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Abstract In this paper, we take X is the class of all pure projective modules and intro-
duce a right derived functor Fizt};(—,—) using X-injective coresolutions. It is shown that
Firth(M,N) — ExtL(M,N) is an isomorphism for all R modules N if and only if M is
X+-projective. If R is a Noetherian ring, then we show that glLcores.dimy. (M) < n — 2
if and only if Fcores.dimy. (M) < n. Finally, we show that every left R-module has an X-
injective cover with the unique mapping property if and only if every pure injective R-module is
X-injective.

1 Introduction

The notions of covers and envelopes of modules were introduced by Enochs in [1]. Let 4 be a
class of left R-modules. Following [1], we say thatamap f € Hompg(C, M) withC € ¢ isa%-
precover of M, if the group homomorphism Hompg(C’, f) : Hompg(C',C) — Homg(C', M)
is surjective for each C” € C. A ¢-precover f € Hompg(C, M) of M is called a ¢-cover of M if
f is right minimal. That is, if fg = f implies that g is an automorphism for each g € Endg(C).
% C R-Mod is a precovering class (covering class) provided that each module has a %’-precover
(C-cover). Dually, we have the definition of € preenvelope (% envelope).
Given a class ¢ of left R-modules, we write

¢+ = {N € R-Mod| Extpy(M,N)=0, VM €%}
1% = {N € R-Mod| Extp(N,M)=0, VM €€} .

A &-precover f of M is said to be special if f is an epimorphism and ker f € €.

A %-preenvelope f of M is said to be special if f is a monomorphism and cokerf € +%.

A module is said to be pure projective [5] if it is projective with respect to pure exact se-
quence.

The notions of F'P-injective modules and F P-injective dimensions of modules and rings
were first introduced by Stenstrom in [9]. The F P-injective dimension of an R-module M,
denoted by F'P-id(M), is defined to be the smallest nonnegative integer n such that M has
an F'P-injective resolution of length n. L. Mao and N. Ding in [4] introduced by X-injective
modules. An R-module M is called X-injective if ExthL(A, M) = 0 for all R-modules A € X.

In this paper, we take X is the class of all pure projective modules. X' is the class of all
X-injective modules. An R-module M is Xt-projective if Exth(M,U) = 0 for all R-modules
U € x+. +(x1)is the class of all X*-projective modules. Clearly, (+(X+), X~) is a cotorsion
theory.

Throughout this paper, R denotes a non-trivial associative ring with identity and M denotes a
category of left R-modules. Clearly, M is an abelian category with enough injectives. The class
X+ of X-injective modules is a full subcategory which is closed under isomorphisms. Similarly,
a subcategory of a subcategory X'+ of M always means a full subcategory of X' which is closed
under isomorphisms. By Z(M) we denote the classes of all injective objects of a category M.

If X is the class of all pure projective modules, then every left R-module has an X'*-
coresolution over an arbitrary ring by [8, Theorem 2.2]. Then, the functor Hom(—, —) is right
balanced on R-Mod x R-Mod by X+ x X+. In [7], if X is the class of all pure projective
modules, then every R-module has an X'-injective precover over a Noetherian ring R. It follows
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that every R-module has an X'*-resolution. Hence, if R is a Noetherian ring, then Hom/(—, —)
is left balanced.

Let Fizt™(—, —) denote the nth right derived functor of Hom(—, —) with respect to the pair
X+ x Xt. Then, for two left R-modules M and N, Fixt™(M, N) can be computed using a
X+-resolution of M or a X*-coresolution of N. Also we denote Fizt, (—,—) is the nth left
derived functor of Hom(—, —) with respect to the pair X+ x X*. Then, for two left R-modules
M and N, Fixt, (M, N) can be computed using a X'*-coresolution of M or a X'*-resolution of
N.

The left X-dimension of a left R-module M, denoted by Lcores.dim 1 (M), is defined as
inf{n: there is a X*-resolution of the form 0 — G,, — --- — Go — M — 0 of M}. If there
is no such n, set left Leores.dimy . (M) = oo. The global left X*-dimension of M, denoted
by glLcores.dimy. (M), is defined to be sup{Lcores.dimy.(M): M € M} and is infinite
otherwise. The right versions can be defined similarly. We denote by Rcores.dim 1 (M) the
right X -dimension of a left R-module M and we denote by gl Rcores.dim . (M) the global
right X+-dimension of M.

