of functors

(A⊗R −,HomA
A(A,−)) induces an equivalence betweenAM andA

AM.
This can be expressed by showing that, for any leftA-module(M,̺), there is anA-comodule

structure onM ,
ν : M

η⊗I
−−→ A⊗M

δ⊗I
−−→ A⊗A⊗M

I⊗̺
−−→ A⊗M,

making(M,̺, ν) a Frobenius bimodule, and

Ψ : AM →
A
AM, (M,̺) 7→ (M̺, ν),

is an isomorphism of categories.

Similarly, any leftA-comodule(M, ν) allows for a right comodule structure

̺ : A⊗M
A⊗ν
−−−→ A⊗A⊗M

m⊗A
−−−→ A⊗M

ε⊗M
−−−→ M,

leading to the isomorphism of categories

Φ : A
M →

A
AM, (M, ν) 7→ (M̺, ν).

Combining these functors, we obtain the isomorphisms of theA-module and theA-comodule
categories mentioned before,

AM
Ψ
−→

A
AM

UA
−−→

A
M, A

M
Φ
−→

A
AM

UA

−−→ AM.

Because of these isomorphisms, the category of Frobenius bimodules may seem to be of little
interest for Frobenius algebras(A,m, η, δ, ε). However, the approach sketched above also allows
to deal with more general situations, for example, when no counit (or unit) is at hand (see [26]).

3.5. Separable algebras. An R-algebra(A,m, η) is calledseparableif there is someA-bimodule
mapδ : A → A⊗A with m◦δ = IA. This implies that(A,m, δ) satisfies the Frobenius condition
(3.1) and yields a (comparison) functor

KA : RM → AMA, X 7→ (A⊗X,mA ⊗X),

which is right adjoint to the functorAHomA(A,−) : AMA → RM by the bijection (derived
from (1.1))

AHomA(A⊗X,M)
≃
−−→ HomR(X,AHomA(A,M)).

Here the coinvariants of anyM ∈ AMA are defined as the image of

AHomA(A,M) → M, f 7→ f(1A),

andZ(A) := AEndA(A) is the center ofA leading to the equivalence

A⊗Z(A) − : Z(A)M → AMA, N 7→ (A⊗Z(A) N,m⊗ IN ).

TheR-algebraA is calledcentral if the mapR → A, r 7→ r1A, induces an isomorphism
R ≃ Z(A) and a central separable algebra is calledAzumaya algebra. More about this kind of
algebras can be found, for example, in [22] and [16].

In general categories, separable functors are considered in [19]; for Azumaya monads and
comonads we refer to [17] for a recent account.
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4 Bialgebras and Hopf algebras

In this section, we will again considerR-modules endowed with an algebra and a coalgebra
structure but with different compatibility conditions.

4.1. Bialgebras. LetB be anR-module with an algebra structureB = (B,m, η) and a coalgebra
structureB = (B,∆, ε). Then(B,m, η,∆, ε) is called abialgebraif

∆ andε are algebra morphisms, or, equivalently,
µ andη are coalgebra morphisms.

To make∆ an algebra morphism one needs commutativity of the outer path in the diagram

B ⊗B
m //

B⊗∆
��

B
∆ // B ⊗B

B ⊗B ⊗B

∆⊗B⊗B

��

ω⊗B
//❴❴❴❴❴❴❴❴❴ B ⊗B ⊗B

B⊗m

OO

B ⊗B ⊗B ⊗B
B⊗τ⊗B

// B ⊗B ⊗B ⊗B.

m⊗B⊗B

OO

Defining anR-linear map

ω : B ⊗B
∆⊗B
−−−→ B ⊗B ⊗B

B⊗τ
−−−→ B ⊗B

m⊗B
−−−→ B ⊗B,

the condition reduces to commutativity of the upper rectangle. With the map

ω : B ⊗B
B⊗∆
−−−→ B ⊗B ⊗B

τ⊗B
−−−→ B ⊗B

B⊗m
−−−→ B ⊗B

one obtains a similar rectangle (sides interchanged). These morphisms may be considered as
entwiningsbetween algebras and coalgebras (see Section5),

ω : B ⊗B → B ⊗B, ω : B ⊗B → B ⊗B.

