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Abstract In this paper, we take X is the class of all pure projective modules and intro-
duce a right derived functor FixtnR(−,−) using X -injective coresolutions. It is shown that
Fixt1R(M,N) → Ext1R(M,N) is an isomorphism for all R modules N if and only if M is
X⊥-projective. If R is a Noetherian ring, then we show that glLcores.dimX⊥(M) ≤ n − 2
if and only if Fcores.dimX⊥(M) ≤ n. Finally, we show that every left R-module has an X -
injective cover with the unique mapping property if and only if every pure injective R-module is
X -injective.

1 Introduction

The notions of covers and envelopes of modules were introduced by Enochs in [1]. Let C be a
class of leftR-modules. Following [1], we say that a map f ∈ HomR(C,M) with C ∈ C is a C -
precover of M , if the group homomorphism HomR(C ′, f) : HomR(C ′, C) → HomR(C ′,M)
is surjective for each C ′ ∈ C. A C -precover f ∈ HomR(C,M) of M is called a C -cover of M if
f is right minimal. That is, if fg = f implies that g is an automorphism for each g ∈ EndR(C).
C ⊆ R-Mod is a precovering class (covering class) provided that each module has a C -precover
(C-cover). Dually, we have the definition of C preenvelope (C envelope).

Given a class C of left R-modules, we write

C⊥ =
{
N ∈ R-Mod | Ext1R(M,N) = 0, ∀M ∈ C

}
⊥C =

{
N ∈ R-Mod | Ext1R(N,M) = 0, ∀M ∈ C

}
.

A C -precover f of M is said to be special if f is an epimorphism and ker f ∈ C⊥.
A C -preenvelope f of M is said to be special if f is a monomorphism and cokerf ∈ ⊥C .
A module is said to be pure projective [5] if it is projective with respect to pure exact se-

quence.
The notions of FP -injective modules and FP -injective dimensions of modules and rings

were first introduced by Stenström in [9]. The FP -injective dimension of an R-module M ,
denoted by FP -id(M), is defined to be the smallest nonnegative integer n such that M has
an FP -injective resolution of length n. L. Mao and N. Ding in [4] introduced by X -injective
modules. An R-module M is called X -injective if Ext1R(A,M) = 0 for all R-modules A ∈ X .

In this paper, we take X is the class of all pure projective modules. X⊥ is the class of all
X -injective modules. An R-module M is X⊥-projective if Ext1R(M,U) = 0 for all R-modules
U ∈ X⊥. ⊥(X⊥) is the class of all X⊥-projective modules. Clearly, (⊥(X⊥),X⊥) is a cotorsion
theory.

Throughout this paper, R denotes a non-trivial associative ring with identity andM denotes a
category of left R-modules. Clearly,M is an abelian category with enough injectives. The class
X⊥ of X -injective modules is a full subcategory which is closed under isomorphisms. Similarly,
a subcategory of a subcategory X⊥ ofM always means a full subcategory of X⊥ which is closed
under isomorphisms. By I(M) we denote the classes of all injective objects of a categoryM.

If X is the class of all pure projective modules, then every left R-module has an X⊥-
coresolution over an arbitrary ring by [8, Theorem 2.2]. Then, the functor Hom(−,−) is right
balanced on R-Mod × R-Mod by X⊥ × X⊥. In [7], if X is the class of all pure projective
modules, then every R-module has an X -injective precover over a Noetherian ring R. It follows
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that every R-module has an X⊥-resolution. Hence, if R is a Noetherian ring, then Hom(−,−)
is left balanced.

Let Fixtn(−,−) denote the nth right derived functor of Hom(−,−) with respect to the pair
X⊥ × X⊥. Then, for two left R-modules M and N , Fixtn(M,N) can be computed using a
X⊥-resolution of M or a X⊥-coresolution of N . Also we denote Fixtn(−,−) is the nth left
derived functor of Hom(−,−) with respect to the pair X⊥ ×X⊥. Then, for two left R-modules
M and N , Fixtn(M,N) can be computed using a X⊥-coresolution of M or a X⊥-resolution of
N.

