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Abstract. Let R be a commutative ring with identity. A unital R-module M is called a fully
invariant multiplication module provided for each fully invariant submodule L of M there exists
an ideal A of R such that L = AM . It is proved that every direct sum of isomorphic copies of
a fixed fully invariant multiplication module X is also a fully invariant multiplication module.
In particular this implies that every free R-module is a fully invariant multiplication module. In
case R is a domain then every fully invariant multiplication module X is either torsion-free or
BX = 0 for some non-zero ideal B of R and every torsion-free fully invariant multiplication
module is divisible or reduced. If R is a Dedekind domain then every finitely generated torsion-
free R-module is a fully invariant multiplication module and a classification is given for all
torsion fully invariant multiplication R-modules.

1 Introduction

All rings are commutative with an identity and all modules are unital. For any undefined terms
see [4]. Let R be a ring and let M be an R-module. Recall that a submodule L of M is called
fully invariant provided ϕ(L) ⊆ L for every endomorphism ϕ of M . Clearly 0 and M are fully
invariant submodules of M . Every submodule of the R-module R is fully invariant. In case M
is the direct sum of isomorphic copies of a simple R-module U then it is easy to check that 0 and
M are the only fully invariant submodules of M . It is clear that the sum and the intersection of
any collection of fully invariant submodules are also fully invariant. Thus the collection of fully
invariant submodules of M form a sublattice of the complete modular lattice of all submodules
of M . Note that the submodule AM of M is fully invariant for every ideal A of R.

The module M is called a multiplication module provided for each submodule N of M there
exists an ideal B of R such that N = BM . Note that if M is a multiplication module then every
submodule of M is fully invariant. The study of multiplication modules dates back to [14]. For
more information about multiplication modules see [1]-[3], [5]-[6], [14], [17]-[20] and [22]. In
particular, [1] contains many references and [22] discusses multiplication modules over certain
non-commutative rings.

Given an R-module M and submodules L,N of M then (N :R L) will denote the set of
elements r ∈ R such that rL ⊆ N . Note that (N :R L) is an ideal ofR for all submodules L,N of
M . We now define theR-moduleM to be a fully invariant multiplication module in case for each
fully invariant submodule K of M there exists an ideal G of R such that K = GM . It is clear
that the module M is a fully invariant multiplication module if and only if K = (K :R M)M
for every fully invariant submodule K of M . Clearly a module M is a multiplication module
if and only if M is a fully invariant multiplication module and every submodule of M is fully
invariant. It is also clear that any isomorphic copy of a fully invariant multiplication module is
also a fully invariant multiplication module. It is well known (and easily proved) that if X is
any non-zero R-module then the R-module X⊕X is not a multiplication module. However, our
above comments show that every direct sum of isomorphic copies of a fixed simple module is a
fully invariant multiplication module. We shall prove that, for each fully invariant multiplication
R-module Y , every direct sum of isomorphic copies of Y is a fully invariant multiplication
module (see Theorem 2.8). In particular, this shows that every direct sum of isomorphic copies
of a fixed multiplication module is a fully invariant multiplication module (Corollary 2.9). Thus
for any ring R, every free R-module is a fully invariant multiplication module (Corollary 2.10).
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In addition if Mi (1 ≤ i ≤ n) is a collection of R-modules for some positive integer n such that
R = annR(Mi) + annR(Mj) for all 1 ≤ i 6= j ≤ n then the R-module M =M1 ⊕ · · · ⊕Mn is a
fully invariant multiplication module if and only if Mi is a fully invariant multiplication module
for all 1 ≤ i ≤ n (Corollary 2.12). Here, for any R-module X , annR(X) denotes the annihilator
of X in R, that is annR(X) = {r ∈ R : rX = 0}.

Let R be a domain. If M is a fully invariant multiplication module over the ring R then
M is torsion-free or BM = 0 for some non-zero ideal B of R (Lemma 4.1). Moreover every
torsion-free fully invariant multiplication R-module is divisible or reduced (Proposition 4.4). On
the other hand, every torsion-free divisible R-module is a fully invariant multiplication module
(Proposition 4.6).

Now suppose that R is a Dedekind domain. It is proved that a non-zero torsion R-module
M is a fully invariant multiplication module if and only if there exist positive integers n, ki (1 ≤
i ≤ n), distinct maximal ideals Pi (1 ≤ i ≤ n) and index sets Ij (1 ≤ j ≤ n) such that

M ∼= (R/P k1
1 )(I1) ⊕ · · · ⊕ (R/P knn )(In).

