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Abstract. Starting from first principles and general assumptions based on the energy-momentum
relation of the Special Theory of Relativity, we present a novel wave equation for ultrarelativistic
matter. This wave equation arises when particles satisfy the condition, p >> m, i.e, when the
energy-momentum relation can be approximated by, E ' p+ m2

2p . Interestingly enough, such as
the Dirac equation, it is found that this wave equation includes spin in a natural way. Further-
more, the free solutions of this wave equation contain plane waves that are completely equivalent
to those of the theory of neutrino oscillations. Therefore, the theory reproduces some standard
results of the Dirac theory in the limit p >> m, but offers the possibility of an explicit Lorentz
Invariance Violation of order, O((mc)4/p2). As a result, the theory could be useful to test small
departures from Dirac equation and Lorentz Invariance at very high energies. On the other hand,
the wave equation can also describe particles of spin 1 by a simple substitution of the spin op-
erators, σ → α. In addition, it naturally admits a Lagrangian formulation and a Hamiltonian
formalism. We also discuss the associated conservation laws that arise through the symmetry
transformations of the Lagrangian.

1 Introduction

The Dirac equation is one of the most beautiful creations of human intellect. It opened a new
era in particle physics, yielding many impressive results among which we can mention the pre-
diction of antiparticles such as the positron. Indeed, the prediction of the positron by Dirac in
1928, –and the posterior discovery by Anderson in 1932–, marks one of the major events in
the history of science. However, in spite of their impressive agreement with experiments, it is
not clear whether the Dirac equation will always prevail as an untouchable scientific truth. We
specifically refer to the ultra-high energy regimes, i.e, p >> m , where possible deviations from
Lorentz invariance might be present. These possible violations of Lorentz invariance have re-
ceived attention in the literature and are being extensively studied in the last years, specially in
the context of ultra-high energy cosmic-rays.[1, 2]

It is not the purpose of this letter the study of a competitor to the Dirac wave equation. There
is no doubt that fermions follow the Dirac equation, whose unrivalled success in the under-
standing of matter is not subjected to discussion. However, fermions such as the electron also
satisfy the Schrödinger equation, but in the low-energy limit. Indeed, as is well known, the Dirac
equation replaces the Schrödinger equation in the relativistic regime. Then, it seems natural to
wonder: Is there life beyond the Dirac equation? In this work we try to provide an answer to this
question. In particular, we want to explore whether a theoretical alternative to the Dirac equa-
tion at very high energies can be possible. From a theoretical point of view, the study of such
a possibility is not only a legitimate research program, but also a quite interesting intellectual
exercise.

Indeed, as we will see, in the regime p >> m, it seems to be room for the existence of
another matter wave equation, which can be derived starting from first principles. This matter
wave equation also includes spin in a natural way. In fact, we will show that the wave equation
is not only suitable for fermions of spin 1/2, but does also describe massive bosons of spin 1 by
means of a substitution of the spin operators σ → α, where α are the Majorana-Oppenheimer
matrices [11, 12].

The paper is organized as follows. In sec.2, we derive the wave equation starting from first
principles. In sec.3, we establish the Lagrangian formulation and the Hamiltonian formalism.



302 Ginés R. Pérez Teruel

Finally, in sec.4, we present the conclusions of this work.

2 Derivation and physical interpretation

In order to derive a wave equation in physics, we have to focus on the energy-momentum rela-
tion assumed. In the same fashion that Schrödinger’s equation is derived assuming a classical
relation, E = p2/2m, the Klein-Gordon equation can be obtained taking the quadratic equation,
E2 = m2+p2, and the Dirac equation emerges assuming a linear relation, E = αipi+βm. Then,
it seems natural to wonder what wave equation would correspond to the case, E = p+m2/2p,
which is the subject of this work. In the theoretical discussion that follows, we will maintain the
constants ~, c, in all the expressions unless otherwise noted. Let us begin the discussion with
the energy-momentum relation of the Special Theory of Relativity (STR) for a free particle with
positive energy

E =
√
c2p2 +m2c4 (2.1)

Where m is the rest mass. As is well known, in the non-relativistic limit, p << mc, we can
approximate this equation as

E ' mc2
(

1 +
p2

2m2c2

)
= mc2 +

p2

2m
(2.2)

However, in the ultra-relativistic limit, mc << p, equation (2.1) provides

E ' cp
(

1 +
m2c2

2p2

)
= cp+

m2c3

2p
(2.3)

Multiplying by p the last equation and making explicit the operator representation, Ê → i~ ∂
∂t

,
p̂→ −i~∇, we arrive to the following partial differential wave equation

|∇|∂ψ
∂t

= −c∇2ψ +
m2c3

2~2 ψ (2.4)

Where∇2 ≡ ∂2
x+∂2

y+∂2
z is the Laplacian operator and, |∇| ≡ (∂2

x+∂2
y+∂2

z)
1/2 its square root.

