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Abstract Let f : A — B be a ring homomorphism and let J be an ideal of B. In this paper,
we investigate the transfert of the notion of adequate rings to the amalgamation A ></ J. Our aim
is to give new classes of commutative rings satisfying this property.

1 Introduction

All rings in this paper are commutative with unity. We denote by U(R) the set of unit of a ring
R. And, if a, b € R, a|b means a divides b, that is b = ac for some ¢ € R.

We know that an elementary divisor ring is a Hermite ring. Kaplansky showed that for the
class of adequate domains being a Hermite ring was equivalent to being an elementary divisor
ring. Gillman and Henriksen showed that this was also true for rings with zero-divisors. See for
instance [11, 14, 18, 24].

Now, we give the definition of adequare ring. A ring A is said an adequate ring if for all
a € A—-{0}and b € A, there exists two non-zero elements r, s of A such that :
a)a =rs.
b) rA + bA = A.
c) For every t € A — U(A), t divides s implies tA + bA # A.

The notion of an adequate domain was originally defined by Helmer [14]. By definition,
every adequate domain is a Priifer domain. Also, every principal ideal domain is adequate. An
example of an adequate ring which is not a principal ideal domain is furnished by the set of in-
tegral functions with coefficients in a field F. Also, it is clear to see that a local ring is adequate.
For instance, see [14, 24].

Let A and B be two rings, let J be an ideal of B and let f : A — B be a ring homomorphism.
In this setting, we can consider the following subring of A X B:

Avd J=|(a, fa)+ j)/acA,jeJ)

called the amalgamation of A with B along J with respect to f (introduced and studied by
D’ Anna, Finocchiaro, and Fontana in [6, 7]). This construction is a generalization of the amal-
gamated duplication of a ring along an ideal (introduced and studied by D’ Anna and Fontana in
[8, 9, 10] and denoted by A »« I). Moreover, other classical constructions (such as the A + XB[X],
A + XB[[X]], and the D + M constructions) can be studied as particular cases of the amalgama-
tion [6, Examples 2.5 & 2.6] and other classical constructions, such as the Nagata’s idealization
and the CPI extensions (in the sense of Boisen and Sheldon [3]) are strictly related to it (see [6,
Example 2.7 & Remark 2.8]).

One of the key tools for studying A »</ J is based on the fact that the amalgamation can
be studied in the frame of pullback constructions [6, Section 4]. This point of view allows the
authors in [6, 7] to provide an ample description of various properties of A »</ J, in connection
with the properties of A, J and f. Namely, in [6], the authors studied the basic properties of this
construction (e.g., characterizations for A »</ J to be a Noetherian ring, an integral domain, a
reduced ring) and they characterized those distinguished pullbacks that can be expressed as an
amalgamation. For instance, see [5, 6, 7, 8, 9, 10, 17, 21, 22].
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In this paper, we investigate the transfert of the notion of adequate rings to the amalgamation
A</ J. Our aim is to give new classes of commutative rings satisfying this property.

2 Main Results

Now, we investigate the transfer of the adequate property to amalgamation of rings A </ J.

Theorem 2.1. Let A be an integral domain, B be a ring, f : A — B be a ring homomorphism
and J be an ideal of B. Then, the following statements hold:

(i) f isinjective.
(ii) f(ANJ =(0).
(iii) Foreach x € (f(A)+J)—J,xJ = J.

Then A </ J is an adequate ring if and only if the following statements hold :
a) A is an adequate ring.
b) For eacha,b € A —U(A), aA + bA # A.

The proof of this theorem requires the following lemmas.

Lemma 2.2. Let A and B be a pair of rings, f : A — B be a ring homomorphism, J be an ideal
of B, and let (a,x) € A x B. Then, (a,x) € A/ J ifand only if x — f(a) € J.

Proof. Let (a,x) € AXB, (a,x) € Av/ J & (a,x) = (a, f(a) + j). So, it follows that there exists
jeJ:x=f(a)+jandsox— f(a)=je J O

Lemma 2.3. Let A and B be two rings, f : A — B be a ring homomorphism and J be an ideal of
B.
a) Assume that

(i) f(A)NJ=(0).
(ii) Foreach x e (f(A)+J)—J, xJ =J.
(iii) A »< J is an adequate ring.