This paper is organized as follows: In Section 2, we take X’ is the class of all pure projective
modules and we introduce a right derived functor Fizt}(—, —) using X *-injective coresolu-
tions. It is shown that Fizth (M, N) — ExtL (M, N) is an isomorphism for all R modules N if
and only if M is X'*-projective.

In Section 3, we investigate the X'-injective dimension of modules and rings and the left de-
rived functors Fizt, (—, —). Let R be a Noetherian ring. We prove that Fcores.dim . (M) < 1
if and only if the canonical map u: Fixto(rR,N) — Hom(grR,N) is a monomorphism for
any left R-module N. Then, it is shown that Fcores.dimy. (M) < n(n > 2) if and only if
Fizt, (M, N) = 0forall left R-modules N and all k > —1. Moreover, gl Lcores.dim . (M) <
n — 2(n > 2) if and only if Fixt, (M, N) = 0 for all pure injective R-modules N and all
k > —1. Finally, every left R-module has an X'*-injective cover with the unique mapping prop-
erty if and only if Fcores.dimy. (M) < 2.

2 The Right Derived Functors using X -injective coresolutions:

In this section, we investigate right derived functors using X'*-coresolution. By [8, Theorem
2.2], every R-module has an X*-coresolution. Let 0 -+ N — G — G' — --. be an X'*-
coresolution of N. This complex is unique up to homotopy. This leads us to new derived
functors Fixt};(—, —), which are well defined. Applying the functor Hompg(M, —), we obtain
the deleted complex

G*: 0 — Homp(M,G%) — Hompr(M,G') — ---.
Then, we can define Fiizt’}, (M, N) = H"(Hom(M,G*®)).

Theorem 2.1. For M, N € Obj(M), then the Fixt},(M, N) are well defined.
Proof. For any R-module N, there is an X'*-coresolution of M
0>NSGHG S
and an R-module N, there is an X'--coresolution of N
0 NS G % ..

Let v € Hompg(N, N). We only need to show that there is a commutative diagram

€ (&3] [¢%] QAn+

1
0 N GO G! G Grtl o ...
| | | |
vi Y0 \“( M V‘/ Yn | T+l \“(
e o o I A
0 N [l Gl L. Gn Gntl o ...

and the associated map of X'--coresolutions is unique up to homotopy.

Every R-module has a special X' -preenvelope. Then, N has an X'*-preenvelope G° and N
has an X'*-preenvelope GOsuch that 79 € Hompg(G°,GO),¢' € Homg(N,GO) and ype = €'y.
Then the following diagram is commutative
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0 N = g0 I 0
Y i Yo I
, Y Y
0 N =G0 It 0,

where L' and L' are cokernel of € and ¢’. Let G' and G! are X‘-preenvelop of L' and LI,

respectively. Then, the diagram

0 — L' —= G!
\

l v |
‘i ¥

0 —= L —= Gt
is commutative. Continuing this process, there is v,_; € Homgr(G"~!,G"=1) such that the

following diagram

- Gl —s 1, —=0

0 N - @G0 G!
! !
vl vo\‘y Y ¢ Yn—1 ¢ L |
A N v
0 N GO G! Gr=l — = [" — = 0,

is commutative, where Cﬁmd Giare X -injective for each i € {0,1,--- ,n — 1}, L™ and L™ are
cokernals. Let G and G™ are X'*-preenvelop of L™ and L", respectively. Then, there exists

Yn € Hompg(G™, G™) such that the diagram

ln i Tn
Y

0—>I" — > Gt

is commutative. It follows that we can complete the diagram.
We are now to prove the uniqueness up to homotopy, that is, to prove that from the following

diagram

@ a) Qnyl

0 N GO . G Gn+1
Qo
s_1 Sn—1 Sn
Y0 % Tn v, Yn+1 Vit

o A __ oy

0 N GO . Gn Gn+l

there exist sg, - -+ , 8, -+, with s, : G""! — G™ such that v,, — 7/, = @, 0 5,1 + 5, © A1,
where s_; = 0. We know that ypap = o) = . It follows that (79 — v;)ao = 0. Then, we

have the diagram

N —G —- G°/N —= @'
s

, 7
Yo—"Yo 7/
y2

N — GY —— Gy/N
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which can be completed since G is an X'+ -preenvelope, that is, there exists s) € Homg(G!, @)
such that 9 — v) = so o a.
We will show that the following diagram is commutative, that is, a map on G° which is zero.