We can express the square root of the Laplacian as, |∇| = σ · ∇; In cartesian coordinates:

|∇| = σ · ∇ = σx∂x + σy∂y + σz∂z (2.5)

Where σx, σy, σz are certain operators. The condition, (σ · ∇)2 = ∇2 can be written as(
σx∂x + σy∂y + σz∂z

)
·
(
σx∂x + σy∂y + σz∂z

)
= ∂2

x + ∂2
y + ∂2

z (2.6)

Then, the operators σi are subjected to the constraints

σ2
i = I {σi, σj} = 2δijI (2.7)

This allows to choose a representation of the sigmas given in terms of the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2.8)

In these conditions, we can write the explicit form of the wave equation (2.4) in terms of the
Pauli matrices as follows:

σx
∂2ψ

∂x∂t
+ σy

∂2ψ

∂y∂t
+ σz

∂2ψ

∂z∂t
= −c∇2ψ +

m2c3

2~2 ψ (2.9)

Or in the compact form

(σ · ∇)∂ψ
∂t

= −c∇2ψ +
m2c3

2~2 ψ (2.10)

The explicit emergence of the Pauli matrices (2.8) in the wave equation indicates that (2.10)
describes particles of spin 1/2 in the ultra-high energy regime, p >> mc. It is important to
note that this wave equation is not covariant (with respect to a Lorentz Transformation). The
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reason lies in the fact that the energy and the momentum do not share the same power in the
energy-momentum relation (2.3), which implies that the spatial and temporal derivatives that
appear in the wave equation are not of the same order. Since we are neglecting in the power
series expansion of (2.1) all the terms beyond, m2c2/2p, the breakdown of Lorentz invariance
(LI), given by (2.3) is therefore of order, O((mc)4/p2), which represents a very small departure
from LI, almost negligible.

At any rate, experiments have the last word. If a wave equation explains the experimental
results but fails to be Lorentz invariant, then the problem is not necessarily in the wave equa-
tion. In this sense, it is well known that there is no clue so far of Lorentz invariance violations
(LIV) in particle physics experiments. However, a large amount of theoretical effort is being
spent trying to study this possibility, specially in the context of the cosmic rays, which are con-
formed by ultra-relativistic particles.[1, 2]. It is worth noting that, although the wave equation
is not LI, with some manipulations it can be written in a form that resembles a covariant equation:

(σµ∂
µ)
∂ψ

∂x0 =
(
− ∂µ∂µ +

m2c2

2~2

)
ψ (2.11)

where σ0 = I2x2. Indeed, since σ0∂
0∂0ψ = 1

c2
∂2ψ
∂t2 I2x2, this equation leads to

1
c2
∂2ψ

∂t2
+ (σ · ∇) ∂ψ

c∂t
=
(
−∇2 +

1
c2
∂2

∂t2
+
m2c2

2~2

)
ψ (2.12)

Then, we have a cancellation between the second-order partial derivatives with respect to the
time coordinate, recovering (2.10). From the observation of (2.11), we can say that the first-order
partial derivative ∂0ψ is the term that is preventing the covariance of the wave equation. Indeed,
this is the zero component of a four-vector, ∂µψ, which is referred to a particular coordinate
system, meanwhile all the other terms of the wave equation can be written in a manifest Lorentz
invariant fashion. On the other hand, a Hamiltonian form of the wave equation can easily be
provided:

(−iσµ∂µ)Ĥψ =
(
− ~∂µ∂µ +

m2c2

2~

)
ψ (2.13)

where
Ĥψ = i~∂ψ

∂t
(2.14)

Ĥ is the standard Hamiltonian (or time-evolution) operator. In the last part of this work we shall
see a peculiar aspect of this theory, namely, that the time evolution operator Ĥ and the canonical
Hamiltonian Ĥc that comes from the Lagrangian formulation are not the same algebraic object,
though they are closely related.