Let (a,x), (b,y) € A s/ J such that b # 0, and let ¢ € A. Then, a = bc if and only if there exists
z € f(A) + J such that :

(a,x) = (b,y)(c,2)
(c,2) e Avsl J

b) Let (a, x), (b,y) € A v/ J. Then, (a,x)A »</ J + (b,y)A v/ J = A v</ J if and only if
aA + bA = A.
c) Let (a,x) € A v/ J. Then, (a,x) € U(A v/ J) ifand only if a € U(A).

Proof. a) Assume that (1), (2) and (3) hold.
Let (a,x) and (b,y) € A v/ J such that » # 0 and let ¢ € A. Assume that there exists

z € f(A) + J such that (c,z) € A »< J and (a, x) = (b, y)(c, z). Then, it follows that a = bc.
Conversely, assume that @ = bc. Let x — f(a) = jand y — f(b) = k. Then x = f(a) + j and
y = f(b) + k. Since (a, x) and (b, y) € A >/ J, then by Lemma 2.2, j, k € J. We claim that y ¢ J.
Deny, y — f(b) = k. So, f(b) = y — k € J. Therefore, f(b) € f(A) N J = (0). Consequently,
f(b) = 0. Using the fact f is injective, it follows that b = 0, which is a contradiction. Hence,
y ¢ J.Sincey € (f(A)+ J)— J,then yJ = J. We have y — kf(c)k € J J = yJ, and so there exists
[ € Jsuch that yl = j—kf(c). So, j = yl + kf(c). Let z = f(c) + [. Then z € f(A) + J and
x = fla)+j = flbo) + kf(c) +yl = (f(b) + b f(c) + yl = yf(c) + yl = y(f(c) + D). So, x = yz.
Hence,

(a.2) = (b.y)(c.2)

(c,2) e Avdl J
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b) Let (a, x), (b,y) € Av</ J. Then:

n((a, x)A >’ J+ (b, y) A J)=A

a((a, X)A »<" J) + n((b,)A s J) = A

((a, x))m(A >/ J) + 7((b, y)m(A > J) = A
aA + bA = A.

(a,)A > J+ (b, y)Avsd J=As J

¢t ¢ 0O

¢) Let (a, x) € A >/ J. Then:

(a,x) € UA > ) d(a, x)|(1, 1) such that (a, x) = (t,u)(b,y)
da # 0 and (a, x)|(1, 1)
da # 0 and 4|l

ae UA)

Tt ¢ 0 ¢

O

Lemma 2.4. Let f : A — B be a rings homomorphism and J be an ideal of B such that the
following statements hold:

(i) f isinjective.

(it) f(A)NJT =(0).
(iii) YV x e (fA)+ ) - J xJ = J.
(iv) A< J is an adequate ring.

Then A is an adequate ring.

Proof. Leta € A — {0}, b € A. Then (a, f(a)) € (A =/ J) — {0} and (b, f(b)) € A =/ J . Since
A »</ J is an adequate ring, then there exists (r, u), (s,v) € A >/ J such that

(a, f(@)) = (r,u)(s,v)
(r,wA v/ J+ (b, f(b))A v/ J) =A< T
Y(t,w) € Avl J—{UA " D} : (t,w)I(s,v) = (t,w)A s J + (b, fF(b)Av</ J # Av/ J

- We have (a, f(a)) = (r,u)(s,v) = (rs,uv). So, a = rs. Let m be the canonical projection of
A/ JonA. Since (r,u)A »< J + (b, f(b))(A >/ J) = A/ J, then:

7((r, u)m(A »< J) + 1((s,v))m(A >/ J)
= a((r,wA > J) + 1((s,v)A > J)

= 7((r,u)A " J + (s,v)A < J)

= n(A='J)

