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Abstract. In this study, we consider a boundary value problem for a class of impulsive frac-
tional differential equations having general boundary conditions. We establish some sufficient
conditions for the existence of solutions for the problem by using some standard fixed point
theorems and give an illustrative example.

1 Introduction

This work deals with the existence and uniqueness of the solutions to the boundary value problem
(BVP for short), for the following impulsive fractional differential equation,

CDYy(t) = f(ty(t), teJ:= [OT}t7é9],1<a<2
Ay(60;) = I;(y(05)), A (9)—1*( (0;7)), j=1.2,.
y(0) = My(T) + Xoy(€) + A3 fo wy S,y(s))ds—i—k,,
y'(0) = By (T) + B2y’ (§) + B3 fOTwz(s,y(s))ds—i—kz,

(1.1)

where © D¢ is the Caputo fractional derivative, f : J x R — R, Ij, I7 - R — R, {9]-}?:1 is a
strictly increasing B—sequence(to be defined later) of impulse points 6; such that 0 = 0y < 6; <
02 < ... <Op <Opr1 =T,Ay(0;) =y(0]) —y(0; ) withy(6]) = llmhﬁm y(0; +h), y(0;) =
limy, ,o- y(6; + h),and Ay’(;) has a s1m11ar meaning for y ( ), and Aj, A2, Az, B, B2, B3, k1, ko
are real constants with Ay + X\, = 1, 51 + 52 # 1.

The subject of fractional differential equations has been recently paid increasing attention
and it is gaining much importance. That is why, the fractional derivatives serve an excellent
tool for the description of hereditary properties of different materials and processes. Actually,
fractional differential equations arise in many engineering and scientific disciplines such as,
physics, chemistry, biology, electrochemistry, electromagnetic, control theory, economics, signal
and image processing, aerodynamics, porous media, etc.(see [1, 2, 3, 4, 5, 6, 7, 8] and references
therein).

On the other hand, theory of impulsive differential equations for integer order has become
important and found its extensive applications in mathematical modeling of phenomena and
practical situations in both physical and social sciences in recent years. One can see a remark-
able development in impulsive theory. For instance, for the general theory and applications of
impulsive differential equations we refer the readers to [9, 10, 11, 12].

Boundary value problems take place in the studies of fractional differential equations differ-
ently many times (see [13, 14, 15, 16, 17, 18, 19, 20] and the relevant references therein). More
precisely, one can encounter some boundary value problems for impulsive fractional differential
equations including periodic, anti periodic, hybrid, closed, nonlocal, integral boundary etc. con-
ditions. We can refer the interested researchers to [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36].

As to this study, motivated by the mentioned recent works above, we form a class of general
boundary value problem, which includes some afore-mentioned boundary conditions, for impul-
sive fractional differential equations as in (1.1) and investigate the existence and uniqueness of
solutions to the BVP (1.1). We hope that this study will become a good generalization of some
initial-boundary value problems for impulsive differential equations and make contribution to
this emerging field.

The rest of the paper is organized as follows. In Section 2, we present some notations and
preliminary results about fractional calculus and differential equations to be used in the following
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sections. In Section 3, we discuss some existence and uniqueness results for solutions of BVP
(1.1). Namely, the first one is based on O’ Regan fixed point theorem , the second one is based
on Banach’s fixed point theorem. At the end, we give an illustrative example for our results.

2 Preliminaries

Definition 2.1. ([1, 2]) The fractional (arbitrary) order integral of the function h € L! (J,R4) of
order o € R is defined by

t(p_ gyl
18 h(t) = /0 (tri)h(s)ds,

where I'(.) is the Euler gamma function.

Definition 2.2. ([1, 2]) For a function % given on the interval .J, Caputo fractional derivative of
order o > 0 is defined by

_ S)n—a—l

0 = tiu ") (s)ds, n = [
D5t = [ s s, n = (o] +1.

where the function h(t) has absolutely continuous derivatives up to order (n — 1).
Lemma 2.3. ([1, 13]) Let o > 0, then the differential equation
“D§h(t) =0
has solution
h(t)=co+ecit+et? + .. tent" !, ¢ €R, i=0,1,2,...,n—1, n=[a] + 1.
Lemma 2.4. ([1]) Let « > 0, h(t) € C™ [a, b], then
ICE D h(t) = h(t) +co+er(t —a) +ea(t —a)® + ..+ ey (t—a)" !,
forsomec; € R, i=0,1,2,...,n—1, n=[a] + 1.