The left X⊥-dimension of a left R-module M, denoted by Lcores.dimX⊥(M), is defined as
inf{n : there is a X⊥-resolution of the form 0 → Gn → · · · → G0 → M → 0 of M}. If there
is no such n, set left Lcores.dimX⊥(M) = ∞. The global left X⊥-dimension of M, denoted
by glLcores.dimX⊥(M), is defined to be sup{Lcores.dimX⊥(M) : M ∈ M} and is infinite
otherwise. The right versions can be defined similarly. We denote by Rcores.dimX⊥(M) the
right X⊥-dimension of a left R-module M and we denote by glRcores.dimX⊥(M) the global
right X⊥-dimension ofM.

This paper is organized as follows: In Section 2, we take X is the class of all pure projective
modules and we introduce a right derived functor FixtnR(−,−) using X⊥-injective coresolu-
tions. It is shown that Fixt1R(M,N)→ Ext1R(M,N) is an isomorphism for all R modules N if
and only if M is X⊥-projective.

In Section 3, we investigate the X -injective dimension of modules and rings and the left de-
rived functors Fixtn(−,−). Let R be a Noetherian ring. We prove that Fcores.dimX⊥(M) ≤ 1
if and only if the canonical map µ : Fixt0(RR,N) → Hom(RR,N) is a monomorphism for
any left R-module N. Then, it is shown that Fcores.dimX⊥(M) ≤ n(n ≥ 2) if and only if
Fixtn+k(M,N) = 0 for all leftR-modulesN and all k ≥ −1.Moreover, glLcores.dimX⊥(M) ≤
n − 2(n ≥ 2) if and only if Fixtn+k(M,N) = 0 for all pure injective R-modules N and all
k ≥ −1. Finally, every left R-module has an X⊥-injective cover with the unique mapping prop-
erty if and only if Fcores.dimX⊥(M) ≤ 2.

2 The Right Derived Functors using X -injective coresolutions:

In this section, we investigate right derived functors using X⊥-coresolution. By [8, Theorem
2.2], every R-module has an X⊥-coresolution. Let 0 → N → G0 → G1 → · · · be an X⊥-
coresolution of N . This complex is unique up to homotopy. This leads us to new derived
functors FixtnR(−,−), which are well defined. Applying the functor HomR(M,−), we obtain
the deleted complex

G• : 0→ HomR(M,G0)→ HomR(M,G1)→ · · · .

Then, we can define FixtnR(M,N) = Hn(Hom(M,G•)).

Theorem 2.1. For M,N ∈ Obj(M), then the FixtnR(M,N) are well defined.

Proof. For any R-module N , there is an X⊥-coresolution of M

0→ N
ε→ G0 α1→ G1 α2→ · · ·

and an R-module N , there is an X⊥-coresolution of N

0→ N
ε′→ G0 α′1→ G1 α′2→ · · ·

Let γ ∈ HomR(N,N). We only need to show that there is a commutative diagram

0 // N
ε //

γ
��

G0

γ0
��

α1 // G1

γ1
��

α2 // · · · // Gn

γn
��

αn+1 // Gn+1

γn+1
��

// · · ·

0 // N
ε′ // G0

α′1 // G1
α′2 // · · · // Gn

α′n+1 // Gn+1 // · · ·

and the associated map of X⊥-coresolutions is unique up to homotopy.
Every R-module has a special X⊥-preenvelope. Then, N has an X⊥-preenvelope G0 and N

has an X⊥-preenvelope G0such that γ0 ∈ HomR(G0, G0), ε′ ∈ HomR(N,G0) and γ0ε = ε′γ.
Then the following diagram is commutative
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0 // N
ε //

γ

��

G0

γ0
��

// L1

l1
��

// 0

0 // N
ε′ // G0 // L1 // 0,

where L1 and L1 are cokernel of ε and ε′. Let G1 and G1 are X⊥-preenvelop of L1 and L1,
respectively. Then, the diagram

0 // L1 //

l1 ��

G1

γ1
��

0 // L1 // G1

is commutative. Continuing this process, there is γn−1 ∈ HomR(Gn−1, Gn−1) such that the
following diagram