(Theorem 5.3). One consequence is that a finitely generated R-module M is a fully invariant
multiplication module if and only if M is torsion-free or there exist positive integers n, ki (1 ≤
i ≤ n), distinct maximal ideals Pi (1 ≤ i ≤ n) and index sets Ij (1 ≤ j ≤ n) such that

M ∼= (R/P k1
1 )(I1) ⊕ · · · ⊕ (R/P knn )(In).

(Corollary 5.4).

2 Fully invariant multiplication modules

Let R be a ring. Note the following elementary and (well known) fact.

Lemma 2.1. Let an R-module M = ⊕i∈IMi be the direct sum of submodules Mi (i ∈ I) and
let L be a fully invariant submodule of M . Then L = ⊕i∈I (L ∩Mi).

Corollary 2.2. Let an R-module M = ⊕i∈IMi be the direct sum of R-modules Mi (i ∈ I) and
let L be a fully invariant submodule ofM . Then L = ⊕i∈I Li for some fully invariant submodule
Li of Mi for all i ∈ I .

Proof. By Lemma 2.1.

Let M be any R-module. If M is a multiplication module then so too is any homomorphic
image of M . This is not true for fully invariant multiplication modules. Let Z denote the ring of
rational integers, let p be any prime in Z and let U and V be cyclic Z-modules of order p2. We
claim that the Z-module M = U ⊕ V is a fully invariant multiplication module. For, let L be
any fully invariant submodule of M with L 6= 0,M . By Corollary 2.2, L = pU ⊕ 0 or 0 ⊕ pV
or pU ⊕ pV . If θ is the endomorphism of M defined by θ(u, v) = (v, u) for all u ∈ U, v ∈ V
then θ(pU ⊕ 0) = 0⊕ pV and θ(0⊕ pV ) = pU ⊕ 0. Thus L = pU ⊕ pV = pM . It follows that
M is a fully invariant multiplication module. Now let N denote the submodule U ⊕ pV of M .
Note that N is a homomorphic image (and also a maximal submodule) of M . The socle L of N
is pU ⊕ pV which is a fully invariant submodule of N . However L 6= a(U ⊕ pV ) = aN for any
a ∈ Z. Thus the module N is not a fully invariant multiplication module. However we have the
following result.

Proposition 2.3. Let K be a fully invariant submodule of a fully invariant multiplication module
M . Then the module M/K is also a fully invariant multiplication module.

Proof. Let L be a submodule of M containing K such that L/K is a fully invariant submodule
of M/K. Let ϕ be any endomorphism of M . Since ϕ(K) ⊆ K, ϕ induces a mapping ϕ̄ :
M/K → M/K defined by ϕ̄(m +K) = ϕ(m) +K for all m ∈ M . It is easy to check that ϕ̄
is an endomorphism of M/K. Hence ϕ̄(L/K) ⊆ L/K and it follows that ϕ(L) ⊆ L+K = L.
Hence L is a fully invariant submodule of M . By hypothesis, there exists an ideal B of R such
that L = BM and this implies that L/K = B(M/K). It follows that M/K is a fully invariant
multiplication module.

Corollary 2.4. Let R be any ring and let M be a fully invariant multiplication R-module. Then
the R-module M/AM is a fully invariant multiplication R-module for any ideal A of R.

Proof. By Proposition 2.3.
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Recall the following elementary facts.

Lemma 2.5. Let R be any ring and let L ⊆ K be submodules of an R-module M such that L is
a fully invariant submodule of K and K is a fully invariant submodule of M , Then L is a fully
invariant submodule of M .

Lemma 2.6. Let R be any ring and let an R-module M = K ⊕K ′ be the direct sum of submod-
ules K,K ′. Then K is a fully invariant submodule of M if and only if Hom(K,K ′) = 0.

Proposition 2.7. LetR be any ring and let a fully invariant multiplicationR-moduleM = K⊕K ′
be a direct sum of submodules K,K ′ such that Hom(K,K ′) = 0 or K ′ is fully invariant in M .
Then K is a fully invariant multiplication module.

Proof. Suppose first that Hom(K,K ′) = 0. Let L be any fully invariant submodule of K. By
Lemmas 2.5 and 2.6, L is a fully invariant submodule of M and hence L = BM = (BK) ⊕
(BK ′) = BK for some idealB ofR. It follows thatK is a fully invariant multiplication module.
Now suppose that K ′ is a fully invariant submodule of M . Apply Proposition 2.3.