(7] (%)

N G G! G?
Ve
S0 s1 s
Y= l M= i -
Ve
_ o __ 4 A _
N GO G! G2.

Let s; be the map which completes the following diagram

G'Jima; —— G?

i st
M= — S0 -
7
s
el
Hence,
(M= —arso)ar = (m =)o — ()so)n
(n =) — (0 — )

= O7

as desired. Continuing this process, we can find s, -, s,_1. Define s, as the completion of

the following diagram

G'/ima, — G?
Ve
, , S1 Ve
Y=Y TS0 7
e
P

Gt

It follows that we can get a following commutative diagram

anl Gn Gn+l
-
Sp—2 , Sn—1 Sn 7
Tn—1"Vn—1 "/n*’Y:z e
~
A ~
Gn—2 Gn— 1 Gn.

Since the previous diagram has exact rows, then

—~

3

Vo = V)0 — @ (Sn—100)
Yn — ’Y;)Oén - 04;1(%—1 - ’Y;L—l - O/n—lsn—l)

Y = )0 — 0 (Yn—1 — V1) + (U Sn—1)

(’Yn - ’7;1 - O‘;LSnfl)an -

—~

—~

e

Hence, the X' -coresolution is unique up to homotopy. O

From the homology groups of this X'*-coresolution gives a well defined derived functor
which we will call Fizt%(M,N). Let 0 - M — G — G' — ... be an X'*-coresolution
of Mand 0 — M — I° — I' — ... an Z(M)-coresolution of M. Since Iy is injective,
there exists gg € Hompg (G, I°) such that o/ = g o a. By the injectivity of I', there exists
g1 € Homp(G',I") such that gjap = afgo. Continuing this process and using analog proof of
Theorem 2.1, we can complete the diagram



DERIVED FUNCTORS USING X-INJECTIVE CORESOLUTIONS 533

0 M G0 Mg 2
| |
¥ go | g1

A A

a 1 2
0 M 10 I

to a commutative diagram uniquely, up to homotopy. Now applying Homg(M, —) to the dia-
gram

a2

0 G? G!
QO\L gli
0 I° I!

gives natural maps Fizt},(M,G) — Ext},(M,G) forall n > 0.
Proposition 2.2. For M, G € Obj(M), Fizt%(M,G) = Homp(M,G).

Proof. Let0 — M — G° — G' — --- be a X*-coresolution of M. Then, the homotopy groups
of the complex

0 — Hompr(M,G°) — Homp(M,G') — ---

gives us the groups Fizty(M,G). Hence, Fizt%(M,G) is the kernel of Homp(M,G°) —
Hompg(M,G"). But the functor Hompg(M, —) is left exact. So if the sequence 0 — G —
G° — G! is exact, then the sequence 0 — Hompg(M,G°) — Homg(M,G') — - is exact.
Now Hompg(M,G) is isomorphic to the kernel of Hompg(M,G%) — Hompg(M,G"), that is,
Homp(M,G) = Fixt% (M, G), as desired. O

Proposition 2.3. For M, G € Obj(M), FiztL,(M,N) — ExtL(M, N) is injective.
Proof. Let0 - N — G° — G! — --- be an X -coresolution of N and0 - N — E° — E! —

-+ be an T(M)-coresolution of N. Consider the exact sequences 0 — N — G — G°/N — 0
and 0 - N — E° — E°/N — 0. From the following diagram with exact rows

M
i
Ve
s
A
0 N GO GO/N ——= 0
0 N E° E'/N —= 0,

we get the following diagram

is commutative. Then, the diagram



534 A. Umamaheswaran and C. Selvaraj

M

Ve
e
e
2

G — G°/N

can also be completed, as desired. O

Theorem 2.4. For M € Obj(M), M is X+-projective if and only if FixtL, (M, N) — ExtL,(M, N)
is an isomorphism for all R modules N.