2.1 Free solutions of the wave equation.

Given the wave equation (2.10), it seems natural to look for a solution with a plane wave struc-
ture, namely

ψ(r, t) =

(
χ

φ

)
ei(k·r−ωt) (2.15)

Where k · r = kxx+ kyy + kzz. Substituing this ansatz in (2.9) we obtain after a bit of algebra
the following matrix equation(

kzω − ck2 − m2c3

2~2 (kx − iky)ω
(kx + iky)ω −kzω − ck2 − m2c3

2~2

)(
χ

φ

)
=

(
0
0

)
(2.16)

Where, k2 = k2
x+k

2
y+k

2
z . In order to obtain non-trivial solutions we must impose the condition,

det Â = 0. It gives the result

det Â = −k2
zω

2 +
(
ck2 +

m2c3

2~2

)2
− ω2(k2

x + k2
y) = 0 (2.17)

Which implies a dispersion relation, ω(k) given by
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ω(k) = ±
(
ck +

m2c3

2~2k

)
(2.18)

The minus sign corresponds to the negative energy solutions. Then, taking into account both
possibilities, the most general solution of the wave equation will be a superposition of positive
and negative energy modes, namely:

ψ(x) =
∑
k

(
a(k)u(k)ei(k·r−ωt) + b†(k)v(k)e−i(k·r−ωt)

)
(2.19)

with an spinor of positive energy u(k), and another of negative energy, v(k) satisfying the
orthogonality condition u(k) · v(k) = 0. Indeed, in order to better understand the last results,
let us consider the particular case of the one-dimensional propagation along the z-axis. The
simplified version of (2.9) will be

σz
∂2ψ

∂z∂t
= −c∂

2ψ

∂z2 +
m2c3

2~2 ψ (2.20)

To solve this wave equation we take an ansatz similar to (2.15)

ψ(z, t) =

(
χ

φ

)
ei(kz−ωt) (2.21)

For simplicity we have denoted the z component of the wave vector ~k simply as k. The substitu-
tion of (2.21) in (2.20) provides the following system

kω

c
χ =

(
k2 +

m2c2

2~2

)
χ (2.22)

kω

c
φ = −

(
k2 +

m2c2

2~2

)
φ (2.23)

These relations imply

ωχ(k) = ck +
m2c3

2~2k
(2.24)

ωφ(k) = −
(
ck +

m2c3

2~2k

)
(2.25)

Of course, they are nothing else than the dispersion relations that we deduced for the 3D case
in (2.18). Note that the field, φ that appears in (2.15-2.21) is the piece of the wave function that
corresponds to the negative energy solution. i.e, the field associated to the antiparticle.

On the other hand, it is possible to compute directly from (2.18) the phase and group veloci-
ties associated to the positive energy solutions:

Vph =
ω

k
= c+

m2c3

2~2k2 = c
(

1 +
( mc√

2~k

)2)
(2.26)

Vg =
dω

dk
= c− m2c3

2~2k2 = c
(

1−
( mc√

2~k

)2)
(2.27)

Note that in the previous relations mc << ~k. Then, although the phase velocity of the ultra-
relativistic wave satisfies, Vph ≥ c, the group velocity (the meaningful concept related with the
true energy propagation of the wave), cannot exceed the speed of light. We can therefore con-
clude that the propagation of these waves is causal and consistent with the STR, the superluminal
propagation is not possible in this theory. In Figure 1, we plot the behaviour of Vg and Vph.

Moreover, given the expressions of Vg and Vph, we can assure after a straightforward compu-
tation that their product is also smaller than c2

Vph · Vg = c2
(

1−
( mc√

2~k

)4)
(2.28)
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Figure 1. Representation of Vph(dashed) and Vg (solid) in natural units as functions of k for a particle of
m = 1eV . The values of both functions rapidly tend to the speed of light.