Given any index set I , M (I) will denote (as usual) the module ⊕i∈IMi where Mi = M for
all i ∈ I .

Theorem 2.8. Let R be any ring and let M be any fully invariant multiplication module over the
ring R. Then the R-module M (I) is a fully invariant multiplication module for every index set I .

Proof. LetMi =M for each i ∈ I and letX = ⊕i∈IMi. Let Y be any fully invariant submodule
of X . Then Y = ⊕i∈I Ni where Ni is a submodule of Mi for all i ∈ I (Corollary 2.2). Let j and
k be distinct elements of I . Let ϕ : X → X be the mapping defined by ϕ({mi}) = {m′i} where
mi ∈ Mi (i ∈ I) and m′j = mk,m

′
k = mj and m′i = 0 for all i ∈ I \ {j, k}. It is clear that ϕ

is an endomorphism of M . Let u = {ui} ∈ L where ui ∈ Ni (i ∈ I). Then ϕ(u) ∈ L implies
that uj ∈ Nk and uk ∈ Nj . It follows that Nj = Nk for all j, k ∈ I . Thus Y = ⊕i∈I Ni where
Ni = N (i ∈ I) for some submodule N of M . Because Y is a fully invariant submodule of X it
is easy to see that N is a fully invariant submodule of M and hence N = BM for some ideal B
of R. Thus Y = BX . It follows that X is a fully invariant multiplication module.

Corollary 2.9. Let R be any ring and let M be any multiplication module over the ring R. Then
the R-module M (I) is a fully invariant multiplication module for every index set I .

Proof. By Theorem 2.8.

Corollary 2.10. Let R be any ring. Then every free R-module is a fully invariant multiplication
R-module.

Proof. By Corollary 2.9 because the R-module R is a multiplication module.

Corollary 2.10 raises the question whether every projective module over an arbitrary ring is
a fully invariant multiplication module. We shall return to this question in § 5. Next we give
another result concerning direct sums. It raises the question when the direct sum M1 ⊕M2 of
fully invariant multiplication modules M1,M2 is a fully invariant multiplication module.

Theorem 2.11. Let R be any ring and let M1 and M2 be R-modules such that R = annR(M1) +
annR(M2). Then the R-module M =M1 ⊕M2 is a fully invariant multiplication module if and
only if both M1 and M2 are fully invariant multiplication modules.

Proof. Let Ai = annR(Mi) (i = 1, 2) and note that R = A1 +A2. Suppose first that M is a fully
invariant multiplication module. Let ϕ : M1 →M2 be any homomorphism. Then

ϕ(M1) = ϕ(A1M1 +A2M1) = ϕ(A1M1) + ϕ(A2M1)

= ϕ(0) +A2ϕ(M1) ⊆ A2M2 = 0.
It follows that Hom(M1,M2) = 0. By Proposition 2.7, M1 is a fully invariant multiplication
module. Similarly, M2 is a fully invariant multiplication module.

Conversely, suppose that M1 and M2 are both fully invariant multiplication modules. Let N
be any fully invariant submodule of M . Then N = N1 ⊕N2 for some fully invariant submodule
N1 of M1 and some fully invariant submodule N2 of M2 (Corollary 2.2). By hypothesis, there
exist ideals Bi (i = 1, 2) such that Ni = BiMi (i = 1, 2). Now we have M1 = (A1 + A2)M1 =
A2M1 and similarly M2 = A1M2, so that

(A2B1 +A1B2)M = A2B1M1 +A2B1M2 +A1B2M1 +A1B2M2

= A2B1M1 +A1B2M2 = B1M1 +B2M2 = N1 +N2 = N.

It follows that M is a fully invariant multiplication module.
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Let R be any domain which is not a field and let U be a simple R-module. Let M denote
the R-module R ⊕ U . The modules R and U are both multiplication modules and hence also
fully invariant multiplication modules. HoweverM is not a fully invariant multiplication module
because Soc(RM) = 0⊕U which is a fully invariant submodule of M but Soc(RM) 6= BM for
any ideal B of R. Thus the arbitrary direct sum of fully invariant multiplication modules need
not be itself a fully invariant multiplication module. Compare Theorem 2.11.

Corollary 2.12. Let R be any ring, let n be a positive integer and let Mi (i ∈ I) be R-modules
such that R = annR(Mi) + annR(Mj) for all 1 ≤ i < j ≤ n. Then the R-module M =
M1 ⊕ · · · ⊕Mn is a fully invariant multiplication module if and only if Mi is a fully invariant
multiplication module for all 1 ≤ i ≤ n.