Now, we introduce O’ Regan fixed point theorem to be applied to prove our main results
later.

Lemma 2.5. ([37]) Denote by U an open set in a closed, convex set Y of a Banach space FE.
Assume that 0 € U. Also assume that F(U) is bounded and F : U — Y is given by F =
F| + B, in which F\ : U — E is continuous and completely continuous and F> : U — E is
a nonlinear contraction(i.e., there exists a nonnegative nondecreasing function ¢ : [0,00) —
[0, 0) satisfying ¢(z) < z for z > 0, such that | Fa(z) — F>(y)|| < ¢ (|lz — y||) forall z,y € U),
then either

(C1) F has a fixed point v € U, or

(C3) there exists a point u € U and X € (0,1) with uw = \F (u), where U, OU represent the
closure and boundary of U, respectively.

Definition 2.6. ([38])If U is a subset of a Banach space X and T : U — X, then T is said to be
completely continuous if T is continuous and for any bounded set B C U, the closure of TU is
compact.

Denote by ¢ = {6} a collection of some impulse points mentioned above and a strictly
increasing sequence of real numbers such that the set .4 of indexes j is an interval in Z.

Definition 2.7. ([39]) 0 is a B-sequence, if one of the following alternatives is valid:
(a) 0 is empty,
(b) 6 is non-empty and finite set,
(c) 0 is an infinite set such that |6;| — oo as |j| — oo.

Let us set Jo = [60,61], Ji1 = (61,62],...., J;1 = (8;_1,0;], J; = (8;,0i1], J :=
[0,T)\{61,02, ...,0,} and define the set of functions:
PC(J,R) ={y:J = R:y € C((6;,0;11],R), 5 =0,1,2,...,p and there exist y(¢; ) and
y(0;), =1,2,...,pwithy(0; ) = y(0;)} and
PC'(J,R) ={y € PC(J,R), y € C((0;,0,11],R), j =0,1,2, .., p and there exist y ()
and y' (07), 3 = 1,2,...,p with y (0;) = n (0;)} which is a Banach space with the norm

Iyl = suppes {Iwllpc 5]} whete llglp = sup ()| : ¢ € 7},

’
e
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3 Main Results

To begin with, in order to deal with BVP(1.1), we shall consider the following linear problem
associated with BVP(1.1) and give its solution.

Lemma 3.1. Let £ € (0;,0,41); | is non-negative integer in Aie. 0 <1 < p 1 < a <2,
j=12,...pand 0,q1,q : J — R be continuous. A function y(t) € PC(J, R) is a solution of
the fractional integral equation

Ji o(s)ds +bo+bit, if ¢ € Jo,
—_g)e—! J 0; i—s) ! —
y(t) = fetj ! r<L> o(s)ds + ; U&—l (9 F(o)z) o(s)ds + Ii(y(0; ))} (3.1)

J ) g2 _ .
+32(t— 6:) [f;’i:l Ge-o(s)ds + I; (y(6; ))} +bo+bit, if t €J;
i=1 )

if and only if y(t) is a solution of the fractional BVP

“Doy(t) = olt), teJ
Ay(6;) = I;(y(6;)), Ay (6;) = T3 (y(6;)),
y(0) = \y(T) + Xay(€) + s fy ar(s)ds + k,
Y (0) = B1y/ (T) + Bay/ (&) + B3 fy wals.y(s))ds + ko,

(3.2)

where

-1 T T — g)o—1 D
by = W[Al (/0 (1_‘(63)0'(8)d5+z

/9 11 @;(Syl”g(s)ds + Ii(y(é’?))]

_ >\1T + )\25 bl

T
A ds+k
+ 3/0 wi(s,y(s))ds + ki o)

and

_ -1 T(Tfs)o‘*2 P
by = R -1 [ﬂl (/0 a1 o(S)ds—i—Z::