= A

rA + bA

-Lett € A— U(A) such that t]s : Using the fact #|s and s|a, then f|a since ¢ # 0 (a # 0). By a)
of Lemma 2.3,(t, f(1)|(s, v). Since t € A — U(A), then one can easily check that (¢, (£)) € A >
J — U(A »</ J). Therefore, (¢, f(£)|(s,v). So, (t, fF()A >/ J + (b, fF(b))(A v/ J) # A »/ J.
Hence, it follows that tA + bA # A. Thus, A is an adequate ring. O
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Proof of Theorem 2.1. Assume that A is an integral domain, f is injective, f(A) N J = (0) and
for each x € (f(A) +J) — J, xJ = J. If A »</ J is an adequate ring, then A is an adequate ring
by Lemma 2.4. Now, let #, p € A — U(A) such that tA + pA = A. So, t # O since p ¢ U(A). Let
0 # j € J. Clearly, (0, j) and (p, f(p)) € A »</ J. Using the fact A =/ J is an adequate ring, then
there exists (r, u), (s,v) € A >/ J such that :

0, j) = (r,u)(s,v)
(A< J+(p, f(p)As/ J)=Avsl J
Vke Avs/ J—{UA > J)} 1 kl(s,v) = kA s/ T+ (p, f(p)Av J# A J

Then by b) of Lemma 2.3, YA + pA = A and we have p # 0 since p ¢ U(A). Since (0, j) =
(r,u)(s,v), then s = O (since A is an integral domain, rs = 0 and r # 0). Since #|s and s = 0,
then by assumption and by @) of Lemma 2.3, (z, f(¢))|(s, v). In fact of view t € A — U(A), by ¢)
of Lemma 2.3, (t, (1)) € Av</ J — U(A >/ J). We have t € A — U(A) and s since s = 0. And
so (1, F()A </ T+ (p, f(P))A </ J) £ A »</ J. Therefore, by b) of Lemma 2.3, tA + pA # A,
a contradiction. Hence, for each a,b € A — U(A), aA + bA # A.

Conversely, assume that ) and b) hold. Consider (a, x) € A >/ J — {0} and (b, y) € A >/ J. Two
cases are possible :

Case 1 : a # 0. Since A is an adequate ring, then @ € A — {0} and b € A, and so there exists
r, s € A such that

a=rs
rA+bA =A
VieA-UA): tls=>tA+bA+A

Since rs = a # 0, then r # 0, and by a) of Lemma 2.3, there exists u € f(A) + J such that :

(a,x) = (r, f(r))(s,u)
(s,u) e Aval J

Since rA + bA = A, then by b) of Lemma 2.3, (r, f(r)A </ J + (b,y)A v/ J = A »f J.
Let (1,v) € A >/ J — U(A »/ J) such that (¢, v)|(s, u). By ¢) of Lemma 2.3, t € A — U(A) since
(t,v) € Av</ J—U(A »</ J). Using the fact (¢, v)|(s, u), we obtain #|s and so #|s and t € A — U(A).
Consequently, tA + bA # A. By b) of Lemma 2.3, (t, V) A »</ J + (b,y)Av</ J # A s/ J.
Case2:a=0.(a,x)=(0,x) # 0and so x # 0.

If b € U(A) : then (b, y) € U(A »<f J) and

(a,x) = (a,x)(1,1)
(a,X)A >’ J+ (D, A" J=(a,x)Av/ J+ A/ JT=An T
VkeAv J—UA" 1) kl(1,1) = kA s/ T+ (b,y)A>/ J £ Asl T

Assume that b ¢ U(A) : Then by ¢) of Lemma 2.3, (b, y) ¢ U(A </ J). So

(a,x) = (1, 1)(a, x)
(1L, DA T+ (b, )A>/ T=Av<d T+ (a,x)Ap<" JT=Abd J
Y(t,v) € Av/ J—U(A > J): (1,v)|(a,x) = t € A— U(A) by c)of Lemma2.3.
Since t,b € A — U(A), then by b), tA + bA # A. Hence, by b) of Lemma 2.3, it follows that

(t, VA T+ (b,y)Av<! J £ A .
Thus, A >/ J is an adequate ring. o

Corollary 2.5. Let A be an integral domain, f : A — B be a rings homomorphism and J be an
ideal of B such that:

(i) f isinjective.
(ii) f(A) € U(B) U {0}
(iii) Forevery x € (f(A)+J)—J,xJ = J.