Proof. By Theorem 2.11 and induction on n.

Corollary 2.12 is not true for infinite direct sums. For, let Π denote any infinite set of primes
in Z. Let M denote the semisimple Z-module ⊕p∈Π (Z/Zp). Clearly R = annR(Z/Zp) +
annR(Z/Zq) for any distinct primes p, q in Π. There exist disjoint infinite subsets Π1 and Π2 of
Π such that Π = Π1 ∪Π2. Let L = ⊕p∈Π1 (Z/Zp). Then L is a full invariant submodule of M
but L 6= AM for any ideal A of R. Thus M is not a fully invariant multiplication module.

3 Special submodules

If R is a ring and M a faithful multiplication module then there is an easy description of various
submodules of M , in particular the socle, the singular submodule, the radical and the prime
radical of M (see, for example, [6]).

Let R be any ring and let M be an R-module. Recall that the socle of M is the sum of
all simple submodules of M and is zero in case M has no simple submodule. The radical of
M is the intersection of all maximal submodules of M and is M in case M has no maximal
submodule. A non-zero submodule L of M is called essential provided L ∩ N 6= 0 for every
non-zero submodule N of M . The singular submodule of M is the submodule consisting of all
elements m ∈ M such that Em = 0 for some essential ideal E of R. The socle, radical and
singular submodule of the R-module M will be denoted by Soc(RM ), Rad(RM ) and Z(RM ),
respectively, and of the R-module R simply by Soc(R), Rad(R) and Z(R), respectively. For a
faithful multiplication module M , Soc(RM ) = Soc(R)M , Rad(RM ) = Rad(R)M and Z(RM ) =
Z(R)M (see [6, Theorem 2.7 and Corollary 2.14]).

Let A be any non-empty collection of ideals of R. For any R-module M , let TA(M) denote
the set of elements m ∈ M such that (A1 ∩ · · · ∩ An)m = 0 for some positive integer n and
ideals Ai ∈ A (1 ≤ i ≤ n). It is easy to check that TA(M) is a submodule of M . Note that if A
consists of all the maximal ideals of R then TA(M) = Soc(RM) and if A is the set of essential
ideals of R then TA(M) = Z(RM). We denote TA(RR) simply by TA(R). Now we prove:

Theorem 3.1. Let R be any ring and let M be a faithful fully invariant multiplication module.
Then TA(RM) = TA(R)M for any non-empty collection A of ideals of R.

Proof. Let B denote the collection of finite intersections of ideals in A. Let a ∈ TA(R). Then
Ba = 0 for some B ∈ B and hence BaM = 0. This implies that aM ⊆ TA(RM). It follows
that TA(R)M ⊆ TA(RM). On the other hand, let m ∈ TA(RM). There exists C ∈ B such
that Cm = 0. Let L = {x ∈ M : Cx = 0}. Then L is a fully invariant submodule of
M . By hypothesis, there exists an ideal G in R such that L = GM and hence CGM = 0.
Because M is faithful, CG = 0 and G ⊆ TA(R). Now m ∈ GM and we have proved that
TA(RM) ⊆ TA(R)M . The result follows.

The next result generalizes [6, Corollary 2.14].

Corollary 3.2. Let R be any ring and let M be a faithful fully invariant multiplication module.
Then

(a) Soc(RM) = Soc(R)M , and
(b) Z(RM) = Z(R)M .

Proof. (a) Apply Theorem 3.1 with A the collection of maximal ideals of R.
(b) Apply Theorem 3.1 with A the collection of essential ideals of R.

The corresponding result for the radical is the following one. It generalizes [6, Theorem 2.7].
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Theorem 3.3. Let R be any ring and let M be a fully invariant multiplication module. Then
Rad(RM) = CM where C is the intersection of all maximal ideals P of R such that M 6= PM .

Proof. If Rad(RM) = M then CM ⊆ Rad(RM). Now suppose that M contains a maximal
submodule L. There exists a maximal ideal Q of R such that Q(M/L) = 0 and hence QM ⊆ L.
Note that QM 6= M and hence C ⊆ Q and CM ⊆ QM ⊆ L. Thus CM ⊆ Rad(RM). Next
note that because Rad(RM) is a fully invariant submodule of M , there exists an ideal B of R
such that Rad(RM) = BM . Let G be any maximal ideal of R such that M 6= GM . Note that
M/GM is a semisimple R-module so that BM = Rad(RM) ⊆ GM . If B * G then R = B+G
and hence M = BM +GM = GM , a contradiction. Thus B ⊆ G. It follows that B ⊆ C. We
conclude that Rad(RM) = BM ⊆ CM and the result follows.

