Vol. 5(1) (2016), 1-5

BCH-Semigroup Ideals in BCH-Semigroups

Farhat Sultana and Muhammad Anwar Chaudhary

Communicated by B. Ulrich

MSC 2010 Classifications: 13A15, 16D20 and 16D25.

Keywords and phrases: BCH-Semigroup, BCH-Semigroup ideal, BCH-Semigroup homomorphism.

Abstract We consider BCH-semigroup ideals and their properties in BCH-semigroups. Some results about BCH-semigroup homomorphisms related to BCH-semigroup ideals are investigated.

1 Introduction

In 1966, two classes of abstract algebras, BCK-algebras and BCI-algebras, were introduced by Imai and Iseki [11, 12, 14]. Since then far-reaching investigations on these algebras have been made by many researchers (see [5, 17, 18] and references therein). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras [11].

In [9, 10], a class of abstract algebras, BCH-algebras was introduced by Ping Hu and Li. Both these researchers studied some properties of these algebras which are more general than BCK-algebras and BCI-algebras. Besides this, Chaudhry and Iseki also studied these algebras [4, 13]. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. For more information regarding BCH-algebras, we refer the reader to [3, 4].

In this paper, we describe the concept of a BCH-semigroup ideal of a BCH-semigroup. Certain conditions for a semi-subgroup to be a BCH-semigroup ideal have been investigated. Some results about BCH-semigroup homomorphisms related to BCH-semigroup ideals are also given.

2 Notations and preliminary results

This section presents some useful definitions and some basic results.

Definition 2.1. (BCH-Algebra) [10] A BCH-algebra is an algebra (B; *, 0) of type (2, 0) fulfilling the following conditions:

(1) b * b = 0 for all $b \in B$,

```
(2) b * t = t * b = 0 implies b = t,
```

(3) (b * t) * d = (b * d) * t for all $b, t, d \in B$.

Remark 2.2. [8, 10] In any BCH-algebra a partial order \leq is defined by $b \leq t$ if and only if b * t = 0. It has been noted that the following identities hold for every two elements x, y of any BCH-algebra B.

 $(1) \quad x * (x * y) \le y,$

- (2) x * 0 = 0 implies x = 0,
- (3) 0 * (x * y) = (0 * x) * (0 * y),
- (4) x * 0 = x,
- (5) (x * y) * x = 0 * y.

Example 2.3. It is a routine exercise to see that $(B = \mathbb{Z}_4; *, 0)$ is a BCH-algebra with * defined as:

*	0	1	2	3	4
0	0	0	0	0	4
1	1	0	0	1	4
2	2	2	0	0	4
3	3	3	3	0	4
4	4	4	4	4	0

Definition 2.4. (BCH-Homomorphisms) [6] A mapping ζ from a BCH-algebra B to a BCH-algebra \dot{B} is said to be a homomorphism if $\zeta(t * d) = \zeta(t) * \zeta(d)$, for all $t, d \in B$.

Note that, if $\zeta : B \longrightarrow \dot{B}$ is a BCH-homomorphism, then $\zeta(0) = \dot{0}$ and $t \leq d$ implies $\zeta(t) \leq \zeta(d)$ for any $t, d \in B$.

Definition 2.5. (Sub-algebra) [4] A subset $I \neq \emptyset$ of a BCH-algebra (B; *, 0) is called a subalgebra if $q, r \in I$ implies $q * r \in I$.

Definition 2.6. (Closed ideal) [4] A non-empty subset D of a BCH-algebra B is said to be a closed ideal in B if

(i) $0 * t \in D$ for all $t \in D$, (ii) $m * t \in D$, $t \in D$ implies $m \in D$.

Every closed ideal is a sub-algebra but converse is not true in general because in Example 2.3 if we assume $I = \{0, 4\}$, then I is a sub-algebra of B but it is not a closed ideal.