0 // N
ε //

γ

��

G0

γ0
��

α1 // G1

γ1
��

// · · · // Gn−1

γn−1
��

// Ln

ln
��

// 0

0 // N
ε′ // G0

α′1 // G1 // · · · // Gn−1 // Ln // 0,

is commutative, where Gi and Gi are X -injective for each i ∈ {0, 1, · · · , n− 1}, Ln and Ln are
cokernals. Let Gn and Gn are X⊥-preenvelop of Ln and Ln, respectively. Then, there exists
γn ∈ HomR(Gn, Gn) such that the diagram

0 // Ln //

ln
��

Gn

γn
��

0 // Ln // Gn

is commutative. It follows that we can complete the diagram.
We are now to prove the uniqueness up to homotopy, that is, to prove that from the following

diagram

0 // N
α0 // G0

γ0
��
γ′0
��

s−1

{{

α1 // · · ·
αn

// Gn

γn
��

sn−1

{{
γ′n
��

αn+1 // Gn+1

γn+1
��

sn

zz
γ′n+1
��

// · · ·

0 // N
α′0 // G0

α′1 // · · · // Gn
α′n+1 // Gn+1 // · · ·

there exist s0, · · · , sn, · · · , with sn : Gn+1 → Gn such that γn − γ′n = α′n ◦ sn−1 + sn ◦ αn+1,
where s−1 = 0. We know that γ0α0 = α′0 = γ′0α0. It follows that (γ0 − γ′0)α0 = 0. Then, we
have the diagram

N // G0 //

γ0−γ′0
��

G0/N

��

// G1

}}

N // G0 // G0/N
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which can be completed sinceG1 is anX⊥-preenvelope, that is, there exists s0 ∈ HomR(G1, G0)
such that γ0 − γ′0 = s0 ◦ α1.

We will show that the following diagram is commutative, that is, a map on G0 which is zero.

N // G0

γ0−γ′0 ��

α1 // G1

γ1−γ′1 ��

α2 //

s0

{{

G2

s1

{{
N // G0

α′1 // G1
α′2 // G2.

Let s1 be the map which completes the following diagram

G1/imα1 //

γ1−γ′1−α
′
1s0
��

G2

s1

{{
G1

Hence,

(γ1 − γ′1 − α′1s0)α1 = (γ1 − γ′1)α1 − (α′1s0)α1

= (γ1 − γ′1)α1 − α′1(γ0 − γ′0)
= 0,

as desired. Continuing this process, we can find s2, · · · , sn−1. Define sn as the completion of
the following diagram

G1/imα1 //

γ1−γ′1−α
′
1s0
��

G2

s1

{{
G1

It follows that we can get a following commutative diagram

Gn−1
αn //

γn−1−γ′n−1
��

sn−2

vv

Gn
sn−1

vv
γn−γ′n

��

αn+1 // Gn+1

sn

vv
Gn−2

α′n−1

// Gn−1 // Gn.

Since the previous diagram has exact rows, then

(γn − γ′n − α′nsn−1)αn = (γn − γ′n)αn − α′n(sn−1αn)

= (γn − γ′n)αn − α′n(γn−1 − γ′n−1 − α′n−1sn−1)

= (γn − γ′n)αn − α′n(γn−1 − γ′n−1) + (α′n−1sn−1)

= 0.

Hence, the X⊥-coresolution is unique up to homotopy.

From the homology groups of this X⊥-coresolution gives a well defined derived functor
which we will call FixtnR(M,N). Let 0 → M → G0 → G1 → · · · be an X⊥-coresolution
of M and 0 → M → I0 → I1 → · · · an I(M)-coresolution of M . Since I0 is injective,
there exists g0 ∈ HomR(G0, I0) such that α′ = g ◦ α. By the injectivity of I1, there exists
g1 ∈ HomR(G1, I1) such that g1α0 = α′0g0. Continuing this process and using analog proof of
Theorem 2.1, we can complete the diagram
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0 // M //

γ

G0

g0
��

α1 // G1

g1
��

α2 // · · ·

0 // M
α′ // I0

α′1 // I1
α′2 // · · ·

to a commutative diagram uniquely, up to homotopy. Now applying HomR(M,−) to the dia-
gram

0 // G0

g0
��

// G1

g1
��

α2 // · · ·

0 // I0 // I1 // · · ·

gives natural maps FixtnR(M,G)→ ExtnR(M,G) for all n ≥ 0.