On the other hand, note that by means of the dispersion relation (2.24), the plane-wave solu-
tion with positive energy of (2.21), can be written in the following manner

χ(z, t) = χ(0) exp
(
i(kz − wχt)

)
= χ(0) exp

(
i(kz − kct− m2c3

2~2k
t)
)

' χ(0) exp
(
− im

2c2z

2~2k

)
(2.29)

Where we can approximate, z ' ct, if the ultra-relativistic particle travels close to the speed
of light. The wave function (2.29) is a standard result frequently found within the context of
the theory of neutrino oscillations[3, 5] . This theory makes the initial assumption that the
mass eigenfunctions that describe the propagation of such particles are plane-waves, |νi(z, t)〉 =
exp(i(kiz−wit))|νi(0)〉, then it is used the approximation (in natural units), E = p+m2/2p, to
simplify the argument of the exponential and finally obtain:

|νi(z)〉 = exp
(
− im

2
iz

2p

)
|νi(0)〉 (2.30)

Where z is the distance between the neutrino production and detection points. Note that both
wave functions have the same structure. It is worth noting that we have been able to derive this
standard result following a non-standard approach. Indeed, we have proved that the family of
plane waves (2.30), are only particular solutions of the ultra-relativistic wave equation (2.10).
On the other hand, eigenstates with different masses propagate at different speeds, this is evident
following equation (2.27) which establishes the dependence of the group velocity upon m2. This
fact is also directly derived from the wave equation. We visualize the situation with the help of
Figure 2, where it is represented the variation of Vg as function of k for several values of the
mass parameter.
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Figure 2. Variation of Vg as function of k for several values of the mass parameter: m = 1, 10, 20 and 50 eV.



2.2 The spin 1 case. Majorana-Oppenheimer matrices

Let us briefly illustrate how the formalism can be naturally adapted to describe ultrarelativistic
bosons of spin 1. This can be achieved by a subtle change of operators without changing the
structure itself of the wave equation. Indeed, let us rewrite (2.10), in the following form:

(α · ∇)∂ψ
∂t

= −c∇2ψ +
m2c3

2~2 ψ (2.31)

The difference with respect to the spin 1/2 case lies in the left hand side, but it is worth noting
that the structure of the wave equation remains the same with the only modification, σ → α. This
means that instead of the Pauli matrices, now we have another spin operators. These operators
are given by the following matrices:

α1 =

0 0 0
0 0 i

0 −i 0

 α2 =

0 0 −i
0 0 0
i 0 0

 α3 =

 0 i 0
−i 0 0
0 0 0

 (2.32)

These matrices satisfy the angular–momentum commutation rules

[αi, αk] = −iεiklαl (2.33)

Matrices (2.32) were introduced by Majorana [11] and Oppenheimer [12] in their indepen-
dent attempt to formulate Maxwell’s Electrodynamics as the Field Theory of a massless spin 1
particle within the framework of a Dirac-type equation. Such as the Pauli matrices, these opera-
tors are hermitian, α† = α, and obey the commutation rules of the rotation group SO(3) (2.33).
Since they are 3x3 matrices, the field ψ must be decomposed as, ψ = (ψ1, ψ2, ψ3). Indeed, we
need a three component column vector to describe the, 2J + 1 = 3 independent polarization
states of a massive spin-1 particle. In particular, the plane wave solution will be of the form:

ψ(r, t) =

 ψ1

ψ2

ψ3

 ei(k·r−ωt) (2.34)

The substitution of this ansatz in the wave equation (2.31) provides, after some elementary ma-
nipulations, a homogeneous matrix system Âψ = 0, similar to that of the spin-1/2 case (2.16),
but Â will be now a 3x3 hermitian matrix. Indeed, the explicit form of this homogeneous system
is the following:−ck

2 − m2c3

2~2 ikzω −ikyω
−ikzω −ck2 − m2c3

2~2 ikxω

ikyω −ikxω −ck2 − m2c3

2~2


 ψ1

ψ2

ψ3

 =

 0
0
0

 (2.35)

Note that Â† = Â. To obtain non-trivial solutions, we must impose again the consistency
condition det Â = 0. Through this condition one gets the result:(

ck2 +
m2c3

2~2

)(
k2ω2 −

(
ck2 +

m2c3

2~2

)2)
= 0 (2.36)

which implies

ω(k) = ±
(
ck +

m2c3

2~2k

)
(2.37)

This is exactly the dispersion relation ω(k), expected for a ultrarelativistic particle of an
energy-momentum relation given by, E ' p + m2/2p, a result that was already derived for
the spin-1/2 case in (2.18) and (2.24). As in the spin-1/2 case, the negative frequency solution
(negative energy), corresponds to the antiparticle.