Then A »</ [ is an adequate ring if and only if the following statements hold:
a) A is an adequate ring.
b) For everya,b € A — U(A), aA + bA # A.
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Proof. Assume that A is an integral domain and (1), (2) and (3) hold. By Theorem 2.1, we need
to show that f(A)NJ = (0). But f(A)NJ c (UB)U{OHhNJ =UMBINIHU{H0}INJ)=n0=0.
Hence, we obtain desired result by Theorem 2.1.

O

Corollary 2.6. Let A be an integral domain, B be a ring, f : A — B be a ring homomorphism
and J be a proper ideal of B. Assume that the following statements hold:

(i) f isinjective.
(it) f(A) < U(B) U {0}
(iii) B is local.

Then A v/ J is an adequate ring if and only if the following statements hold :
a) A is an adequate ring.
b) For everya,b € A — U(A), aA + bA # A.

Proof. Assume that A is an integral domain and the statement (1), (2) and (3) hold. By assump-
tion, B is local, then B has an unique maximal ideal. Since J is a proper ideal of B, then J C M.
For every x € [f(A) + J] — J, x € f(A) + J imply that there exists b € f(A) and j € J such that
x=b+j. Sincex=b+ j¢ Jand je€ J,thenb # 0. We have b € f(A) C U(B) U {0} and using
the fact b # 0, then b € U(B). We claim that x ¢ M. Suppose that x € M. So :

b+j=xeM
jeJcM

Therefore, b = b+ j— j € M and so b ¢ U(B), a contradiction. Hence, x ¢ M. Since (B, M) is

local and x ¢ M, then necessarily x € U(B). So xJ = J. We showed that the statement (3) of

Corollary 2.5. Hence, by Corollary 2.5, we obtain the result desired.
|

Corollary 2.7. Let A be an integral domain, K := qf(A) the quotient field of A, B := K[[x]] be
the ring of power series with an indeterminate x with coefficients in K, f : A — B be an injective
ring homomorphism and J := x"K[[x]] be a proper ideal of B. Then, A =/ J is an adequate ring
if and only if the following statements hold :

a) A is an adequate ring.

byVa,beA—-U(A),aA + bA # A.

Proof. Assume that A is an integral domain, f is injective, B := K[[x]], and J := K[[x]]. We
have f(A) C U(K][[x]]) U {0}. Therefore, the statement (2) of Corollary 2.6. Since B := K[[x]] is
local, then we obtain the desired result by Corollary 2.6. O

We end the first main result by the following characterization.

Theorem 2.8. Let A be a principal ideal domain, B be a ring, f : A — B be a ring homomor-
phism and J be an ideal of B such that the following statements hold:
(i) f isinjective.
(ii) f(A) c U(B) U {0}.
(iii) B is local.
Then A v [ is an adequate ring if and only if A is local.

Before proving this Proposition, we need the following Lemma.

Lemma 2.9. Let A be a principal ideal domain. Then A is local if and only if for every p,q €
A —-U(A), pA+qA # A.
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Proof. Assume that A is local and let M be its maximal ideal. Then, for each p,q € A — U(A),
PA + gA C M and so pA + gA # A.

Conversely, assume that for each p,q € A — U(A), pA + gA # A. We claim that A is not local.
Deny. Then, A has at least two maximal ideals denoted M and N. Using the fact A is a principal
ideal domain, then there exists p,q € A such that M = pA and N = gA. Therefore, p and ¢
are irreducible since A is not a field and M and N are maximal ideals of A. Hence, p and g are
not associated (since M # N), so p and g are co-primes and hence pA + gA = A, (since A is a
principal ideal domain) a contradiction. Hence, for every p,q € A — U(A), pA + gA # A. O

Proof of Theorem 2.8. Assume that A is a principal ideal domain, f is injective, f(A) € U(B) U
{0} and B is local. If A =</ J is an adequate ring, then by Corollary 2.6, aA + bA # A for every
a,b € A—-U(A). Hence, by Lemma 2.9, A is local, as desired.

Conversely, assume that A is local. Hence, A »</ J is local (since B is local and so J C Rad(B))
and so A >/ J is an adequate ring, as desired. O

Next, we explore a different context, namely, when J? = 0. We need the following Lemma.