Proposition 2.2. For M,G ∈ Obj(M), F ixt0R(M,G) ∼= HomR(M,G).

Proof. Let 0→M → G0 → G1 → · · · be a X⊥-coresolution of M . Then, the homotopy groups
of the complex

0→ HomR(M,G0)→ HomR(M,G1)→ · · ·

gives us the groups FixtnR(M,G). Hence, Fixt0R(M,G) is the kernel of HomR(M,G0) →
HomR(M,G1). But the functor HomR(M,−) is left exact. So if the sequence 0 → G →
G0 → G1 is exact, then the sequence 0 → HomR(M,G0) → HomR(M,G1) → · · · is exact.
Now HomR(M,G) is isomorphic to the kernel of HomR(M,G0) → HomR(M,G1), that is,
HomR(M,G) ∼= Fixt0R(M,G), as desired.

Proposition 2.3. For M,G ∈ Obj(M), F ixt1R(M,N)→ Ext1R(M,N) is injective.

Proof. Let 0→ N → G0 → G1 → · · · be an X⊥-coresolution of N and 0→ N → E0 → E1 →
· · · be an I(M)-coresolution of N . Consider the exact sequences 0 → N → G0 → G0/N → 0
and 0→ N → E0 → E0/N → 0. From the following diagram with exact rows

M

��||
0 // N // G0

��

// G0/N

��

// 0

0 // N // E0 // E0/N // 0,

we get the following diagram

M

��

��

L

��

E0 // E0/N

is commutative. Then, the diagram
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M

��||
G0 // G0/N

can also be completed, as desired.

Theorem 2.4. ForM ∈ Obj(M), M isX⊥-projective if and only if Fixt1R(M,N)→ Ext1R(M,N)
is an isomorphism for all R modules N.

Proof. Suppose M is X⊥-projective. By Theorem [8, Theorem 2.2], N has an X -injective
coresolution, 0 → N

f→ G0 → G1 → · · · . Consider the short exact sequence 0 → N
f→ G0 →

G0/imf → 0. Then, we get the following commutative diagram with exact rows:

HomR(M,G0)

∼=��

// HomR(M,G0/imf) //

∼=��

Fixt1R(M,N)

��

// Fixt1R(M,G0) = 0

��

HomR(M,G0) // HomR(M,G0/imf) // Ext1R(M,N) // Ext1R(M,G0) = 0.

Hence, Fixt1R(M,N) ∼= Ext1R(M,N) for any R-module N. Conversely, we may assume that
Fixt1R(M,N)→ Ext1R(M,G) is an isomorphism for allR-modulesN . Then, Ext1R(M,G) = 0
for all X -injective R-modules G since Fixt1R(M,G) = 0 for all X -injective R-modules G and
R-modules M . Thus, M is X⊥-projective.

3 X -injective dimensions and the left derived functors of Hom

In this section, we deals with the X -injective dimensions of modules and the left derived functors
Fixtn(−,−).

For M ∈ ObjM, there exists an X -injective coresolution of M such that 0 → M
f→ G0 g0→

G1 → · · · . Then, we obtain the deleted complex

G• : · · · → Hom(G′, N)
g?0→ Hom(G0, N)→ 0

when we apply the functor Hom(−, N). It follows that Fixtn(M,N) is exactly nth homology
of the complex, that is, Fixtn(M,N) = Hn(Hom(G•, N)). Then, there is a canonical map

µ : Fixt0(M,N) = Hom(G0, N)/im(g?0 )→ Hom(M,N)

defined by µ(h+ im(g?0 )) = hg0 for h ∈ Hom(G0, N).

Proposition 3.1. Let R be a Noetherian ring. For M ∈ ObjM, M is X -injective if and only if
the canonical map µ : Fixt0(M,N) → Hom(M,N) is an epimorphism for any left R-module
N .