Proof. Suppose M is X*-projective. By Theorem [8, Theorem 2.2], N has an X-injective

coresolution, 0 — N % G® = G' — ... Consider the short exact sequence 0 — N % GO —
G°/imf — 0. Then, we get the following commutative diagram with exact rows:

Homp(M,G°) — Hompr(M,G°/imf) — FiztL(M,N) — FiztL(M,G°) =0

’ ' ’ :

Homg(M,G°) —= Hompr(M,G°/imf) —= Exth(M,N) — ExtL(M,G°) = 0.

R

Hence, Fixth(M,N) = ExthL (M, N) for any R-module N. Conversely, we may assume that
Fixth(M, N) — ExztL (M, Q) is an isomorphism for all R-modules N. Then, ExtL(M,G) =0
for all X-injective R-modules G since FiztL(M,G) = 0 for all X-injective R-modules G and
R-modules M. Thus, M is X'*-projective. O

3 X-injective dimensions and the left derived functors of Hom
In this section, we deals with the X'-injective dimensions of modules and the left derived functors
Fizt,(—,—).
For M € ObjM, there exists an X-injective coresolution of M such that 0 — M ENYEE
G' — ---. Then, we obtain the deleted complex
Ge: -+ — Hom(G',N) % Hom(G°,N) — 0

when we apply the functor Hom(—, N). It follows that Fizt, (M, N) is exactly nth homology
of the complex, that is, Fizt, (M, N) = H,(Hom(G,, N)). Then, there is a canonical map

w: Fiztog(M,N) = Hom(G° N)/im(g5) — Hom(M, N)
defined by yu(h + im(gg)) = hgo for h € Hom(G°, N).

Proposition 3.1. Let R be a Noetherian ring. For M € ObjM, M is X-injective if and only if
the canonical map p: Fixto(M,N) — Hom(M, N) is an epimorphism for any left R-module
N.

Proof. The direct implication is clear if G® = M. Conversely, if N = M then there exists h €
Hom(G°, M) such that y(h+im(gg)) = hgo = 1. Thus, M is isomorphic to a direct summand
of GU. Since the direct summand of X-injective module is X-injective, M is X-injective. O

Corollary 3.2. Let R be a Noetherian ring. Then, the following conditions are equivalent:
(i) rRis X-injective;

(ii) The canonical map p: Fizto(rR,N) — Hom(gR, N) is an epimorphism for any left R-
module N;

(iii) The canonical map p: Fizty(grR,r R) — Hom(rR,r R) is an epimorphism;
(iv) Every R-module has a special X-injective cover.
Proof. (1) < (2) < (3) follows from Proposition 3.1.
(1) = (4). For any left R-module M, M has an X-injective precover. Consider the exact
sequence ' — M — 0 with F' a free module. By hypothesis, F' is X'-injective.

(4) = (1). Let ¢: M — RrR be a special X-injective cover. Then, rR is isomorphic to a
direct summand of M. Thus, rR is X'-injective. O
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Proposition 3.3. Let R be a Noetherian ring. Then, the following are equivalent:
(i) Reores.dimy. (M) <1,
(ii) The canonical map : Fixto(M,N) — Hom(M, N) is a monomorphism for any left R-
module N.
Proof. (1) = (2). By hypothesis, M has a X'*-coresolution 0 — G° — G' — 0. It follows
that we get an exact sequence 0 — Hom(G',N) — Hom(G°,N) — Hom(M, N) for any
R-module N. Hence, ¢ is a monomorphism.
(2) = (1). Consider the exact sequence 0 — M — G° — L' — 0, where M — GV is an

X-injective preenvelope. We only need to show that L' is X-injective. By [2, Theorem 8.2.3],
we have the commutative diagram with exact rows:

Fixto(L', L) —> Fiatg(G®, L") — Fiato(M,L') —= 0

M\L Hzl #3l
0 —= Hom(L',L') —— Hom(G°, L') —— Hom(M,L").