§ (g _ g)a2 l
6, </9 (lé(a_)l)a(s)ds £y

i=1

0 (g, _ g)a-2
| et +I;‘<y<9;>>D

i—1

% (0; —s)22 wl (-
/9 ma(s)ds + 17 (y(0;))

i—1

T
+ By / wa(s,y(s))ds + ko |

Proof. Let y be the solution of (3.2). If ¢ € Jy = [y, 01], then Lemma 2.4 implies that
bt —s)>!
y(t) =I%(t) —co —cit = / —————o0(s)ds — ¢p — cit,
6o F(Oé)
, bt —s)?
t) = ————o0(s)ds — ¢y,
V() = | Tyl e

for some ¢y, c; € R.
Ift € J, = (64, 62], then Lemma 2.4 implies that

y(t) = /9] (t}(sci)a_]a(s)ds —do—d(t —6y),
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y (t) = /9] (;,(jlszalgzo(s)ds —d

for some dy,d; € R. Thus we have

0 (g, _ g)a—1
y(0y) = /0 (61 l—-(a)) o(s)ds — co — 16, y(0]) = —do,

6 (g _ gya-2 /
y(or) = /0 (91'1‘(@ _)1) o(s)ds — e, y (0]) = —du.

IthilewofAy(&): y(07) —y(07) = Li(y(07)) and Ay (01) =y (67) — v (67) = I} (y(67)),

B 0, (91 o S)afl _
—dy = /0 (o) o(s)ds —co — 16 + Li(y(0))),

0, (6, — S)a—2 y _
—d, = /0 Mo 1) o(s)ds —c1 + I7 (y(0))),

hence, for t € J;,

_ [f=s! (0 — )
y(t) = /01 o) o(s)ds —|—/0 o) o(s)ds
2
re-o) [T o oas 4 1007)
+(E =017 (y(6y)) — co — et

t — s a—2 t =S a—2 3
y(t) = /9] (lt"(az 0 o(s)ds _|_/0 (?(a—)l) o(s)ds + I7 (y(0])) — ci.

If t € J, = (62, 65], then Lemma 2.4 implies that

y(t) = /0 (t ;(‘2;1 o(s)ds —eg —e1(t — 67),
y(t) = /9 Ma(s)ds — ey,

for some e, e; € R. Thus we have

wr) = | (5 we [0

o eo/o (er(a L o(s)ds + 1u(6;)

+(60 = 01)I7 (y(6])) — co — c162,
y(0y) = —eo,

and

y(0y) = /912(‘913(;5)(;20(5)(13%—/01((i_l‘(;s)(;;za(s)ds+lik(y(91))—017

y(03) = —er

In Vlilew of Ay(62) = y(65) —y(6;) = L(y(6; ) and Ay (62) =y (65) — ' (6;) = I3 (y(6;)),

y(65) + L(y(65)),
Y (05) + I (y(6)),

—ep

—eq
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hence, for t € J>,

= t(t_s)ail s)ds " (el_s)ailas s " (02_8)(“105 s
W) = f Sy | S e [ St

2 1

01 _g)a—2
02— o) [ [ G o+ 1t wr)

-0 [ |G s+ [ B g+ 10 ) + Iz*<y<e;>>]

+1(y(67)) + L(y(65 ) — co — cit,

t(p_ g)oa—l 2
y(t) = /92 (t F(O)é) a(s)ds—i-;

0; S g)a2
+Z(t — 91) [/071 (?_Z‘(a _) 1) U(S)ds + I;‘(y(é’l—))l —Cy) — cit.

By repeating the same process, if ¢t € J;, then again from Lemma 2.4, we get

0; . g)a—l
| e o+ L—(y(ei»]

fe o) s)ds + Z [fe B (s)ds + Il(y(ﬂj))}
y(t) =

+§j:1(t— i [fg 1% (s)ds + I} (y(@;))}_c()_clt

and

fg ?j)al)za(s)ds
+2 o o (s)ds + I (y(07))| — er.
Y

Applying the conditions y(0) = A\jy(T) + Aay(§) + A3 fo wi(s,y(s))ds+ k1, y'(0) = By (T) +
Bay'(§) + B3 fo wa(s,y(s))ds + k, we have

_ O
o 51+52—1[51</9 F(a—l d+Z

o (074 B 8)0172 * —
/0 1 m”(s)ds + 17 (y(67))

- g)a—2
[ G s f:@(f);))D

)

T
+ 53/0 wy(s,y(s))ds + ky

and

/4

ds—}—z

i=1

cho —=

i (g; — s)o! _
AM+X—1 /\2 -1 [ /91,_] I'(a) o(s)ds + Li(y(9; ))]