Definition 2.7. (BCH-Semigroup) An algebraic system $(B; \odot, *, 0)$ with two binary operations * and \odot is said to be a BCH-semigroup if it satisfies the following conditions:

- (1) $(B; \odot)$ is a semigroup,
- (2) (B; *, 0) is a BCH-algebra,

(3) The binary operation \odot is distributive (left as well as right) over the operation *. That is, $d \odot (c_1 * m) = (d \odot c_1) * (d \odot m)$ and

 $(c_1 * m) \odot d = (c_1 \odot d) * (m \odot d)$ for all $d, c_1, m \in B$.

Example 2.8. Consider the set $B = \{0, 1, 2\}$ with two operations \odot and * defined below:

\odot	0	1	2	*	0	1	
0	0	0	0	0	0	0	2
1	0	2	1	1	1	0	
2	0	1	2	2	2	2	

Routine calculations give that $(B; \odot, *, 0)$ is a BCH-semigroup.

Proposition 2.9. If $(B; \odot, *, 0)$ is a BCH-semigroup. Then (i) $0 \odot m = m \odot 0 = 0$, for all $m \in B$. (ii) $m \leq s_1$ implies $m \odot b \leq s_1 \odot b$ and $b \odot m \leq b \odot s_1$, for all $m, s_1, b \in B$. *Proof.* (i) For all $m \in B$, we have (:: 0 * 0 = 0) $0 \odot m = (0 * 0) \odot m$ $= (0 \odot m) * (0 \odot m)$ $(\odot is distributive over *)$ (:: m * m = 0, for all $m \in B$). = 0, $m \odot 0 = m \odot (0 * 0)$ $= (m \odot 0) * (m \odot 0)$ (By distribution law) $(By \ m * m = 0, for all \ m \in B)$ -0(ii) Let $m, s_1, b \in B$ with $m \leq s_1$. Then $m * s_1 = 0.$ We claim that $m \odot b \leq s_1 \odot b$. This is true if $(m \odot b) * (s_1 \odot b) = 0$. Consider $(m \odot b) * (s_1 \odot b) = (m * s_1) \odot b$ $= 0 \odot b$ = 0. $(b \odot m) * (b \odot s_1) = b \odot (m * s_1)$ $= b \odot 0$ = 0Thus $m \odot b \leq s_1 \odot b$.

Definition 2.10. (BCH-Semigroup Homomorphism) A BCH-semigroup homomorphism of a BCH-semigroup $(B; \odot, *, 0)$ to a BCH-semigroup $(\dot{B}; \dot{\odot}, \dot{*}, \dot{0})$ is a mapping $\zeta : B \longrightarrow \dot{B}$ satisfying:

 $\zeta(p \odot q) = \zeta(p) \circ \zeta(q) \text{ and } \zeta(p * q) = \zeta(p) * \zeta(q).$

A surjective homomorphism is said to be an epimorphism. The set of those elements of B which are mapped onto the element $\acute{0}$ of \acute{B} is said to be the kernel of ζ , denoted by Ker ζ , and written as Ker $\zeta = \{k \in B : \zeta(k) = \acute{0}\}.$

Definition 2.11. (Semi-subgroup) A subset $H \neq \emptyset$ of a BCH-semigroup $(B; \odot, *, 0)$ is said to be a semi-subgroup if

 $r, t \in H \text{ implies } r * t \in H \text{ and } r \odot t \in H.$

Theorem 2.12. Let $(B; \odot, *, 0)$ and $(\dot{B}; \dot{\odot}, \dot{*}, \dot{0})$ be two BCH-semigroups. Let $\xi : B \longrightarrow \dot{B}$ be an epimorphism. Then

(a) The $Ker\xi = K$ is a semi-subgroup of B.

(b) The homomorphic image $\xi(B) = im\xi$ is a semi-subgroup of \dot{B} .