Lemma 2.10. Let A be an integral domain, B be a ring, f : A — B be a ring homomorphism
and J be an ideal of B such that:

(i) f isinjective.
(ii) J* = (0).
(iii) Foreveryte A —{0}, f(t)J = J.
Then A is an adequate ring provided A »<' J is an adequate ring.

Proof. Assume that A »</ J is an adequate ring. Let a € A — {0} and b € A. Clearly, (a, f(a)) and
(b, f(b)) € A >/ J —{0}. Since A =/ J is an adequate ring, then there exists (r,u) and (s,v) €
A v</ J such that:

(a, f(a)) = (r,u)(s,v)
(r,wA v/ J+ (b, f(b)Avsl J=Avl J
Y(t,w) € Avf JT—UA " )1 (t,w)|(s5,v) = (t,w)A s/ T+ (b, f(B)A s/ T+ Al ]

We have (a, f(a)) = (r,u)(s,v) = (rs,uv). So, a = rs. Let  be the surjection of A >/ J to A.
Since (r, u)A v</ J + (b, f(b))A»</ J = A</ J, then :

w((r, u)m(A </ J) + n((s,v)m(A b/ J)
= a((r,wA > J) + n((s,V)A > J)

= a((r,wA s J+(s,v)A» J)

= n(Aw'J)

A

rA + bA

Let r € A — U(A) such that f|s. Using the fact t|s and sla (@ = rs), then f|la and so ¢ # 0.
Therefore, by a) of Lemma 2.3, (¢, f(£))|(s,v), and so by ¢) of Lemma 2.3, (¢, f(1)) € A »</
J — U(A >/ J) (since t € A — U(A)). Consequently, (, f(1)A »</ J + (b, f(b))A v/ J # A vl J.
Hence, by b) of Lemma 2.3, tA + bA # A. Thus, A is an adequate ring. O

Now, to the second main result of this paper.

Theorem 2.11. Let A be an integral domain, B be a ring, f : A — B be a ring homomorphism
and J be an ideal of B such that:

(i) f isinjective.
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(ii) J? = (0).
(iii) Foreveryte A —{0}, f(t)J = J.

Then A »< [ is an adequate ring if and only if the following statements hold :
a) A is an adequate ring.
b) For every a,b € A — U(A), aA + bA # A.

Proof. Assume that A is an integral domain and the statement (1), (2) and (3) hold. Assume that
A »</ J is an adequate ring. Then :

a) By Lemma 2.10, A is an adequate ring.

b) We show that aA+bA # A, for every a,b € A—U(A). Suppose that there exists t, p € A—U(A)
such that tA + pA = A. Necessarily r # 0 since p € A — U(A). Let 0 # j € J. Clearly, (0, j)
and (p, f(p)) are elements of A >/ J which is an adequate ring. So, there exists (r, ) and
(s,v) € A > J such that

0, ) = (r,u)(s,v)
(A va! J+(p, f(p)A>/ J=Ass/ J
Vke Avd J—UA > J): K|(s,v) = kA v T+ (p, F(pNA s J £ Av<l J

Since (r,u)A v/ J + (p, f(p))A >/ J = A >/ J, then by b) of Lemma 2.3, rA + pA = A. It is
easy to see that r # 0 since p ¢ U(A). We have (0,j)=(r,u)(s,v) and so rs = 0. Therefore, s = 0
since r # 0 and A is an integral domain. By a) of Lemma 2.3, we obtain (¢, f(#))|(s, v) since f|s.
By ¢) of Lemma 2.3, (¢, f(1)) € Av</ J— U(A »</ J)since t € A — U(A). Using the fact #|s (since
s =0)and t € A — U(A), then (¢, f(1)A v/ J + (p, f(p))A v/ J # A »</ J. Hence By b) of
Lemma 2.3, tA + pA # A, a contradiction. Thus, Y a,b € A — U(A), aA + bA # A.