Finally, the Hamiltonian form of the wave equation for the spin 1 case in a “covariant" fashion
can be written as :

(−iαµ∂µ)Ĥψ =
(
− ~∂µ∂µ +

m2c2

2~

)
ψ (2.38)

where α0 = I3x3
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3 Canonical formulation

In this section we proceed to the construction of the Lagrangian and Hamiltonian formulation of
the theory. As is well known, a remarkable feature of Field Theory is that all the well defined
matter wave equations can be derived from a Lagrangian density, from which a continuity equa-
tion, ∂ρ∂t +∇ · J = 0, follows. The aim of this section is to prove that the wave equation (2.10)
also admits naturally a Lagrangian formalism. The canonical analysis is a powerful tool, not
only to study the symmetry transformations of the Lagrangian which allows to apply Noether’s
theorem to collect the associated conservation laws, but also to build the associated Hamiltonian,
a necessary step to carry out the canonical quantization of the field 1

3.1 Lagrangian formulation

The initial point of the canonical analysis are the following Lagrangians:

L1/2 =
m2c2

2~2 ψψ
† +∇ψ · ∇ψ† + 1

2c

(∂ψ
∂t
σ · ∇ψ† + ∂ψ†

∂t
σ · ∇ψ

)
(3.1)

L1 =
m2c2

2~2 ψψ
† +∇ψ · ∇ψ† + 1

2c

(∂ψ
∂t
α · ∇ψ† + ∂ψ†

∂t
α · ∇ψ

)
(3.2)

where c is the speed of light. As is well known, the matrices σ, α, are hermitian, σ†i = σi,
α†i = αi which guarantees the hermiticity of both Lagrangians, L = L†. Since the spin 1 case
is identical to the 1/2 case with the replacement σ → α in the Lagrangian, we shall restrict
ourselves to the study of the 1/2 case, and it should be understood that a similar analysis holds
for the case of spin 1. Having made this clarification, the Euler-Lagrange (E-L) equations for the
fields ψ, ψ†, are given by

∂µ

[ ∂L
∂(∂µψ)

]
− ∂L
∂ψ

= 0, ∂µ

[ ∂L
∂(∂µψ†)

]
− ∂L
∂ψ†

= 0 (3.3)

Making explicit the summation over the index µ, the E-L equation associated to the hermitian
conjugate, ψ† will be

∂0

[ ∂L
∂(∂0ψ†)

]
+∇ ·

[ ∂L
∂(∇ψ†)

]
− ∂L
∂ψ†

= 0 (3.4)

Applying the derivatives of (3.4) to the Lagrangian density (3.1), we find

∂L
∂(∂0ψ†)

=
1
2c
σ · ∇ψ, ∂L

∂(∇ψ†)
=

1
2c
∂ψ

∂t
σ +∇ψ (3.5)

The substitution of these results in (3.4) gives

0 = ∂0

[ ∂L
∂(∂0ψ†)

]
+∇ ·

[ ∂L
∂(∇ψ†)

]
− ∂L
∂ψ†

=
∂

∂t

( 1
2c
σ · ∇ψ

)
+∇ ·

( 1
2c
∂ψ

∂t
σ +∇ψ

)
− m2c2

2~2 ψ

=
1
c
(σ · ∇)∂ψ

∂t
+∇2ψ − m2c2

2~2 ψ (3.6)

This is a proof that the wave equation (2.10) can be obtained from a Lagrangian density by means
of the corresponding E-L equations.

3.2 Global gauge invariance. Noether’s theorem and conserved current

The Lagrangian density (3.1) is invariant under the transformation

ψ → ψ′ = eiθψ (3.7)
1The study of the canonical quantization of the field will be the subject of future work
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Then, according to Noether’s theorem it must exist a conserved quantity. Indeed, it can be proved
that the associated current Jµ, satisfies the differential equation ∂µJµ = 0, where

Jµ =
[ ∂L
∂(∂µψ)

]
δψ +

[ ∂L
∂(∂µψ†)

]
δψ† (3.8)

This result implies that there exists a certain “charge" Q ≡
∫
V
J0d3x, which is a constant of

motion, i.e, dQ/dt = 0. For a transformation of the type given by (3.7) we have

δψ = ψ′ − ψ =
(
eiθ − 1

)
ψ ≈ iθψ

δψ† ≈ −iθψ† (3.9)

Substituing the results of equations (3.5) together with these last identities in (3.8), we obtain

J0 =
[ ∂L
∂(∂0ψ)

]
δψ +

[ ∂L
∂(∂0ψ†)

]
δψ†

=
iθ

2c

[(
σ · ∇ψ†

)
ψ −

(
σ · ∇ψ

)
ψ†
]

(3.10)

J =
[ ∂L
∂(∇ψ)