They can be applied to definebimoduleswhich fit into the setting.

4.2. Hopf modules and algebras. Given a bialgebra(B,B, ω), anR-moduleM is called aHopf
moduleprovided it is aB-moduleρ : B⊗M → M and aB-comoduleν : M → B⊗M inducing
commutativity of the diagram

B ⊗M
ρ

//

B⊗ν

��

M
ν // B ⊗M

B ⊗B ⊗M
ω⊗M

// B ⊗B ⊗M.

B⊗ρ

OO

The category of Hopf modules, denoted byBBM, has the Hopf modules as objects and as mor-
phisms thoseR-linear maps, which areB-module as well asB-comodule morphisms. As can be
shown easily, for anyR-moduleX , B ⊗R X is a Hopf module and this observation leads to the
functor

B ⊗R − : RM →
B
BM, X 7→ (B ⊗X,m⊗X,∆ ⊗X),

which is left adjoint to HomBB(B,−) : B
BM → RM by the bijection (derived from (1.1))

HomB
B(B ⊗X,M)

≃
−−→ HomR(X,HomB

B(B,M)).

For anyM ∈
B
BM, thecoinvariantsare the image of HomBB(B,M) → M, f 7→ f(1B), and

the coinvariants ofB come out as EndBB(B) ≃ R.
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A bialgebra(B,B, ω) is called aHopf algebraprovidedB ⊗R − : RM →
B
BM is an equiv-

alence (known asFundamental Theorem). This can be characterised by the existence of an
antipode, and is also equivalent to require that the (fusion) morphism

(m⊗ IB) · (IB ⊗ ∆) : B ⊗B → B ⊗B

is an isomorphism (e.g. [5]). The corresponding constructions for monads and comonads on
categories can be found in [12].

5 Entwining algebras and coalgebras

Suitable distributive laws (e.g. the twist map) allow for giving the tensor product of two algebras
an algebra structure and the tensor product of two coalgebras a coalgebra structure. The question
arises: which structure can be given to the tensor product of an algebra and a coalgebra? This
leads to the notions of mixed distributive laws and corings over non-commutative rings (e.g. [4],
[5]).

Let (A,m, η) be anR-algebra and(C, δ, ε) anR-coalgebra.

5.1. Entwining from A to C. An R-linear mapω : A⊗C → C ⊗A is called anentwining from
the algebraA to the coalgebraC provided it induces commutativity of the diagrams

A⊗A⊗ C
A⊗ω

//

m⊗C

��

A⊗ C ⊗A
ω⊗A

// C ⊗A⊗A

C⊗m

��
A⊗ C

A⊗δ

��

ω // C ⊗A

δ⊗A

��
A⊗ C ⊗ C

ω⊗C
// C ⊗A⊗ C

C⊗ω
// C ⊗ C ⊗A,

A⊗ C
ω // C ⊗A

C

η⊗C

bb❊❊❊❊❊❊❊❊❊ C⊗η

<<②②②②②②②②②
,

A⊗ C
ω //

A⊗ε ""❊
❊❊

❊❊
❊❊

❊❊
C ⊗A

ε⊗A||②②
②②
②②
②②
②

A .

The Hopf modules for bialgebras can be generalised to bimodules for entwined structures.

5.2. Bimodules for entwinings from A to C. For an entwiningω : A ⊗ C → C ⊗ A, an
R-moduleM with an A-module structure̺ M : A ⊗ M → M and aC-comodule structure
̺M : M → C ⊗M is called anentwined moduleif one gets commutativity of the diagram

A⊗M
̺M

//

IA⊗̺M

��

M
̺M

// C ⊗M

A⊗ C ⊗M
ω⊗IM // C ⊗A⊗M.