Conversely, assume that A is an adequate ring and ¥V a,b € A — U(A), aA + bA # A. Let
(a,x) € Av</ J—{0}, and let (b, y) € A »</ J. Two cases are possible:
Case 1 : a # 0. Since A is an adequate ring and a € A — {0} and b € A, then there exists r, s € A
such that :
a=rs
rA+bA=A
VieA-U(A) : tls = tA+ DA # A.

Since rs = a, then r # 0 and by a) of Lemma 2.3, there exists u € f(A) + J such that

(a,x) = (r, f(r))(s, u)
(s,u) € Avsl J

Using the fact rA+bA = A, then by b) of Lemma 2.3, (r, f(r)A >/ J+(b,y)A </ J = A</ J.
Let (1,v) € A =/ J — U(A v/ J) such that (¢,v)|(s, u). By ¢) of Lemma 2.3, t € A — U(A) since
(t,v) €€ Av</ J — U(A >/ J). Using the factt € A — U(A) and 1s, then tA + bA # A. Hence, by
b) of Lemma 2.3, it follows that (¢, v)A b</ J + (b,y)A >/ J # Av</ J.

Case2:a=0.
(a,x) = (0,x) # 0 and so x # 0. If b € U(A), then by ¢) of Lemma 2.3, (b, y) € U(A »</ J). Then

(a,x) = (a,x)(1,1)
(a,x)A v/ J+ (b,y)Av>s/ J=(a,x)Av</ J+ A/ J=Ar/ T
VkeAv J—UA" 1) kl(1,1) = kA s/ T+ (b,y)A>/ J£ Al T

Assume that b ¢ U(A). Then (b, y) ¢ U(A »/ J). Therefore,

(a,x) = (1, 1)(a, x)
(1L, DA T+ (b,)A>/ J=(a,x)A>/ J+Av/ J=Abd J
V(t,v) e Avd JT—UA > J): (1,v)|(a,x) = kA v J+ (b,y)Af J£ AT

Since (t,v) € U(A »</ J), thent € A — U(A). Moreover t,b € A — U(A). Therefore, tA + bA # A.
By b) of Lemma 2.3, we obtain
(t, VA >/ J + (b,y)A v/ J # A</ J Thus, A >/ J is an adequate ring. o
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Corollary 2.12. Let A be a principal ideal domain, B be a ring, f : A — B be a ring homomor-
phism and J be an ideal of B such that J C Rad(B) and:

(i) f isinjective.
(ii) J* = (0).
(iii) Foreveryte A —{0}, f(©)J = J.
Then A v/ J is an adequate ring if and only if A is local.

Proof. Assume that A is a principal ideal domain, f is injective, J> = (0)and forall t € A — {0},
f(OJ = J. If A »</ J is an adequate ring, then by Theorem 2.11, aA + bA # A for every
a,be A—-U(A), and so A is local by Lemma 2.9.

Conversely, assume that A is local. Hence, A »</ J is local since J C Rad(B) (since J? = (0)),
and so A =</ J is an adequate ring. O

Example 2.13. Let A := Z, B := R[[X]]/(X?> + D*RIIX]], J = (X% + D?R[[XT])/(X? + D*RI[X]]
be an ideal of B and
f: A - B
a — fl@=a

be a ring homomorphism. Then A »</ J is not an adequate ring.

Proof. A is a principal ideal domain which is not local, it is clear that f is injective and J C
Rad(B) (since B := R[[X]]/(X?+1)*R[[X]] is local). On the other hand, J? = [(X?>+1)’R[[X]]/(X*+
D*RIIXT? = X% + D*R[[X]1/(X*> + D*R[[X]] = 0 and for t € A — {0}, f(1)J = #((X*> +
DPR[[X]1/(X* + D*R[[X]]) = ((X* + D*RI[X]]/(X* + D'R[[X]) = (X* + D*R[[X]]/(X* +
D*R[[X]] = J. Hence, by Theorem 2.8, A >/ J is not an adequate ring since A := Z is not
local. O

Example 2.14. Let A := Z,7, B := R[[X]]/(X>+ D*R[[X]], J = (X% + D)’R[[X]1/(X* + D*R[[X]]
be an ideal of B and
f: A - B

a — fla)=a

be a ring homomorphism. Then A »</ J is an adequate ring (since A is a discrete valuation
domain).
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