[/
+A2 (/: (€ ;(2> _ o(s)ds + ;

l

0; S g)a—2
£ (-0 [ [ et f:@(e;))D

i=1

(s)ds + I (y(07 ))D

i (ai_s)a—l ‘ -
/9 (o) 78 + Llu6; )>]

AT+ A€ .
M+rn-—1n"

T
+ /\3/ wi (s,y(s))ds + ki
0

Then, replacing —cy and —c; with by and b; respectively, we obtain (3.1).
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Conversely, assume that y satisfies the impulsive fractional integral equation (3.1). Then,
in view of the Caputo differentiation (2.2) and the property (° D*I%0)(t) = o(t), « > 0 ([1],
Lemma 2.21), it is obtained that ©“ D®y(t) = o(t) in (3.2). Moreover, it can be easily verified
that Eq. (3.1) holds the boundary conditions in (3.2). Therefore, the solution y given by (3.1)
satisfies (3.2). The proof is complete. O

Definition 3.2. A function y € PC'(J, R) with its a—derivative existing on .J' is said to be a
solution of (1.1) if y satisfies the equation © D®y(t) = f(t,y(t)) on J’ and the conditions

Ay(0;) = L;(y(0;)), Ay (6;) = I (y(6;)),
y(0) = My(T) + Xay(€) + As fJ wils,y(s))ds + ki,
y'(0) = 81/ (T) + Bay/ (€) + B5 [; wals,y(s))ds + ka

are satisfied for y.

Let £ € (6;,60,11); | is a non-negative integer in A i.e., 0 < | < p. In view of (3.1) and
Definition 3.2, let us define the operator T' : PC1(J, R) — PC'(J, R) by

@0 = [ LI ot + Y

J

0 (91 — 8)a_1 ) _
/9 Wf(sa y(s))ds + Il(y(ei ))]

l 0; a2
+Y -0 [ | s atenas +1:<y<9;>>D

M (T —t)+ X (E—1) +1
M+ =1 (Bi+p/h—1)

+ )\3/0 wl(s,y(s))ds—l—kl} +

T (7 _ gya—2 p
{51 (/9 %f(s,y(s))ds—kz

P

i—1

b (02 - S)aiz * —
/9 mf(sa y(s))ds + 17 (y(9; ))])

13 —_ s a—2 l
+52 </0 (lé(a_)l)f(s, y(s))ds + Z

1

0 (g a2
/tzl (?:(a—)l)f(s,y(s))ds + If(y(@;))D

T
+ 53/ wy (s, y(s))ds + kz} Cifted;, (3.3)
0

where T' = T} + T with
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fi <t;;gj*‘f< y(s) ds+2[f9 R (s y(s))ds + L(y(07)|

! 0; i —S a=2 * _
+ 300 [0, S s+ 100 ) |
" L ATt ha(E— )+t
(/\IJF/\Z )(Bi1+62—1)

{m (4 <Tr(;1‘j;2f< s + 35 (10, G Hs uteas + 107 )] )
i (5 S s + 35 [, S ftsutoas + o )] )}

z [fg O (s y(s)ds + T (0(6,)]
ek O (0 S5 1ot ds+z[fa O s, y())ds + L(y(6 )]
é(T 0) [fe : 0*;2) f(s,y<s>>ds+ff<y<e;>>})
(Tiy)(t) = +Xo (fel CHE f(s,y(s))dH; [ O™ (s y(s) s + Lw(67))
)

and )
st (s Ji wils,u(s)ds + k)

M (T—t)+X(E—t)+1
+ R ) (5* Iy wals,y(s ))d3+k2)'

(Tay)(t) = {

In order to establish our following main results, we first define B, = {y € PC'(J,R) :
lly|| < r} forany r > 0.

3.1 Existence of solutions

Lemma 3.3. Assume that

Al) f : Jx R — R is continuous and there exists a constant My > 0 such that | f(t,u)| < M,
vVt € J andVu € R,

A2) I;, I : R — R are continuous and there exist constants M, > 0 and Mz > 0 such

that |1;(u)| < My, |I; (u)| < Ms forallu € Rand j = 1,2, ...,p
Then, Ty : B, — PC'(J, R) is completely continuous.

Proof. First, note that the continuity of f ,wy,w», I and I7, j = 1,2, ..., p, ensure the continuity
of T1 . .
Now, in view of (A1) and (A2), for each y € B,., we have

bt —s)>!