Proof. The direct implication is clear if G0 = M. Conversely, if N = M then there exists h ∈
Hom(G0,M) such that µ(h+im(g?0 )) = hg0 = 1M . Thus,M is isomorphic to a direct summand
of G0. Since the direct summand of X -injective module is X -injective, M is X -injective.

Corollary 3.2. Let R be a Noetherian ring. Then, the following conditions are equivalent:

(i) RR is X -injective;

(ii) The canonical map µ : Fixt0(RR,N) → Hom(RR,N) is an epimorphism for any left R-
module N ;

(iii) The canonical map µ : Fixt0(RR,RR)→ Hom(RR,RR) is an epimorphism;

(iv) Every R-module has a special X -injective cover.

Proof. (1)⇔ (2)⇔ (3) follows from Proposition 3.1.
(1) ⇒ (4). For any left R-module M , M has an X -injective precover. Consider the exact

sequence F →M → 0 with F a free module. By hypothesis, F is X -injective.
(4) ⇒ (1). Let φ : M → RR be a special X -injective cover. Then, RR is isomorphic to a

direct summand of M . Thus, RR is X -injective.
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Proposition 3.3. Let R be a Noetherian ring. Then, the following are equivalent:

(i) Rcores.dimX⊥(M) ≤ 1;

(ii) The canonical map µ : Fixt0(M,N) → Hom(M,N) is a monomorphism for any left R-
module N.

Proof. (1) ⇒ (2). By hypothesis, M has a X⊥-coresolution 0 → G0 → G1 → 0. It follows
that we get an exact sequence 0 → Hom(G1, N) → Hom(G0, N) → Hom(M,N) for any
R-module N . Hence, µ is a monomorphism.

(2) ⇒ (1). Consider the exact sequence 0 → M → G0 → L1 → 0, where M → G0 is an
X -injective preenvelope. We only need to show that L1 is X -injective. By [2, Theorem 8.2.3],
we have the commutative diagram with exact rows:

Fixt0(L1, L1)

µ1

��

// Fixt0(G0, L1) //

µ2

��

Fixt0(M,L1)

µ3

��

// 0

0 // Hom(L1, L1) // Hom(G0, L1) // Hom(M,L1).

Note that α2 is an epimorphism by Proposition 3.1 and µ3 is a monomorphism by hypothesis.
Hence, µ1 is an epimorphism by the Snake Lemma [6, Theorem 6.5]. By Proposition 3.1, L1 is
X -injective.

Lemma 3.4. Let R be a Noetherian ring. Then, Rcores.dimX⊥(M) = cores.dimX⊥(M) for
any left R-module M.

Proof. Clearly, cores.dimX⊥(M) ≤ Rcores.dimX⊥(M).Conversely, we assume that cores.dimX⊥(M) =
n < ∞. Consider the partial X⊥-coresolution of M , 0 → G0 → G1 → · · · → Gn−1. Then, we
get an exact sequence 0→ G0 → G1 → · · · → Gn−1 → L→ 0. Hence, L is X -injective, and so
Rcores.dimX⊥(M) ≤ n, as desired.

The finitistic X⊥-coresolution of dimension, denoted by Fcores.dimX⊥(M), is defined as
sup{cores.dimX⊥(M) : M ∈ Obj(M)}.
Proposition 3.5. Let R be a Noetherian ring. Then, the following are equivalent:

(i) Fcores.dimX⊥(M) ≤ 1;

(ii) The canonical map µ : Fixt0(RR,N) → Hom(RR,N) is a monomorphism for any left
R-module N.

Proof. (1)⇔ (2). It follows by Proposition 3.3 and Lemma 3.4.

Proposition 3.6. Let R be a Noetherian ring and an integer n ≥ 2. Then, the following condi-
tions are equivalent:

(i) Rcores.dimX⊥(M) ≤ n;

(ii) Fixtn+k(M,N) = 0 for all R-modules N and all k ≥ −1;

(iii) Fixtn−1(M,N) = 0 for all R-modules N.