Proof. (a) Let $s_1, s_2 \in K$. Then $\xi(s_1) = \xi(s_2) = 0$, which implies $\xi(s_1 \odot s_2) = \xi(s_1) \odot \xi(s_2) = 0 \odot 0 = 0$. Also $\xi(s_1 * s_2) = \xi(s_1) * \xi(s_2) = 0 * 0 = 0$. So $s_1 \odot s_2$ and $s_1 * s_2 \in K$. Thus K is a semi-subgroup of B.

(b) Let $\dot{s}, \dot{p} \in \xi(B)$ such that $\dot{s} = \xi(s)$ and $\dot{p} = \xi(p)$, for $s, p \in B$. Consider $\dot{s} \star \dot{p} = \xi(s) \star \xi(p)$. As ξ is a homomorphism so $\dot{s} \star \dot{p} = \xi(s \star p) \in \xi(B)$. Similarly, $\dot{s} \odot \dot{p} = \xi(s) \odot \xi(p) = \xi(s \odot p) \in \xi(B)$. Hence $im\xi = \xi(B)$ is a semi-subgroup of \dot{B} .

3 BCH-Semigroup Ideals in BCH-Semigroups

Definition 3.1. (BCH-Semigroup Ideal) Let $(B; \odot, *, 0)$ be a BCH-semigroup and S be any subset of B. Then

(1) S is said to be a left BCH-semigroup ideal in B if
(i) r ∈ S, t ∈ B imply t ⊙ r ∈ S,
(ii) 0 * r ∈ S for all r ∈ S,
(iii) t * r ∈ S, r ∈ S imply t ∈ S.
(2) S is said to be a right BCH-semigroup ideal in B if
(i) r ∈ S, t ∈ B imply r ⊙ t ∈ S,
(ii) 0 * r ∈ S for all r ∈ S,
(iii) t * r ∈ S, r ∈ S imply t ∈ S.
(3) S is said to be a BCH-semigroup ideal in B if it is both left and right BCH-semigroup ideal.

Remark 3.2. [7] It is known that a left(right) BCH-semigroup ideal S is closed under * as well as under \odot . Moreover $0 \in S$ and a BCH-semigroup ideal is closed under \odot .

Theorem 3.3. Let $(B; \odot, *, 0)$ be a BCH-semigroup satisfying the condition 0 * t = 0 for all $t \in B$. Let S be a semi-subgroup of B satisfying the condition $i * h \in S$ imply $h * i \in S$, $i, h \in B$. Then S is a left BCH-semigroup ideal in B.

Proof. It is given that S is a semi-subgroup of a BCH-semigroup B. Let $i \in S$. Since S is a semi-subgroup so $0 \in S$. Thus $0 * i \in S$, for all $i \in S$. Let $i \in S$, $t \in B$, then $t \odot i \in B$. So by hypothesis $0 * (t \odot i) = 0 \in S$, which implies $(t \odot i) * 0 = t \odot i \in S$. Next, suppose that $i, h * i \in S$. Then $i, i * h \in S$. Since S is a semi-subgroup, so $(i * h) * i \in S$, which gives $0 * h \in S$. Hence $h * 0 = h \in S$. Hence S is a left BCH-semigroup ideal in B.

Theorem 3.4. Let $(B; \odot, *, 0)$ be a BCH-semigroup satisfying the condition 0 * q = 0 for all $q \in B$. Let S be a semi-subgroup of B satisfying the condition $s * h \in S$ imply $h * s \in S$, for all $s, h \in B$. Then S is a right BCH-semigroup ideal in B.

Proof. It is given that S is a semi-subgroup of a BCH-semigroup B. Let $s \in S$. Since S is a semi-subgroup so $0 \in S$. Thus $0 * s \in S$, for all $s \in S$. Let $s \in S$, $q \in B$ then $s \odot q \in B$. So by hypothesis $0 * (s \odot q) = 0 \in S$, which implies $(s \odot q) * 0 = s \odot q \in S$. Next, suppose that $s, h * s \in S$. Then $s, s * h \in S$. Since S is a semi-subgroup, so $(s * h) * s \in S$, which gives $0 * h \in S$. Hence $h * 0 = h \in S$. Hence S is a right BCH-semigroup ideal in B.