IC⊗̺M

OO

Taking as morphisms theR-linear maps which areA-module as well asC-comodule morphisms
defines the categoryCAM of entwined modules. There is an (induction) functor (e.g. [5, 32.7])

C ⊗R − : AM →
C
AM, M 7→ C ⊗R M,

that is right adjoint to the forgetful functorCU : C
AM → AM.

Now assumeA belongs toCAM, that is,A is aC-comodule̺ : A → C ⊗R A with grouplike
element̺ (1A), and putS := EndCA(A) (a subalgebra ofA). Then there is a (comparison) functor

SM →
C
AM, X 7→ (A⊗S X,m⊗S IX , ̺⊗S IX),
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and this is an equivalence providedCR is flat andC ⊗ A is aGalois coring(see e.g. [5], [13],
[23]). In caseA = C = B, we getS = R and this brings us back to the Hopf modules and the
Fundamental Theorem (see4.2).

5.3. Entwining from C to A. An R-linear mapω : C ⊗ A → A ⊗ C is anentwining from the
coalgebraC to the algebraA if it induces commutativity of the diagrams

C ⊗A⊗A
ω⊗A

//

C⊗m

��

A⊗ C ⊗A
A⊗ω

// A⊗A⊗ C

m⊗C

��
C ⊗A

ω //

δ⊗A

��

A⊗ C

A⊗δ

��
C ⊗ C ⊗A

C⊗ω
// C ⊗A⊗ C

ω⊗C
// A⊗ C ⊗ C ,

C ⊗A
ω // A⊗ C

C

C⊗η

bb❊❊❊❊❊❊❊❊❊ η⊗C

<<②②②②②②②②②
,

C ⊗A
ω //

ε⊗A ""❊
❊❊

❊❊
❊❊

❊❊
A⊗ C

A⊗ε||②②
②②
②②
②②
②

A .

It was observed in Section1.7that the distributive laws between two algebras may be under-
stood as liftings of functors to module categories. The situation for entwinings between algebras
and coalgebras is quite similar.

5.4. Liftings and entwinings from A to C. An entwiningω : A ⊗ C → C ⊗ A from A to C

corresponds to a liftinĝC of C ⊗R − to AM and also to a liftingÂ of A ⊗R − to CM, that is,
there are commutative diagrams

AM

UA

��

Ĉ //
AM

UA

��

RM
C⊗−

//
RM ,

CM

UC

��

Â // CM

UC

��

RM
A⊗−

//
RM ,

where theU ’s denote the forgetful functors. The reader can find a more detailed description of
liftings for tensor functors in [25].

For entwinings from a coalgebra to an algebra the situation is slightly different: they do not
correspond to liftings to the (Eilenberg-Moore) categoriesAM andCM but to extensions to the
Kleisli categoriesAM̃ andCM̃ (which may be seen as subcategories determined by the (co)free
objects of the Eilenberg-Moore categories, e.g. [3]).

5.5. Liftings and entwining from C to A. An entwiningω : C ⊗ A → A ⊗ C from C to A

corresponds to an extensioñC of C ⊗R − to AM̃ and also to an extensioñA of A ⊗R − to CM̃,
that is, there are commutative diagrams

RM

φA

��

C⊗−
//
RM

φA

��

AM̃
C̃ //

AM̃ ,

RM

φC

��

A⊗−
//
RM

φC

��
CM̃

Ã // CM̃ ,

where theφ’s denote the (co)free functors.
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The notions in the preceding section can be readily transferred from the categoryMR of
R-modules to arbitrary categoriesA. HerebyA ⊗R − : MR → MR is to be replaced by any
monadF : A → A andC ⊗R − is to be replaced by anycomonadG : A → A. The role of an
entwiningω : A⊗R C → C ⊗R A is taken by a natural transformationω : FG → GF requiring
commutativity of the corresponding diagrams and the definition of entwinedmodules is obvious.
This allows to apply the basic theory in fairly general situations (e.g. [12], [13]).
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