Proof. (1) ⇒ (2). Note that Fixtn+k(M,N) = 0 for all k ≥ 1. We only need to show that
Fixtn+k(M,N) = 0 for all k ∈ {−1, 0}. Consider X⊥-coresolution of M , 0 → G0 → G1 →
· · · → Gn → 0. Which induces an exact sequence 0 → Hom(Gn, N) → Hom(Gn−1, N) →
Hom(Gn−2, N) for any R-module N . Hence, Fixtn(M,N) = Fixtn−1(M,N) = 0.

(2)⇒ (3) is trivial.
(3) ⇒ (1). Consider the X⊥-coresolution of M , 0 → G0 → G1 → · · · → Gn → 0. with

Ln = coker(Gn−2 → Gn−1). We have the following commutative diagram

0 // M // G0 // · · ·Gn−2 α // Gn−1

γ

""

β
// Gn // · · ·

Ln

!!

η
==

0

;;

0.
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Since Fixtn−1(M,Ln) = 0, the sequence

Hom(Gn, Ln)
β?→ Hom(Gn−1, Ln)

α?→ Hom(Gn−2, Ln)

is exact. Now α?(γ) = γα = 0. It follows that γ ∈ ker(α?) = im(β?). Then, there exists
ν ∈ Hom(Gn, Ln) such that γ = β?(ν) = νβ = νηγ, and hence νη = 1 since γ is epic.
Therefore Ln is X -injective, as desired.

Corollary 3.7. Let R be a Noetherian ring and an integer n ≥ 2. Then, the following are equiv-
alent:

(i) cores.dimX⊥(M) ≤ n;

(ii) Fixtn+k(M,N) = 0 for all R-modules M,N and all k ≥ −1;

(iii) Fixtn−1(M,N) = 0 for all R-modules M and N.

Proposition 3.8. Let R be a Noetherian ring. If M is a pure injective R-module, then M has a
minimal X⊥-resolution · · · → Gn−2 → Gn−3 → · · · → G1 → G0 → M → 0 with each Gi an
injective module.

Proof. By [7, Theorem 5.5], M has an X -injective precover γ : G0 → M. Consider the exact
sequence 0→ G0

i→ E → L→ 0 with E an injective envelope of G0. Since the exact sequence
is pure and M is pure injective, there exists h ∈ Hom(E,M) such that γ = hi. By X -injective
precover γ of M , there exists φ ∈ Hom(E,G) such that γφ = h. Hence, γφi = hi = γ. This
implies that φi is an isomorphism. Then, G is isomorphic to a direct summand of E and hence G
is injective. Note that ker γ ∈ (X⊥)⊥. Hence, ker γ has an X -injective precover γ1 : G1 → ker γ
with G1 an injective module, where ker γ1 ∈ (X⊥)⊥. By continuing the above process, we get
the minimal X⊥-resolution of M .

Theorem 3.9. LetR be a Noetherian ring. Consider the following conditions for a pure injective
R-module N and an integer n ≥ 2 :

(i) Lcores.dimX⊥(N) ≤ n− 2;

(ii) Fixtn+k(M,N) = 0 for all R-modules M and all k ≥ −1;

(iii) Fixtn+k(M,N) = 0 for all R-modules M.

Proof. (1)⇒ (2). By hypothesis, N has a left X⊥-resolution

0→ Gn−2 → · · · → G1 → G0 → N → 0.

Then, we have the following sequence

0→ Hom(M,Gn−2)→ Hom(M,Gn−3)→ · · ·Hom(M,G0)→ 0

for any R-module M. Hence, Fixtn+k(M,N) = 0 for all k ≥ −1.
(2)⇒ (3) is trivial.
(3)⇒ (1). By pure injectivity of N and Proposition 3.8, N has a minimal X⊥-resolution:

· · · → Gn
α→ Gn−1

β→ Gn−2
γ→ Gn−3

µ→ · · · → G1 → G0 →M → 0

with eachGi an injective module. Let iβ ∈ Hom(K,Gn−1) be the inclusion and pβ ∈ Hom(Gn−1, H)
the canonical projection, whereK = kerβ andH = Gn−1/K. Then, there exists η1 ∈ Hom(Gn,K)
such that α = iβη1 and there exists a monomorphism η2 ∈ Hom(H,Gn−2) such that β = η2pβ .
Let η3 ∈ Hom(Gn−2, L) be the canonical projection, where L = Gn−2/im(η2.) Then, there
exists a homomorphism iη2 ∈ Hom(L,Gn−3) such that γ = iη2η3. Then, we get the following
commutative diagram:

Gn
α //

η1

  

Gn−1
β

//
pβ

""

Gn−2
η3

!!