Proposition 3.5. Let $(B; \odot, *, 0)$ be a BCH-semigroup and let I be a BCH-semigroup ideal of B. If $v \le u$ and $u \in I$, for any $v \in B$, then $v \in I$.

Proof. Let $u \in I$ and $v \leq u$. Then $v * u = 0 \in I$. So by definition of a BCH-semigroup ideal, $v \in I$.

Theorem 3.6. Let $(B; \odot, *, 0)$ and $(\dot{B}; \dot{\odot}, \dot{*}, \dot{0})$ be BCH-semigroups. Let $f : B \longrightarrow \dot{B}$ be a BCH-semigroup homomorphism, then Kerf is a BCH-semigroup ideal in the BCH-semigroup B.

Proof. Let $u \in Kerf$. So f(u) = 0. Further f(0 * u) = f(0) * f(u) = 0 * 0 = 0. Thus $0 * u \in Kerf$. Now, for a left BCH-semigroup ideal, let $i \in H$ and $r \in Kerf$. We claim that $i \odot r \in Kerf$. Consider $f(i \odot r) = f(i) \circ f(r) = f(i) \circ 0 = 0$. This implies $i \odot r \in Kerf$. Similarly, we can show that $r \odot i \in Kerf$. Let $u \in Kerf$, $v * u \in Kerf$. This implies f(u) = 0 and f(v * u) = 0. Thus f(v) * f(u) = 0, which implies f(v) * 0 = 0. That is f(v) = 0. So $v \in Kerf$. So Kerf is a BCH-semigroup ideal of B.

Theorem 3.7. Let $(B; \odot, *, 0)$ and $(\dot{B}; \dot{\odot}, \dot{*}, \dot{0})$ be BCH-semigroups. Let $\Psi : B \longrightarrow \dot{B}$ be an epimorphism. If S is a BCH-semigroup ideal of a BCH-semigroup B, then $\Psi(S)$ is a BCH-semigroup ideal of \dot{B} .

Proof. It is given that $\Psi : B \longrightarrow \dot{B}$ be an epimorphism and S is a BCH-semigroup ideal of B. We have to prove that $\Psi(S)$ is a BCH-semigroup ideal of \dot{B} . From Theorem 2.12 (b), $\Psi(S)$ is a semi-subgroup of \dot{B} . Let $\dot{r} \in \Psi(S)$. Since $\Psi(S)$ is a semi-subgroup so $\dot{0} \star \dot{r} \in \Psi(S)$, for all $\dot{r} \in \Psi(S)$. Let $\dot{c} \in \dot{B}$ and $\dot{r} \in \Psi(S)$, since Ψ is an epimorphism, so there exists $c \in B$ and $r \in S$ such that $\Psi(c) = \dot{c}$ and $\Psi(r) = \dot{r}$. Consider, $\dot{c} \circ \dot{r} = \Psi(c) \circ \Psi(r) = \Psi(c \circ r)$. As S is a BCH-semigroup ideal, $c \circ r \in S$, $c \in B, r \in S$. This implies $\Psi(c \circ r) \in \Psi(S)$. This gives $\dot{c} \circ \dot{r} \in \Psi(S)$. Also, consider, $\dot{r} \circ \dot{c} \in B$. This implies $\Psi(r \circ c) \in \Psi(S)$. This gives $\dot{r} \circ \dot{c} \in \Psi(S)$. Now, we assume $\dot{x} \in \Psi(S)$, $\dot{v} \in \dot{B}$, so there exist $x \in S$ and $v \in B$ such that $\Psi(x) = \dot{x}$ and $\Psi(v) = \dot{v}$. Let $\dot{v} \star \dot{x} \in \Psi(S)$, $\dot{x} \in \Psi(S)$. We have to show that $\dot{v} \in \Psi(S)$. Consider, $\dot{v} \star \dot{x} = \Psi(v) \star \Psi(x) = \Psi(v \star x)$. As S is a BCH-semigroup ideal in \dot{B} .