Corollary 3.4. Let R be any ring and let M be a finitely generated faithful fully invariant multi-
plication module. Then Rad(RM) = Rad(R)M .

Proof. Suppose that M = PM for some maximal ideal P of R. By the usual determinant
argument, M being finitely generated implies that there exists p ∈ P such that (1 − p)M = 0.
But M being faithful gives that 1 − p = 0 and hence P = R, a contradiction. Thus M 6= PM
for every maximal ideal P of R. Now apply Theorem 3.3.

Let R be any ring and let M be any non-zero R-module. A proper submodule L of M is
called prime in case whenever r ∈ R and m ∈M such that rm ∈ L then m ∈ L or rM ⊆ L. It is
well known and easy to prove that a submodule N of M is prime if and only if P = (N :R M)
is a prime ideal of R and the (R/P )-module M/N is torsion-free. Given any prime ideal Q
of R, a submodule K of M will be called Q-prime if K is a prime submodule of M such that
Q = (K :R M). We define the prime radical, denoted by rad(RM), to be the intersection of all
prime submodules of M and to be M in case M has no prime submodule. There is an extensive
literature on prime submodules of a moduleM and attempts to describe rad(RM ) stretching back
to the early 1970s (see, for example, [6], [8] - [13], [15] and [21]).

Let P be any prime ideal of a ring R. Given an R-module M we define KP (M) to be the
set of all elements m ∈ M such that cm ∈ PM for some c ∈ R \ P . Note that KP (M) is a
submodule ofM containing PM such thatKP (M)/PM is the torsion submodule of the (R/P )-
module M/PM and hence KP (M) =M or KP (M) is a P -prime submodule of M . We include
the next result for completeness.

Lemma 3.5. Let P be a prime ideal of a ring R and let M be an R-module such that M 6=
KP (M). Then KP (M) is the intersection of all P -prime submodules of M . Moreover KP (M)
is a fully invariant submodule of M .

Proof. Let L be any P -prime submodule of M . Then PM ⊆ L and M/L is a torsion-free
(R/P )-module. It follows that KP (M) ⊆ L. The first part of the result follows. Let ϕ be any
endomorphism of M . Let m ∈ KP (M). There exists c ∈ R \ P such that cm ∈ PM and hence

cϕ(m) = ϕ(cm) ∈ ϕ(PM) = Pϕ(M) ⊆ PM.

It follows that ϕ(m) ∈ KP (M) for every endomorphism ϕ of M . Thus KP (M) is a fully
invariant submodule of M .

Corollary 3.6. Let R be a ring and M an R-module. Then rad(RM) = ∩KP (M) where the
intersection is taken over all prime ideals P of R. Moreover rad(RM ) is a fully invariant sub-
module of M .

Proof. By Lemma 3.5.

Given a ringR and a non-zeroR-moduleM , let Π(M) denote the collection, possibly empty,
of prime ideals P ofR such thatM 6= KP (M). Note theM 6= KP (M) if and only if the (R/P )-
module M/PM is not torsion. Compare the next result with [6, Theorem 2.12].

Theorem 3.7. Let R be a ring and let M be an R-module. Then rad(RM) = BM where B is
the intersection of all prime ideals P of R such that M 6= KP (M).

Proof. If M does not contain any prime submodules then rad(RM) = M and B = R so the
result is true in this case. Now suppose that M does contain a prime submodule so that the
collection Π(M) is non-empty (Lemma 3.5). By Corollary 3.6, rad(RM) = ∩P∈Π(M)KP (M)
and rad(RM) = CM where C = (rad(RM) :R M). Let P ∈ Π(M). Then CM = rad(RM) ⊆
KP (M) and M 6= KP (M). Because the submodule KP (M) is P -prime, C ⊆ P . It follows that
C ⊆ B. On the other hand, BM ⊆ PM ⊆ KP (M). It follows that BM ⊆ rad(RM) and hence
B ⊆ (rad(RM) :R M) = C. It follows that B = C as required.
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Corollary 3.8. Let R be a ring and let M be a finitely generated faithful R-module. Then
rad(RM) = rad(RR)M .