L[ % (6, — ) _
T T@) If(s,9(s))] d3+; /01'_1 T T(a) |f(s,y(s))| ds + |Ii(y(6; ))!]

(@) < [

0;

£ (-0 [ | S s+ |I:<y<e;>>!]

1 T (T _ S)afl
+m {|/\1| (/ap () |f(s,9(s))|ds
p 0; (02 _ S)a—l -
o2 | [ O el + >>\]

i—1

p 0 (9. _ g)a—2
+> (1 -0,) V@ ((9;(&_)1) |f(s,y(s))lds + |I?(y(9{)>|]>

i=1

Ce—s) ! :
+ A2 (/0 ) |f(s,y(s))| ds +ZZ:;

0; L g)e2
+3 0 0) [ | ST e+

(0 —5)! ~
[ ORI et |1 >>\]

o)
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MT—t)+X(E—t)+t T(T — s)~2
(A1+A2_1)(51+5Z_1)’ X {51| </ep (o= 1) |f(s,y(s))| ds

/ (fi(; )1) 1£(s, ()] ds + \I;‘(y(ei))\D
3 —g)o— l ) gy
+ |52] (Ll (f;(a_) 1)2 s))|ds + Z /1_1 (?(a—)nz |F(s,y(s))| ds + |I;‘(y(9;))|b }

t a—l k
@l <m [ ey v
0; —1

+

p
2
i=1

1 (T — 5)o! P
F—19A M/ ds +
AL+ A2 =1 { 1'( 'Jo,  Tla) Z

P

l 0.
‘ (91‘—8
+ ;(5—91) [M1 /Gil F(a— 1) ds + Mj

/\I(T—t)+)\2(§—t)+t‘
M+X-1) (B +6-1)

T T g a 2 p i ei_ a—2
(o e o e
P =1 —1

9N
+ 16| (Ml/e)l ra—1) ds—l—; M

MT*(1+p+ ap) ) <2|)\1|+2|>\2|+1>
Tiy)(t < M, MspT

MT'(14p) > ((2)\1| 2+ 1) (4] + 52|)>
+< [(a) +Map A+ X = 1|81 + B2 — 1]

=K.

Thus,
[Tyl < K 3.4

which implies that 77 maps bounded sets into bounded sets.
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Moreover, let y € B,., foreach t € Jj, 0 <7 < p, we have

t(p_ g2
@0l < [ L el

j 0; e
+ZZ=; /91 (%(a—)l) |f(s,y(s))|ds +

1 T (T_ S)a—z
Bitp—1 {ﬁll (/0 Ta_1 Heub)lds
0 . _ g a—2
/9. (erla_)lf(s’y<s>>|ds+|fr<y<ei>>|D

IZ‘(y(@{))\]

+; 0

13 — s a—2
+ 152 </9 u\f(syy(S))ldS

1 F(a - 1)
L 0; g2
_.;; -/971_1 (%(a_)l)ﬁ(s,y(s))dﬁ |Iz*(y(01))|]>}

() (850

IN

=K.

Now, letting t1,t, € J;, t1 < tp, 0 < j < p, we have

(Tiy) (1) — (Tiw) (11)] < / * (i) (s)] ds < R(ta — 1)

t

which implies that 77 maps bounded sets into equicontinuous sets. Namely, 7 (B,-) is equicon-
tinuous on all subintervals J;(j = 0, 1,2,...,p). So, by Arzela-Ascoli Theorem and Definition
2.6, we conclude that the operator 77 is completely continuous. O

Theorem 3.4. In addition to (Al) - (A2), assume that the following conditions are satisfied:

A3) wi,wy : J X R — R are continuous and there exist constants My > 0 and Ms > 0 such
that |wy(t,w)] < My, |wa(t,u)] < Ms Vit € J andVu € R,

A4) There exist constants Ny > 0 and N, > 0 such that |wy (t,u) — w;(t,v)] < Ny, |wa(t,u) — wa(t,v)| <
N, for each u,v € R,

AS5) There exists a constant L > 0 such that

NiT A3 NoT B3] (2 [M] +2[Xo] +1)

=L <1
M+ =1 A+ + B~ 1

Then, BVP (1.1) has at least one solution on J.