Theorem 3.8. Let $(B; \odot, *, 0)$ and $(\dot{B}; \acute{\odot}, \acute{*}, \acute{0})$ be BCH-semigroups. Let $\Psi : B \longrightarrow \dot{B}$ be an epimorphism. Then a semi-subgroup \dot{I} of \dot{B} is a BCH-semigroup ideal in \dot{B} if and only if its inverse image $I = \Psi^{-1}(\dot{I})$ is a BCH-semigroup ideal in B.

Proof. Suppose that \hat{I} is a BCH-semigroup ideal of \hat{B} and $I = \Psi^{-1}(\hat{I}) = \{a \in B : \Psi(a) = \hat{a} \in \hat{I}\}$. To show that I is a BCH-semigroup ideal in B, let $a \in I$. Since I is a semisubgroup so $0 * a \in I$, for all $a \in I$. Let $a \in I$ and $x \in B$. We Consider $x \odot a$ and $a \odot x$. These belongs to I if and only if $\Psi(x \odot a)$ and $\Psi(a \odot x)$ belong to \hat{I} . But $\Psi(x \odot a) = \Psi(x) \odot \Psi(a)$ is an ingredient of \hat{I} , because \hat{I} is a BCH-semigroup ideal in \hat{B} . Also $\Psi(a \odot x) = \Psi(a) \odot \Psi(x)$ is an ingredient of \hat{I} , because \hat{I} is a BCH-semigroup ideal in \hat{B} . Hence $x \odot a$, $a \odot x \in I$. Next, suppose that $a, x * a \in I$. Now, we have to prove that $x \in I$. Further, $x \in I$ if and only if $\Psi(x) \in \hat{I}$. It is obvious $\Psi(a), \Psi(x * a) \in \hat{I}$. Consider, $\Psi(x * a) = \Psi(x) * \Psi(a)$, which implies $\Psi(x) \in \hat{I}$, because \hat{I} is a BCH-semigroup ideal in \hat{B} . Hence $x \in I$. Thus I is a BCH-semigroup ideal in B. Converse follows from Theorem 3.9.

Theorem 3.9. Let $(B; \odot, *, 0)$ and $(\dot{B}; \acute{\odot}, \acute{*}, \acute{0})$ be BCH-semigroups. Let $\Psi : B \longrightarrow \dot{B}$ be an epimorphism. Then there is one-one correspondence between the BCH-semigroup ideals of \dot{B} and those BCH-semigroup ideals of B which contain the kernel K.

Proof. Let β be a mapping from the collection Γ of all BCH-semigroup ideals of B containing K to the collection Γ of all BCH-semigroup ideals of \hat{B} given by $\beta(I) = \hat{I} = \Psi(I)$, $I \in \Gamma$. Now $\hat{I} = \Psi(I) \in \hat{\Gamma}$ by Theorem 3.9. If $I_1, I_2 \in \Gamma$ and $\beta(I_1) = \beta(I_2) = \hat{I}$ (say) then we show that $I_1 = I_2$. Let $I_1 = \Psi^{-1}(\hat{I})$. Then certainly $I_1 \subseteq I$. Next, let $a \in I$. Then $\Psi(a) = \hat{a} = \Psi(a_1)$, from $\beta(I) = \hat{I} = \Psi(I_1)$, $(\because \hat{a} \in \hat{I}, a_1 \in I_1)$. Thus $\Psi(a) \notin \Psi(a_1) = \hat{0}$, which implies $\Psi(a \ast a_1) = \hat{0}$, and hence $a \ast a_1 \in K \subseteq I_1$. It follows that $a \ast a_1 \in I_1$. As I_1 is a BCH-semigroup ideal so $a \in I_1$. It yields that $I \subseteq I_1$. So, we have $I = I_1$. Similarly $I = I_2$. Hence β is injective. Also, each $\hat{I} \in \hat{\Gamma}$ is the image of an $I = \Psi^{-1}(\hat{I})$. Hence β is surjective and therefore bijective. Consequently, β is one-one correspondence between the BCH-semi-group ideals of \hat{B} and those BCH-semigroup ideals of B which contain K.