γ
// Gn−3

K

""

iβ

<<

H

""

η2

<<

L

==

""

iη2

==

0

==

0

<<

0

<<

0.
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By (3), F ixtn−1(K,N) = 0. Then, the sequence

Hom(K,Gn)
α∗−→ Hom(K,Gn−1)

β∗−→ Hom(K,Gn−2)

is exact. Since β∗(iβ) = βiβ = 0, iβ ∈ kerβ∗ = imα∗. Therefore iβ = α∗(t) = α(t) for some
t ∈ Hom(K,Gn). By α = iβη1, iβ = iβη1t. Hence, η1t = 1Gn since iβ is monic. So K is
injective. It follows that H and L are injective. We claim that the complex

0→ L
iη2→ Gn−3 → · · · → G1 → G0 → N → 0

is an X⊥-resolution of N . We only need to show that the complex

0→ Hom(G,L)
(iη2 )∗−→ Hom(G,Gn−3)

µ∗−→ Hom(G,Gn−4)

is exact for any X -injectiveR-moduleG. Note that we have the following commutative diagram:

Hom(G,Gn−1)
β∗ //

(pβ)∗

))

Hom(G,Gn−2)
γ∗ //

(η3)∗

))

Hom(G,Gn−3)

Hom(G,H)

))

(η2)∗ 55

Hom(G,L)

))

(iη2 )∗ 55

0

55

0 0.

Now ker((iη2)∗(η3)∗) = ker(γ∗) = im(β∗) = im((η2)∗(pβ)∗) = im((η2)∗) = ker((η3)∗).
Let g ∈ ker((iη2)∗). Since (η3)∗ is epic, g = (η3)∗(gn−2) for some gn−2 ∈ Hom(G,Gn−2).
Therefore (iη2)∗(η3)∗(gn−2) = 0. Hence, (η3)∗(gn−2) = 0. That is, g = 0. It follows that (iη2)∗
is monic. On the other hand ker(µ∗) = im(γ∗) = im((iη2)∗).Hence, we obtain the desired exact
sequence. This completes the proof.

Corollary 3.10. Let R be a Noetherian ring and an integer n ≥ 2. Consider the following
conditions

(i) glLcores.dimX⊥(M) ≤ n− 2;

(ii) Fcores.dimX⊥(M) ≤ n;

(iii) Lcores.dimX⊥(N) ≤ n− 2 for all pure injective R-modules N ;

(iv) Fixtn+k(M,N) = 0 for allR-modulesM , all pure injectiveR-modulesN and all k ≥ −1;

(v) Fixtn−1(M,N) = 0 for all R-modules M and all pure injective R-modules N.

Then, (1)⇒ (2)⇒ (3)⇔ (4)⇔ (5).

Proof. It follows from Corollary 3.7 and Theorem 3.9.

Lemma 3.11. LetR be a Noetherian ring and an integer n ≥ 1. IfM is pure injectiveR-module,
then id(M) ≤ n if and only if for the minimal left X⊥-resolution · · · → Gn → Gn−1 → · · · →
G1 → G0 → N → 0 of any pure injective R-module N , Hom(M,Gn) → Hom(M,Kn) is an
epimorphism.

Proof. We prove the result by induction on n. Let n = 0. If M is injective, Hom(M,G0) →
Hom(M,K0) is an epimorphism. Conversely, putN =M. Then,Hom(M,G0)→ Hom(M,M)
is an epimorphism, and hence M is injective.