Proof. Let G = rad(RR). It is well known that G is the set of all nilpotent elements of R and
also the intersection of all prime ideals for R. Let P be any prime ideal of R. Suppose that
M = KP (M). There exist a positive integer n and elements mi (1 ≤ i ≤ n) in M such that
M = Rm1 + · · · + Rmn. For each 1 ≤ i ≤ n there exists ci ∈ R \ P such that cimi ∈ PM .
Using the usual determinant argument, it follows that dM = 0 for some d ∈ R \ P . But M is
faithful, so that d = 0, a contradiction. Thus M 6= KP (M) for every prime ideal P of R. Now
apply Theorem 3.7.

4 Modules over domains

In this section we shall look at modules over domains. If R is a domain then every fully invariant
multiplication module is torsion or torsion-free, as we show next.

Lemma 4.1. Let R be a domain and let M be any fully invariant multiplication module over R.
Then M is torsion-free or there exists a non-zero ideal B of R such that BM = 0.

Proof. Suppose that the R-module M is not torsion-free. Then there exists a non-zero element
m ∈M and a non-zero ideal G of R such that Gm = 0. Let L = {x ∈M : Gx = 0}. Note that
L is non-zero because m ∈ L. It can easily be checked that L is a fully invariant submodule of
M and hence L = HM for some ideal H of R. Note that H 6= 0. Next GHM = GL = 0 and
GH is a non-zero ideal of R.

Note the following simple fact.

Lemma 4.2. Let R be a domain and let M be a torsion-free R-module. Then AM is an essential
submodule of M for every non-zero ideal A of R.

Proof. Let N be any submodule of M such that AM ∩N = 0. Then AN ⊆ AM ∩N gives that
AN = 0 and hence N = 0.

Corollary 4.3. Let R be a domain and let M be a torsion-free fully invariant multiplication
R-module. Then every non-zero fully invariant submodule of M is essential in M .

Proof. By Lemma 4.2 .

Let R be any domain. An R-module M is called divisible in case M = aM for every non-
zero element a of R. Injective modules are divisible (see for example [16, Proposition 2.6]) and
every torsion-free divisible R-module is injective (see, for example, [16, Proposition 2.7]). An
R-module X is called reduced in case it does not contain a non-zero divisible submodule.

Proposition 4.4. Let R be a domain. Then every torsion-free fully invariant multiplication R-
module is divisible or reduced.

Proof. Let M be a torsion-free fully invariant multiplication module which is not reduced. Let
L be the sum of all divisible submodules of M . Then L 6= 0 and it is easy to check that L
is divisible. In this case L is injective and hence a direct summand of M . If N is a divisible
submodule of M then so too is ϕ(N) for every endomorphism ϕ of M . It follows that L is a
fully invariant submodule of M and hence L is essential in M by Corollary 4.3. Thus M = L,
as required.

Recall that an R-module M is called uniform in case L∩N 6= 0 for all non-zero submodules
L,N . Presumably the next result is well known.

Lemma 4.5. Let R be a domain and let M be a non-zero torsion-free R-module. If L is a
fully invariant submodule of M then aL ⊆ bL for all elements a, b in R such that aM ⊆ bM .
Moreover, the converse holds if M is uniform.

Proof. Suppose first that L is fully invariant in M . If M = 0 then there is nothing to prove.
Suppose that M 6= 0. Let a be a non-zero element of R such that aM ⊆ bM for some b ∈ R.
Clearly b 6= 0. Let m ∈ M . Then am = bm′ for some element m′ in M . If am = bm̄ for some
m̄ ∈ M then b(m′ − m̄) = 0 and hence m̄ = m′. We can define a mapping ϕ : M → M by
ϕ(m) = m′ for all m ∈ M . It is easy to check that ϕ is an endomorphism of M . It follows that
ϕ(L) ⊆ L and hence aL ⊆ bL. If a = 0 then aL ⊆ bL for all b ∈ R.
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Conversely, suppose that M is uniform and that L has the stated property. Let θ be any
non-zero endomorphism of M . There exists a non-zero element m ∈ M such that θ(m) 6= 0.
Because M is uniform, we have Rm ∩ Rθ(m) 6= 0 and hence am = bθ(m) 6= 0 for some non-
zero elements a, b of R. Let 0 6= x ∈ M . Then Rx ∩ Rm 6= 0 gives that rx = sm for some
non-zero elements r, s in R. Thus

brθ(x) = bθ(rx) = bθ(sm) = bsθ(m) = sam = arx,

so that r(bθ(x) − ax) = 0. Because M is torsion-free, we conclude that bθ(x) = ax for all
x ∈ M . In particular this implies that aM ⊆ bM . By hypothesis, aL ⊆ bL. Let y ∈ L. Then
ay = bz for some z ∈ L and hence bθ(y) = ay = bz. This implies that b(θ(y) − z) = 0 and
hence θ(y) = z ∈ L. We have proved that θ(L) ⊆ L so that L is a fully invariant submodule of
M .