Note that «, is an epimorphism by Proposition 3.1 and p3 is a monomorphism by hypothesis.
Hence, 11 is an epimorphism by the Snake Lemma [6, Theorem 6.5]. By Proposition 3.1, L! is
X-injective. O

Lemma 3.4. Let R be a Noetherian ring. Then, Rcores.dimy. (M) = cores.dimy. (M) for
any left R-module M.

Proof. Clearly, cores.dim . (M) < Rcores.dim 1 (M). Conversely, we assume that cores.dim . (M) =
n < oo. Consider the partial X*-coresolution of M, 0 — G° — G' — ... — G™~!. Then, we
get an exact sequence 0 — G° = G' — ... — G"~! = L — 0. Hence, L is X-injective, and so
Rcores.dimy1 (M) < n, as desired. ]

The finitistic X'*-coresolution of dimension, denoted by Fcores.dim 1 (M), is defined as
sup{cores.dimxy. (M): M € Obj(M)}.
Proposition 3.5. Let R be a Noetherian ring. Then, the following are equivalent:
(i) Fcores.dimyir (M) <1,
(ii) The canonical map p: Fixzto(rR,N) — Hom(rR,N) is a monomorphism for any left
R-module N.
Proof. (1) < (2). It follows by Proposition 3.3 and Lemma 3.4. i

Proposition 3.6. Let R be a Noetherian ring and an integer n > 2. Then, the following condi-
tions are equivalent:

(i) Rcores.dimyi (M) < n;

(ii) Fizty (M, N) =0 for all R-modules N and all k > —1;
(iii) Fixtn,—1(M,N) = 0 for all R-modules N.
Proof. (1) = (2). Note that Fizt,,(M,N) = 0 for all & > 1. We only need to show that
Fizt,x(M,N) = 0 for all k € {—1,0}. Consider X*-coresolution of M, 0 — G° — G! —
.-+ = G™ — 0. Which induces an exact sequence 0 — Hom(G™,N) — Hom(G""!,N) —
Hom(G"%, N) for any R-module N. Hence, Fixt, (M, N) = Fixt,_;(M,N) = 0.

(2) = (3) is trivial.

(3) = (1). Consider the X*-coresolution of M, 0 — G° - G' — .- — G™ — 0. with
L™ = coker(G™"~2 — G™~!). We have the following commutative diagram

[e3

0 M el L.Gn?

B
Gn—l Gn
X 7
L
0 0.
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Since Fixt,_i;(M,L™) = 0, the sequence

Hom(G"™, L") N Hom(G™ 1, L") EN Hom(G™% L")

is exact. Now a*(y) = ya = 0. It follows that v € ker(a*) = im(S*). Then, there exists
v € Hom(G™, L") such that v = 8*(v) = v = vny, and hence vy = 1 since 7 is epic.
Therefore L™ is X-injective, as desired. O

Corollary 3.7. Let R be a Noetherian ring and an integer n > 2. Then, the following are equiv-
alent:

(i) cores.dimyi (M) <n;
(ii) Fizty (M, N) =0 for all R-modules M,N and all k > —1;
(iii) Fixt,—1(M,N) =0 for all R-modules M and N.
Proposition 3.8. Let R be a Noetherian ring. If M is a pure injective R-module, then M has a

minimal X*-resolution - -+ — Gp_y = Gp_3 — -+ > G| = Go — M — 0 with each G; an
injective module.