Proof. In order to show the existence of the solutions BVP (1.1), we need to transform BVP
(1.1) to a fixed point problem by using the operator 7" such that T = 77 + T>. Now, we shall
use O’Regan fixed point theorem in Lemma 2.5 to prove that 7" has a fixed point which is then
a solution of BVP (1.1). First, let us consider the set B, = {y € PC'(J,R) : ||y|| < r} defined
above.

In view of O’Regan fixed point theorem, let us take U = B,., Y = B, and E = PC" (J,R).
Then, it is obvious that Y = B, is closed and convex where U C Y. From Lemma 3.3, it is
proventhat Ty : U — Eie., Tj : B, — PC'(J, R), is completely continuous.

In order to show the boundedness of the operator 7' : U — Y thatis, T : B, — B, it
is enough that show that the boundedness of the operator 7> since it is proven that Ty : B, —
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PC'(J, R) is bounded in Lemma 3.3. Then, for y € B,.,we have
1 T
Ty)t) < — [\ d k
(@O < gy (][l GeDias+ i

AT =)+ A (€ = )+t|
+|()\1 + X — 1)(ﬁ1 + 5 — ('63/ ‘wz s y( ))|ds+ |k2|>

MyT | A3| + |ki| | (MsT B3] + |ka|) (2| M| +2 A2 + 1)

Ty (t)] < =H,
(T < AL+ A2 — 1] A+ X = 1B+ B2 — 1
T2yl < H. (3.5)
Hence, T» : B, — PC'(J, R) is bounded.
Now, taking into account of (3.4) and (3.5), provided that
r>K+H, (3.6)

we obtain that the operator T : U — Y that is, T’ : B, — B, is bounded. -
Now, let us show that 75 : U — F is nonlinear contraction. For x and y € B,.,we have

(@0 - @Ol < 5 [ nlsa(s) — s )l ds

A +X(E—t)+t

i QAR E D [ o 0(6) — o) s

NiT |25 NoT | B5] (2] + 2|2 + 1)

S IR Y | At + X2 = 1][81 + B2 — 1]
[Toe — Tyl < Liz—yl.

lz —yll,

Let us choose ¢(z) = Lz. Since L < 1 from (A5), we obtain for Va,y € B,,
T2z — Tayll < & ([lz = yl),

that is, the operator 75 is nonlinear contraction.
At the end, assume that the hypothesis (C>) in Lemma 2.5 is valid, then there exist u € 9B,
and A € (0, 1) such that w = AT'(u). Thus, we get ||u|| = r and

lul = |A[|Tul,
ul = r<|Tull <K+ H,
r < K+H,
which contradict with (3.6). -
Therefore, T has a fixed point v € B, which is the solution of BVP (1.1). O

Now, we will give some sufficient conditions for the uniqueness of the solutions of BVP

(1.1).

3.2 Uniqueness of solutions

Theorem 3.5. In addition to (Al) - (A5), assume that the following conditions are satisfied:

(A6) There exists a constant Ly > 0 such that | f(t,u) — f(t,v)] < Ly |u—v|, Vt € J, and
u,v € R,

(A7) There exist constants Ly > 0, Ly > 0 such that |I;(u) — I;(v)| < Ly [u — v, |} (u) — I} (v)|
Ly |u —v|foreachu,v € Rand j = 1,2,....p.

Moreover,

IN

LiT*(1+p+« 21 M| +2X]+1
< : l—g(a —|—p1) D +Lop + LSPT) ( ||>:1| + )\2| —2|1 )
(B ) (200 b+ )
['(a) A+ = 1|81+ B — 1
NiT |3 NoT (B3] (2 | M| +2]Xa] + 1)
AA+X =1 M=k + 81
= QL Ly, L3,L4,Ls. M Mo As, B BBy < L 3.7)

+
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Then, BVP (1.1) has a unique solution on J.

Eroof. In view of 3.6, choosing r = K + H, we can easily show that TB, C B,, where
B, ={ye PC(J,R): |ly| <r}.
Now, for z,y € PC'(J, R) and for each ¢ € .J;, we obtain

(w20 = @) < [ i 7(sn(o) = Syl

J

1>

i=1

/97; (91 _ S)afl B B
o (s, 2(8)) = f(s,y(s)) | ds + |L(2(0;)) — Li(y(6; )]
01 I'(a)

: O (0 —5)
+y (t—0;) Ve Ta-1) " f(s,2(5)) = £(s,y()] ds +

im1
1 (T — s)o1
+m {|)\1| (/9 T |f(s,2(s)) — f(s,y(s))| ds

7 (x(607)) - If(y(ﬂf)ﬂ]