Proposition 4.6. Let R be a domain. Then every torsion-free divisible R-module is a fully
invariant multiplication module.

Proof. Let F denote the field of fractions of R. Let M be any non-zero torsion-free divisible R-
module. It is well known that M is a vector space over F and hence the R-module M ∼= F (I) for
some index set I . By Theorem 2.8 it is sufficient to prove that theR-module F is a fully invariant
multiplication module and thus we can suppose without loss of generality thatM is uniform. Let
L be a non-zero fully invariant submodule of M . For each non-zero element a ∈ R, M = aM
and hence L = aL by Lemma 4.5. Thus L = aL for each 0 6= a ∈ R, so that L is divisible, hence
injective and a direct summand of the uniform module M . We conclude that L = M = RM .
Thus M is a fully invariant multiplication module, as required.

Recall that if R is a domain then the zero R-module is the only divisible R-module which is
a multiplication module. Combining Propositions 4.4 and 4.6 we see that if R is a domain then a
torsion-free R-module M is a fully invariant multiplication module if and only if M is divisible
or a reduced fully invariant multiplication module.

5 Modules over Dedekind Domains

Let R be a (commutative) domain with field of fractions F . Given any ideal A of R, A∗ will
denote the set of elements f ∈ F such that fA ⊆ R. Note that A∗ is an R-submodule of
F , R ⊆ A∗, A∗A is an ideal of R and A ⊆ A∗A. The ideal A is called invertible provided
A∗A = R. The ring R is a Dedekind domain if every non-zero ideal is invertible. For more
information about Dedekind domains see [7, p. 442 §37]. In this section we shall consider
modules over a Dedekind domain R. First we deal with finitely generated torsion-free modules.
It is well known that a finitely generated module M over a Dedekind domain is projective if and
only if it is torsion-free and in this case M ∼= H ⊕ A for some (possibly zero) free module H
and ideal A of R.

Theorem 5.1. LetR be a Dedekind domain. Then every finitely generated torsion-freeR-module
is a fully invariant multiplication module.

Proof. Let M be any finitely generated torsion-free R-module. If M ∼= A for some non-zero
ideal A of R then M is a multiplication module. On the other hand, if M is a free R-module than
M is a fully invariant multiplication module by Corollary 2.10. Thus without loss of generality
we can suppose that M = Rn ⊕ A for some positive integer n and non-zero ideal A of R. Let
L be any fully invariant submodule of M . By Corollary 2.2, L = B1 ⊕ · · · ⊕ Bn ⊕ C for some
ideals Bi (1 ≤ i ≤ n), C of R with C ⊆ A. Let π be any permutation of the set {1, . . . , n} and
let ϕπ denote the endomorphism of M defined by

ϕπ(r1, . . . , rn, a) = (rπ(1), . . . , rπ(n), a),

for all ri ∈ R (1 ≤ i ≤ n), a ∈ A. It is clear that ϕπ is an endomorphism of M for each
permutation π of {1, . . . , n}. Because ϕπ(L) ⊆ L for every permutation π of {1, . . . , n}, we
have B1 = · · · = Bn = B(say).

Let a ∈ A, f ∈ A∗. Define a mapping θ : M →M by

θ(s1, . . . , sn, d) = (fd, 0, . . . , 0, s1a),

for all si ∈ R (1 ≤ i ≤ n), d ∈ A. It is easy to check that θ is an endomorphism of M . The
fact that θ(L) ⊆ L implies that fd ∈ B and s1a ∈ C for all d ∈ C, s1 ∈ B. Thus fC ⊆ B and
aB ⊆ C. We have proved that A∗C ⊆ B and AB ⊆ C. But C = RC = AA∗C ⊆ AB so that
C = AB and L = BM . It follows that M is a fully invariant multiplication module.
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Corollary 5.2. LetR be a Dedekind domain. Then every projectiveR-module is a fully invariant
multiplication module.

Proof. Let M be any projective R-module. Then M is finitely generated or free. The result
follows by Corollary 2.10 and Theorem 5.1.