Proof. By [7, Theorem 5.5], M has an X-injective precover v: Gy — M. Consider the exact

sequence 0 — Gy - E — L — 0 with E an injective envelope of Gy. Since the exact sequence
is pure and M is pure injective, there exists h € Hom(FE, M) such that v = hi. By X-injective
precover v of M, there exists ¢ € Hom(FE,G) such that v¢ = h. Hence, y¢i = hi = . This
implies that ¢i is an isomorphism. Then, G is isomorphic to a direct summand of £ and hence G
is injective. Note that kery € (X*)+. Hence, ker~ has an X-injective precover v, : G| — ker+y
with G an injective module, where kerv; € (X+)L. By continuing the above process, we get
the minimal X' -resolution of M. O

Theorem 3.9. Let R be a Noetherian ring. Consider the following conditions for a pure injective
R-module N and an integer n > 2 :

(i) Leores.dimy (N) <n—2;
(ii) Fizty (M, N) = 0 for all R-modules M and all k > —1,
(iii) Fixtpr (M, N) = 0 for all R-modules M.
Proof. (1) = (2). By hypothesis, N has a left X'*-resolution
0—-Gh0o—--—G —>Gy—N—=0.
Then, we have the following sequence
0 — Hom(M,Gp—2) = Hom(M,G,_3) = --- Hom(M,Gy) — 0

for any R-module M. Hence, Fixt, (M, N) =0forall k > —1.
(2) = (3) is trivial.
(3) = (1). By pure injectivity of N and Proposition 3.8, N has a minimal X *-resolution:

S G 3G B G G G 2 Gy M =0

with each G; an injective module. Letig € Hom(K,G,_,) be the inclusion and pg € Hom(G,,—1, H)
the canonical projection, where K = ker S and H = G,,_1 /K. Then, there exists n; € Hom(G,,, K)
such that o = ign; and there exists a monomorphism 7, € Hom(H, G,,_») such that 5 = npg.

Let 73 € Hom(Gp—2, L) be the canonical projection, where L = G,,_,/im(n,.) Then, there
exists a homomorphism i,, € Hom(L,G,_3) such that v = 4,,n3. Then, we get the following
commutative diagram:

[eY B 2l

NN
NN N

n—3
0 0 0.

G

K

<
/

Gn
0
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By (3), Fiizt,,—1 (K, N) = 0. Then, the sequence

Hom(K,G,) == Hom(K,G,_1) Ly Hom(K,G,—2)
is exact. Since S, (ig) = fig = 0,ig € ker B, = ima. Therefore ig = . (t) = a(t) for some
t € Hom(K,G,). By a = igni,ig = ignt. Hence, nit = lg, since ig is monic. So K is
injective. It follows that H and L are injective. We claim that the complex
0—>Ll—”’5Gn_3—>~-—>G1—>G0—>N—>O
is an X'*-resolution of N. We only need to show that the complex

0 — Hom(G, L) (@; Hom(G,G,_3) 25 Hom(G, G, _4)

is exact for any X'-injective R-module GG. Note that we have the following commutative diagram:

Hom(G,G,_1) Hom(G,G,_3)

(pg)= (m2) (m3) (i)«

\
Hom(G,H) Hom(G, L)
) / \ ) \

Now ker((in,)«(13)+) = ker(y.) = im(B) = im((m2)+(pp)+) = im((m)«) = ker((m).).
Let g € ker((in,)s). Since (13). is epic, g = (13)«(gn—2) for some g,_» € Hom(G,G,_»).
Therefore (iy, ). (13)«(gn—2) = 0. Hence, (13)+(gn—2) = 0. That is, g = 0. It follows that (4,, ).

is monic. On the other hand ker(u.) = im(v.) = im((4,,).). Hence, we obtain the desired exact
sequence. This completes the proof. O

0.

Corollary 3.10. Let R be a Noetherian ring and an integer n > 2. Consider the following
conditions

(i) glLcores.dimy. (M) <n —2;
(ii) Fcores.dimyi (M) <n
(iii) Leores.dimyi (N) <n — 2f0r all pure injective R-modules N,

(M
(N
(iv) Fixt,r(M,N) = 0forall R-modules M, all pure injective R-modules N and all k > —1;
(v) Fixt,_1(M,N) =0 for all R-modules M and all pure injective R-modules N.

Then, (1) = (2) = (3) & (4) & (5).

Proof. It follows from Corollary 3.7 and Theorem 3.9. O
Lemma 3.11. Let R be a Noetherian ring and an integer n > 1. If M is pure injective R-module,
then id(M) < n if and only if for the minimal left X*-resolution --- — G, — Gp_1 — -+ —

G — Gy — N — 0 of any pure injective R-module N, Hom(M, G,) — Hom(M, K,,) is an
epimorphism.