]
δψ +

[ ∂L
∂(∇ψ†)

]
δψ†

= iθ
[
ψ
( 1

2c
∂ψ†

∂t
σ +∇ψ†

)
− ψ†

( 1
2c
∂ψ

∂t
σ +∇ψ

)]
(3.11)

It is straightforward to show that these functions satisfy the hermiticity condition, J0 = (J0)†,
J = J†. On the other hand, since the parameter θ is an arbitrary constant, we can take θ = 1.
Finally, the conserved “charge" will be

Q =

∫
V

J0d3x =
i

2c

∫
V

[(
σ · ∇ψ†

)
ψ −

(
σ · ∇ψ

)
ψ†
]
d3x (3.12)

In order to verify the robustness of these results, we can check if the divergence ∂µJµ vanishes
or not. After a bit of algebra we find

∂µJ
µ = ∂0J

0 +∇ · J

= iψ
(1
c
σ · ∇∂ψ

†

∂t
+∇2ψ†

)
− iψ†

(1
c
σ · ∇∂ψ

∂t
+∇2ψ

)
= i

m2c2

2~2 ψψ
† − im

2c2

2~2 ψ
†ψ = 0 (3.13)

Therefore, the divergence ∂µJµ vanishes identically as expected. Then, we can conclude that
the Lagrangian formulation of the ultrarelativistic wave equation is a consistent theory, and the
Lagrangian density (3.1) has a global gauge symmetry compatible with a conserved current.

3.3 Local gauge invariance

The generalization to the U(1) case is straightforward. As is well known, for a local phase
transformation, i.e, ψ → ψ′ = eiθ(x)ψ, the usual derivative transforms in the following way

∂µψ → ∂µψ
′ = ∂µ(e

iθ(x)ψ) = ∂µ(e
iθ(x))ψ + eiθ(x)∂µψ

= eiθ(x)(i∂µθ(x))ψ + eiθ(x)∂µψ

= eiθ(x)[i∂µθ(x) + ∂µ]ψ (3.14)

Then, the Lagrangian density (3.1) is no longer invariant under this transformation and we must
look for a generalization. This generalization is

L =
m2c2

2~2 ψψ
† +Dψ ·Dψ† +

1
2c

(
D0ψ(σ ·Dψ)† + (D0ψ)

†σ ·Dψ
)

(3.15)
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Indeed, the covariant derivative, Dµ ≡ (∂µ +Aµ) is subjected to the transformation rule

Dµψ → D′µψ′ = (∂µ +A′µ)e
iθ(x)ψ

= eiθ(x)[i∂µθ(x) + ∂µ +A′µ]ψ (3.16)

Then, in order to compensate the term i∂µθ(x), we take the conditionAµ → A′µ = Aµ−i∂µθ(x).
which implies, D′µψ′ = eiθ(x)Dµψ, assuring the invariance of (3.15)

3.4 Hamiltonian formalism

Armed with a consistent Lagrangian theory, the next logical step after the analysis of the internal
transformations such as (3.7) is the study of the external symmetries and the Hamiltonian for-
malism. The canonical energy-momentum tensor that comes from the Lagrangian density (3.1),
under space-time translational invariance is

Tµν =
∂L

∂(∂µψ)
(∂νψ) +

∂L
∂(∂µψ†)

(∂νψ
†)− δµνL (3.17)

On the other hand, we can define the canonical Hamiltonian density Hc, as

Hc = T 0
0 =

∂L
∂ψ̇

ψ̇ +
∂L
∂ψ̇†

ψ̇† − L = π(x)ψ̇ + π†(x)ψ̇† − L (3.18)

The canonically conjugated momenta, π(x), π†(x) are given by the following relations

π(x) =
∂L
∂ψ̇

=
1
2c
σ · ∇ψ†, π†(x) =

∂L
∂ψ̇†

=
1
2c
σ · ∇ψ (3.19)

Then, substituing the last results in (3.18) and using (3.1) we obtain

Hc = πψ̇ + π†ψ̇† − L =
1
2c

(
ψ̇σ · ∇ψ† + ψ̇†σ · ∇ψ

)
− L

=
1
2c

(
ψ̇σ · ∇ψ† + ψ̇†σ · ∇ψ

)
− m2c2

2~2 ψψ
† −∇ψ · ∇ψ†

− 1
2c

(∂ψ
∂t
σ · ∇ψ† + ∂ψ†

∂t
σ · ∇ψ

)
= −m

2c2

2~2 ψψ
† −∇ψ · ∇ψ† (3.20)