Let R be an arbitrary domain and let P be a maximal ideal of R. We shall call an R-module
M P -torsion provided for each m ∈M there exists a positive integer n such that Pnm = 0.

Theorem 5.3. Let R be a Dedekind domain and let M be a non-zero torsion R-module. Then
M is a fully invariant multiplication module if and only if there exist positive integers n, ki (1 ≤
i ≤ n), distinct maximal ideals Pi (1 ≤ i ≤ n) and index sets Ij (1 ≤ j ≤ n) such that

M ∼= (R/P k1
1 )(I1) ⊕ · · · ⊕ (R/P knn )(In).

Proof. Suppose first thatM is a fully invariant multiplication module. By Lemma 4.1 there exists
a non-zero ideal B of R such that BM = 0. The ideal B is a (finite) product of maximal ideals
and therefore M =M1 ⊕ · · · ⊕Mn for some positive integer n and submodules Mi (1 ≤ i ≤ n)
of M such that for each 1 ≤ i ≤ n there exist a maximal ideal Pi containing B and a positive
integer ki with P kii Mi = 0. Clearly we can assume that the maximal ideals Pi (1 ≤ i ≤ n) are
distinct and each of the positive integers ki (1 ≤ i ≤ n) is as small as possible.

Let 1 ≤ i ≤ n, let N = Mi, let P = Pi and let k = ki. By Corollary 2.12 N is a fully
invariant multiplication R-module. It is well known that in this situation there exist an index set
Λ and cyclic submodules Nλ (λ ∈ Λ) such that N = ⊕λ∈Λ Nλ. For each λ ∈ Λ let kλ be the
least positive integer such that P kλNλ = 0. Clearly k = kµ for some µ ∈ Λ. For each λ ∈ Λ, let
Uλ = Soc(RNλ). Then Uλ = P kλ−1Nλ and is simple. Now Soc(RN) = ⊕λ∈Λ Uλ and Soc(RN)
is a fully invariant submodule of N and hence also of M . By hypothesis,

⊕λ∈Λ P
kλ−1Nλ = CN = ⊕λ∈Λ CNλ,

for some ideal C of R. Without loss of generality, we can choose C to be maximal with this
property and in this case C = Ph for some non-negative integer h. This implies that h =
kλ − 1 (λ ∈ Λ) and this in turn implies that Nλ ∼= R/Ph+1 (λ ∈ Λ). It follows that there
exist positive integers n, ki (1 ≤ i ≤ n), distinct maximal ideals Pi (1 ≤ i ≤ n) and index sets
Ij (1 ≤ j ≤ n) such that

M ∼= (R/P k1
1 )(I1) ⊕ · · · ⊕ (R/P knn )(In).

This proves the necessity.
Conversely, suppose that M has the stated decomposition. By Corollary 2.9 the module

(R/P
kj
j )(Ij) is a fully invariant multiplication module for each 1 ≤ j ≤ n. Now apply Corollary

2.12 to deduce that M is a fully invariant multiplication module.

Corollary 5.4. Let R be a Dedekind domain. Then a finitely generated R-module M is a fully
invariant multiplication module if and only if M is torsion-free or there exist positive integers
n, ki (1 ≤ i ≤ n), distinct maximal ideals Pi (1 ≤ i ≤ n) and index sets Ij (1 ≤ j ≤ n) such that

M ∼= (R/P k1
1 )(I1) ⊕ · · · ⊕ (R/P knn )(In).

Proof. The necessity follows by Lemma 4.1 and Theorem 5.3. The sufficiency follows by The-
orems 5.1 and 5.3.

References
[1] M. M. Ali, Some remarks on multiplication and flat modules, J. Commut. Algebra 4 (1) (2012), 1-27.

[2] D. D. Anderson, Some remarks on multiplication ideals, Math. Japonica 4 (1980), 463-469.

[3] D. D. Anderson and Y. Al-Shaniafi, Multiplication modules and the ideal θ(M), Comm. Algebra 30 (7)
(2002), 3383-3390.

[4] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules (Springer-Verlag, New York 1974).

[5] A. Barnard, Multiplication modules, J. Algebra 71 (1) (1981), 174-178.

[6] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (4) (1988), 755-779.

[7] R. Gilmer, Multiplicative Ideal Theory (Dekker, New York 1972).



470 Patrick F. Smith

[8] D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Prime submodules and a sheaf on the prime
spectra of modules, Comm. Algebra 42 (7) (2014), 3063-3077.
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