Proof. We prove the result by induction on n. Let n = 0. If M is injective, Hom (M, Gy) —
Hom(M, Ky) is an epimorphism. Conversely, put N = M. Then, Hom/(M, Gy) — Hom(M, M)
is an epimorphism, and hence M is injective.

Let n > 1. Consider an exact sequence 0 — M — F — L — 0 with F an injective module.
Then, we have the following diagrams

Hom(E,G,) —— Hom(E,K,) —= 0

i i

Hom(M,G,) — Hom(M, K,)

i

0
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and

0 —— Hom(L,K,) —— Hom(L,Gp—1) —— Hom(L,K,_1)

0 —— Hom(E,K,) — Hom(E,Gp_1) — Hom(E,K,_1) ——= 0

0 —= Hom(M,K,) — Hom(M,G,_1) —= Hom(M,K,,_).

0

are exact and commutative. By [3, Lemma 3.2.10], L is pure injective. Therefore id(M) < n if
and only if ¢d(L) < n — 1 if and only if Hom(L,G,_1) — Hom(L, K,,_1) is an epimorphism
by induction on n if and only if Hom(E, K,,) — Hom(M, K,,) is an epimorphism by the
second diagram if and only if Hom(M,G,) — Hom(M, K,,) is an epimorphism by the first
diagram. O

Theorem 3.12. Let R be a Noetherian ring. Then, Fixt'h(M, N) = Fiztl (M, N) forn > 0.

Proof. By Theorem [8, Theorem 2.2], M has a X*-coresolution. Let0 — M — G° — G' —
.- be an X*-coresolution of M. Since R is hereditary Noetherian, then there exists an X'*-
resolution - -+ — G, - G1 — Go - N — 0

- —> Hom(M,G,) — Hom(M,Gy) —= Hom(M,Gy) ——— 0

- —= Hom(G°,Gy) — Hom(G°,G1) —= Hom(G°,Gy) —= Hom(G°, N) — 0

- —= Hom(G',G,) — Hom(G',G1) —= Hom(G',Gy) —= Hom(G',N) — 0

Since G; are X-injective and G* is an X' *-coresolution, all rows but the first are exact. Similarly
all columns but the last are exact. Then, by chasing diagrams or by a spectral sequence argument,

H"(Hom(M,G*(N))) =2 H,(Hom(Ge(M),N)
for each n > 0. This completes the proof. O
Theorem 3.13. Let R be a Noetherian ring. Then, the following conditions are equivalent:
(i) Every left R-module has an X-injective cover with the unique mapping property;
(ii) Fcores.dimy1 (M) <2;
(iii) Fixt1(M,N) = 0 for all left R-modules M and N,
(iv) Fizty(M,N) = 0 for all left R-modules M and N and k > 1.
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Proof. (1) = (2). Let M be an R-module. Then, M has an X-injective cover ¢: U — M
with the unique mapping property. Hence, 0 — U — M — 0 is a left A'-resolution. Thus,
glLcores.dim 1 (M) = 0. Hence, by Corollary 3.10, Fcores.dim . (M) < 2.

(2) = (1). Let M be an R-module. By [7, Theorem 5.6], M has an X-injective cover
h: U — M. It is enough to show that, if for any X-injective left R-module U’ and any homo-
morphism j: U’ — U such that hj = 0 then j = 0. Consider the natural map =: U — U/imj.
Then, there exists h: U/imj — M such that hw = h since imj C ker h. By hypothesis, U/imj
is X-injective. Then there exists p: U/imj — U such that h = hy. Hence, we get the following
commutative diagram with exact row:

0 kerj ——> U — > U 7 Ulimj —— 0.

NobA

M

Thus, hpm = h, and hence p7 is an isomorphism. It follow that 7 is monic. Thus, j = 0.
(2) & (3) & (4). It follows from Corollary 3.7. i

Remark 3.14. Let R be a Noetherian ring. Then, every left R-module has an X-injective cover
with the unique mapping property if and only if every pure injective R-module is X-injective.
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