The conserved currents and their “charges", such as J0 and T 0
0 , are only determined up to a

constant. This means that we are free to redefine Hc ≡ −T 0
0 , in order to have a positive defined

Hamiltonian density. Then, we can adopt

Hc =
m2c2

2~2 ψψ
† +∇ψ · ∇ψ†

=
m2c2

2~2 ψψ
† +∇ ·

(
ψ†∇ψ

)
− ψ†∇2ψ (3.21)

With this result, the relation between the canonical Hamiltonian Hc and their density Hc, is
given by

Hc ≡
∫
V

Hcd3x =

∫
V

ψ†
(
−∇2 +

m2c2

2~2

)
ψd3x+∇ ·

∫
V

ψ†∇ψd3x (3.22)

The second term is a total divergence, which does not change the action, and can be removed
from the analysis. Finally we collect the result

Hc =

∫
V

ψ†
(
−∇2 +

m2c2

2~2

)
ψd3x =

∫
V

ψ†Ĥcψd
3x =< Ĥc > (3.23)
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Since, p̂ = −i~∇, we can write the canonical Hamiltonian operator Ĥc as

Ĥc = −∇2 +
m2c2

2~2 =
p̂2

~2 +
m2c2

2~2 (3.24)

It is easy to see that the operator Ĥc is hermitian given their own definition, Ĥc
†
= Ĥc. On

the other hand, the vanishing of the divergence, ∂µTµν = 0 implies, d/dt(
∫
V
T 0

0 d
3x) = d/dt(<

Ĥc >) = 0. Therefore, the expectation value (3.23) turns out to be a constant of motion.
The results found with the aid of the Hamiltonian formalism allows us to reinterpret some

other results obtained previously. For instance, the conserved “charge" (3.12) associated to the
invariance of the Lagrangian under the global phase transformation (3.7) can be written as

Q =

∫
V

J0d3x =
iθ

2c

∫
V

[(
σ · ∇ψ†

)
ψ −

(
σ · ∇ψ

)
ψ†
]
d3x

= iθ

∫
V

(
π(x)ψ(x)− π†(x)ψ†(x)

)
d3x (3.25)

Where we have employed the canonically conjugated momenta that were derived in (3.19). The
physical interpretation of this formula is now transparent. The parameter θ is the electric charge
times a constant. Therefore the conservation law (3.13) is expressing nothing but the conser-
vation of the electric charge. If ψ(x) = ψ†(x) then according to (3.25), Q = 0 and the field
describes a neutral particle. On the other hand, with this explicit expression for the charge given
in terms of the fields and their canonical momenta, one is ready to make the next step and pro-
mote Q from a classical quantity, to a quantum operator (the charge operator). In other words,
the transition Q → Q̂ is automatic from (3.25), once the standard anticommutation rules for a
fermionic field, {ψ(x), π(y)} = i~δ3(x−y), are fixed. This task, however, will not be undertaken
in this work.

3.5 Canonical Hamiltonian Operator Vs Time Evolution Operator

From the above equations, we can say some important things about the canonical Hamiltonian
operator Ĥc. In the first place it does not depend on time. Secondly, this canonical Hamiltonian
involves certain time evolution, but stricto sensu, it will not be equal to the pure time evolution
operator, i.e, Ĥc 6= Ĥ, where H is the standard Hamiltonian operator defined in (2.14). To show
this point, let us consider the action of the canonical Hamiltonian Ĥc over a plane wave solution
of the wave equation

Ĥcψ0e
i(k·r−ωt) =

(
−∇2 +

m2c2

2~2

)
ψ0e

i(k·r−ωt) =
(
k2 +

m2c2

2~2

)
ψ0e

i(k·r−ωt)

=
ωk

c
ψ0e

i(k·r−ωt) (3.26)

where we have used the dispersion relation ω(k), associated to the positive energy solution,
ω(k) = ck + m2c3

2~2k
. We have therefore obtained an eigenvalue equation, Ĥcψ+ = λ+ψ+, with

λ+ = ωk/c. Similarly, for the negative energy solution, ψ− = ψ0 exp(i(−k ·r+ωt)), one finds:

Ĥcψ0e
i(−k·r+ωt) =

(
−∇2 +

m2c2

2~2

)
ψ0e

i(−k·r+ωt) =
(
k2 +

m2c2

2~2

)
ψ0e

i(−k·r+ωt)