P

P 0: . _ 5 a—1
3| [ O (o) — oDl s+ [1000)) - my(eiml
P 0; . _ g a—2
+2(T-0) [/ wna_)l) [F(s,2(5)) = F(5,y()) ds + [ (2(67)) = I;‘@(@;))ID

§ — s a—1
o ( | S st - ts.ptshas

/91' (01‘ _ s)a71 B B
| f(s,2(5)) — f(s,9(s))| ds + | Li(x(6;)) — Liy(6;))]
0;_1 F(a)

l 0; _s
+3€E-0) [ I ("F(a))v(s 2(5)) = (s, ()| ds + |17 (6, ) f:@(@;)ﬂD

+ |)\3|/0 |w1(3’$(s))_w1(8,y(s))ds}+’ MT-t)+XE—t)+t ‘

M+X-1(B+6-1)

{w(/ (k)i Ifsw( )= Fls,y(s)|ds

I (x(607)) - Iz-*(y(9{))!]>

13 —g)a—
+ 162 (/el (lf“(a—) 1)2 £ (s,2(s)) — f(s,y(s))| ds

1>

i=1

i ds+ |17 ((0])) — I (y(0;
S e e ale) = (sl ds + |1 0) - T8 )

T
+ |/33|/ [wa(s,2(s)) — wa(s,y(s))] ds} t e Jj.
0
Then, in view of assumptions (A5)-(A7), we have
LlTa(1+p+ap) ) <2|)\1|+2|>\2|+1>
T —T < + L LspT
LT (1 2| AP 1
+< I ( +p)+L3p> (( Ml +2 0]+ )(51|+|ﬁz)>
I'(«) A+ X2 = 1][B1 + B2 — 1]
NiT | A5 NzTﬂ3|(2)\1|+2|)\2|+1)}” ]
A+ =1 A+ A= 1]+ B — 1]

< Qry Ly Ly, LasLs. A e 616208 1T — Yl -

+

Therefore, by (3.7) and thanks to Banach’s fixed point theorem, the operator 7" is contraction
mapping. Consequently, BVP (1.1) has a unique solution. O
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Remark 3.6. Indeed, the boundary value problem we dealt with in (1.1) consists of various kinds
of initial and boundary conditions. For instance, when \; = Ay = A3 = 81 = 5, = 3 =0
holds in (1.1), one can obtain an initial value problem (see [22]); when \; = §; = 1 and
A = A3 = By = f3 = ki = k; = 0hold in (1.1), one can obtain a periodic boundary value
problem; when A\ = 5y = —land A\, = A\3 = 8, = 83 = k; = ky = 0 hold in (1.1), one can
obtain an anti-periodic boundary value problem (see [40, 41]); when A, # 0, 8, # 0 holds in
(1.1), one can obtain a non-local boundary value problem (see [42]); when A3 # 0 and 33 # 0
hold in (1.1), one can obtain an integral boundary value problem (see [24]); when A\; # 1 and
B1 # 1 hold in (1.1), one can obtain a non-separated boundary value problem (see [43]).

Example 3.7. Consider the following impulsive fractional boundary value problem

; (sin 5t) [y() I
CD“y(t) (t+5)3(1+|y(t)\)’ tE[O,”, t;éi’
() : (7))

Ay(%) = ‘yz‘ Ay (3) = ‘y : ‘

150 + [y(3 ")

27 200+ ‘y(%_)’7

1
(s 1
y(0) = 2y(1) +3y(6) - / e 4 ¢,
0

1

T
y'(0) = y/(l)—2y'(£)+é/ e 5Y(8) gg _
0

whereO<£<1,§7é%.

Here, according to BVP (1.1), \{ =2, M =3, \s=—-1, 81 =1, o= -2, B3 = —é, o=
3, ki=4% k=3, T=1, p=1 Obviously, L; = L, = Ly = 55, Ni = 45, No =
% and by (3.7), it can be find that

. L
125> 150>

88 1649

QLI,L27L3,NI,N2,>\17/\27)\31617,32,B3 = 375ﬁ + 24000 = 0201 1 < 1

Therefore, due to fact that all the assumptions of Theorem 3.5 hold, the BVP (3.8) has a unique
solution. Besides, one can easily check the result of Theorem 3.4 for the BVP (3.8).
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