Let n ≥ 1. Consider an exact sequence 0→ M → E → L→ 0 with E an injective module.
Then, we have the following diagrams

Hom(E,Gn) //

��

Hom(E,Kn) //

��

0

Hom(M,Gn) //

��

Hom(M,Kn)

0
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and

0

��

0

��

0

��
0 // Hom(L,Kn) //

��

Hom(L,Gn−1) //

��

Hom(L,Kn−1)

��
0 // Hom(E,Kn) //

��

Hom(E,Gn−1) //

��

Hom(E,Kn−1) //

��

0

0 // Hom(M,Kn) // Hom(M,Gn−1) //

��

Hom(M,Kn−1).

0

are exact and commutative. By [3, Lemma 3.2.10], L is pure injective. Therefore id(M) ≤ n if
and only if id(L) ≤ n − 1 if and only if Hom(L,Gn−1) → Hom(L,Kn−1) is an epimorphism
by induction on n if and only if Hom(E,Kn) → Hom(M,Kn) is an epimorphism by the
second diagram if and only if Hom(M,Gn) → Hom(M,Kn) is an epimorphism by the first
diagram.

Theorem 3.12. Let R be a Noetherian ring. Then, FixtnR(M,N) ∼= FixtRn (M,N) for n ≥ 0.

Proof. By Theorem [8, Theorem 2.2], M has a X⊥-coresolution. Let 0 → M → G0 → G1 →
· · · be an X⊥-coresolution of M . Since R is hereditary Noetherian, then there exists an X⊥-
resolution · · · → G2 → G1 → G0 → N → 0

0 0 0

· · · // Hom(M,G2) //

OO

Hom(M,G1) //

OO

Hom(M,G0)

OO

// 0

· · · // Hom(G0, G2) //

OO

Hom(G0, G1) //

OO

Hom(G0, G0) //

OO

Hom(G0, N)

OO

// 0

· · · // Hom(G1, G2) //

OO

Hom(G1, G1) //

OO

Hom(G1, G0)

OO

// Hom(G1, N)

OO

// 0

...

OO

...

OO

...

OO

...

OO

Since Gi are X -injective and G• is an X⊥-coresolution, all rows but the first are exact. Similarly
all columns but the last are exact. Then, by chasing diagrams or by a spectral sequence argument,

Hn(Hom(M,G•(N))) ∼= Hn(Hom(G•(M), N)

for each n ≥ 0. This completes the proof.

Theorem 3.13. Let R be a Noetherian ring. Then, the following conditions are equivalent:

(i) Every left R-module has an X -injective cover with the unique mapping property;

(ii) Fcores.dimX⊥(M) ≤ 2;

(iii) Fixt1(M,N) = 0 for all left R-modules M and N ;

(iv) Fixtk(M,N) = 0 for all left R-modules M and N and k ≥ 1.
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Proof. (1) ⇒ (2). Let M be an R-module. Then, M has an X -injective cover φ : U → M
with the unique mapping property. Hence, 0 → U → M → 0 is a left X -resolution. Thus,
glLcores.dimX⊥(M) = 0. Hence, by Corollary 3.10, Fcores.dimX⊥(M) ≤ 2.

(2) ⇒ (1). Let M be an R-module. By [7, Theorem 5.6], M has an X -injective cover
h : U → M. It is enough to show that, if for any X -injective left R-module U ′ and any homo-
morphism j : U ′ → U such that hj = 0 then j = 0. Consider the natural map π : U → U/imj.
Then, there exists h : U/imj → M such that hπ = h since imj ⊆ kerh. By hypothesis, U/imj
is X -injective. Then there exists µ : U/imj → U such that h = hµ. Hence, we get the following
commutative diagram with exact row:

0 // ker j
i // U ′

0

  

j
// U

h
��

π //
U/imjµ

oo //

h{{

0.

M

Thus, hµπ = h, and hence µπ is an isomorphism. It follow that π is monic. Thus, j = 0.
(2)⇔ (3)⇔ (4). It follows from Corollary 3.7.

Remark 3.14. Let R be a Noetherian ring. Then, every left R-module has an X -injective cover
with the unique mapping property if and only if every pure injective R-module is X -injective.
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