= −ωk
c
ψ0e

i(−k·r+ωt) (3.27)

These relations can be condensed in the compact expression, Ĥcψ± = ±(ωk/c)ψ±. Since
the standard Hamiltonian verifies a different eigenvalue equation, namely, Ĥψ± = ±~ωψ±, it is
obvious the non-equivalence of both operators. However, a close algebraic relation exists among
them, and can be found paying attention to the structure of the wave equation. Indeed, since we
already know that the wave equation (2.10) can be written in a Hamiltonian form (2.11), we can
identify

(−iσ · ∇)Ĥψ = c~
(
−∇2 +

m2c2

2~2

)
ψ = c~Ĥcψ (3.28)



Then, the exact algebraic relation between Ĥ and Ĥc is given by the operator equation

(−iσ · ∇)Ĥ = c~Ĥc (3.29)

Another interesting consequence that can be extracted from the above relations is that, [Ĥ, Ĥc] =
0. Of course this implies the conservation of Ĥc, which is consistent with the result, d/dt(<
Ĥc >) = 0, that we derived in the previous section from the canonical formalism. Then, the field
theory developed here possesses all the ingredients required to proceed further. In particular, the
canonical quantization and the construction of the Hilbert space of physical states are tasks that
seem attainable once a Lagrangian formulation is provided. These important questions will be
addressed in a forthcoming work.

4 Discussion

In this paper we have presented a wave equation that works for particles whose energy can be
approximated by, (ignoring constants), the relation E ' p + m2

2p . If such energy-momentum
relation encloses a “hidden" wave equation, then this wave equation can only be the one that we
have introduced in this paper, which is a hyperbolic second order linear PDE with well-behaved
physical solutions. As we have demonstrated, it can be useful to explain some properties of ultra-
relativistic particles. For instance, the family of plane-wave functions usually employed in the
theory of neutrino oscillations (2.30) are only particular solutions of the wave equation discussed
here. Indeed, such as the Dirac equation, the wave equation (2.10) describes particles of spin
1/2. In fact, the spin operators are incorporated in a natural way by means of the Pauli matrices,
which emerge explicitly in the square root of the Laplacian that appears in the derivation of
the wave equation. Interestingly enough, a similar wave equation (2.31), can describe massive
ultrarelativistic bosons of spin 1, if we replace the Pauli matrices σ (2.8), by the Majorana-
Oppenheimer α (2.32), maintaining the rest of the wave equation unaltered. Therefore the study
of the behaviour of this wave equation under different interactions V (x), will allow to enlarge
the possible family of solutions, which may be useful to improve the understanding of ultra-
relativistic processes, including perhaps the ultra-high energy cosmic-rays.

In addition, a detailed Lagrangian formulation of the wave equation was also provided. In
particular, we have proved that this is a consistent theory, where, through the symmetries of the
Lagrangian density, some standard and well defined conservation laws are derived in a natural
way. On the other hand, by means of the Hamiltonian formalism, we have demostrated that in
the free case the expectation value of the operator, −∇2 +m2c2/2~2 is a conserved constant of
motion (3.23).
In conclusion, we point out that all the consistent matter wave equations in Physics derive of
non-trivial energy-momentum relations. Indeed, if we think of the space of possible non-trivial
energy-momentum configurations, we will realize that it is quite constrained: It seems that there
are only four consistent possibilites: i). The non-relativistic, E = p2/2m. ii). The linear,
E = αipi + βm. iii). The quadratic, E2 = p2 +m2. iv). The ultra-relativistic, E = p+m2/2p.
The first three options are all associated with consistent wave equations that describe particles
with different properties in their appropriate physical regime. The study of option iv) deserves
an analysis, and has been the subject of this work. The hypothetical existence of another matter
wave equation is a very interesting possibility that deserves to receive further attention. In this
sense, we point out that the field theory presented in this work is a natural alternative to the Dirac
wave equation at very high energies. We have demostrated that it reproduces some standard
results of the Dirac theory in the limit p >> mc, in a quite natural way (2.30). Besides, it
incorporates the possibility of an explicit (and small) Lorentz invariance violation. However,
our theory is far from being completely satisfactory. It lacks a canonical quantization, and the
construction of a consistent Hilbert space; Nevertheless, with a Lagrangian formulation and a
Hamiltonian formalism, the required ingredients to carry out these tasks are available.
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