4 Conclusion

In this paper, we have studied the BCH-semigroup ideal of a BCH-semigroup. Certain conditions for a semi-subgroup to be a BCH-semigroup ideal have been investigated. Some results about

BCH-semigroup homomorphisms related to BCH-semigroup ideals are also proved.

References

- S. S. Ahn, Y. H. Kim and J. M. Ko, Filters in Commutative BE-Algebras, *Korean Math. Soc*, 27(2), 233-242 (2012).
- [2] S. S. Ahn and Y. H. Kim, On BE-Semigroups, I. J. Math. Math. Sci., Article ID 676020 (2011).
- [3] M. A. Chaudhry and H. Fukhar-ud-din, Some Categorical Aspects of BCH-Algebras, I. J. Math. Math. Sci., 27, 1739-1750 (2003).
- [4] M. A. Chaudhry, On BCH Algebras, Math. Japonica, 36(4), 665-676 (1991).
- [5] M. A. Chaudhry: On Weakly Positive Implicative and Weakly Implicative BCI-Algebra, *Math. Japonica*, 35, 141-151 (1990).
- [6] K. H. Dar and M. Akram, On Endomorphism of BCH-Algebras, Annals of Uni. of Craiova, Math. Comp. Sci. Ser., 33, 227-234 (2006).
- [7] H. Fukhar-ud-din : On BCH-Algebras, M.phil. Thesis, B. Z. U, Multan (1992).
- [8] W. A. Dudek and J. Thomys, On Decomposition of BCH-Algebras, Math. Japonica, 35, 1131-1138 (1990).
- [9] Q. Ping Hu and X. Li, On Proper BCH- Algebras, Math. Japonica, 30, 659-661 (1985).
- [10] Q. Ping Hu and X. Li, On BCH-Algebras, Math. Seminor Notes, 11, 313-320 (1983).
- [11] K. Iseki, On BCI- Algebras, Math. Seminor Notes, 8, 125-130 (1980).
- [12] K. Iseki and S. Tanaka, An introduction to Theory of BCK- Algebras, Math. Japonica, 23, 1-26 (1978).
- [13] K. Iseki, On Congruence Relation on BCK- Algebras, Math. Seminor Notes, 5, 322-346 (1977).
- [14] K. Iseki and S.Tanaka, Ideal Theory of BCK- Algebras, Math. Japonica, 21, 352-366 (1976).
- [15] Y. H. Kim and K. S. So, BE-Algebras and Related Topics, Korean Math. Soc., 27(2), 217-222 (2012).
- [16] H. S. Kim and Y. H. Kim, On BE-Algebras, Scientia Math. Japonicae, 66(1), 113-116 (2007).
- [17] Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa, Seoul, Koria (1994).
- [18] A. A. Siddiqui: Isomorphism Theorems and Ideal Series in BCI-Algebras, M. Phil. Thesis, B. Z. U, Multan (1988).
- [19] Y. H. Yon, S. M. Lee and K. H. Kim, On Congruences and BE-Relations in BE-Algebras, *I. Math Forum*, 46(5), 2263-2270 (2010).

Author information

Farhat Sultana and Muhammad Anwar Chaudhary, Centre for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, 60800, Pakistan.. E-mail: ferhat.sultana@yahoo.com, chaudhry@bzu.edu.pk

Received: January 11, 2015.

Accepted: April 15, 2015