ON ϕ-2-ABSORBING ELEMENTS IN MULTIPLICATIVE LATTICES

Ece Yetkin Celikel, Emel A. Ugurlu and Gulsen Ulucak
Communicated by Ayman Badawi

MSC 2010 Classifications: 03G10, 03G99.
Keywords and phrases: ϕ-prime element, ϕ-primary element, 2-absorbing element, weakly 2 -absorbing element, ϕ-2absorbing element.

Abstract

In this paper, we introduce the concept of ϕ-2-absorbing elements in multiplicative lattices. Let $\phi: L \rightarrow L \cup\{\emptyset\}$ be a function. We will say a proper element q of L to be a ϕ-2-absorbing element of L if whenever $a, b, c \in L$ with $a b c \leq q$ and $a b c \not \leq \phi(q)$ implies either $a b \leq q$ or $a c \leq q$ or $b c \leq q$. We give some basic properties and establish some characterizations of ϕ-2-absorbing elements in some special lattices.

1 Introduction

Several authors have studied various extensions of prime and primary ideals. A. Badawi [6] introduced the concept of 2-absorbing ideals in a commutative ring with identity, which is a generalization of prime ideals. A. Badawi and A.Y. Darani [5] studied weakly 2 -absorbing ideals which are generalizations of weakly prime ideals [3]. Weakly prime elements in multiplicative lattices are studied in [10]. The concepts of 2-absorbing primary and weakly 2 -absorbing primary ideals of commutative rings are studied in [7] and [8]. The concepts of 2-absorbing, weakly 2 -absorbing, 2 -absorbing primary and weakly 2 -absorbing primary elements in multiplicative lattices are studied in [16] and [11] as generalizations of prime and weakly prime elements. Later, the concepts of ϕ-prime, ϕ-primary ideals are recently introduced in [12], [9], and generalizations of these are studied in [17]. In this work, our aim is to extend the concepts of 2 -absorbing elements to ϕ-2-absorbing elements and investigate some characterizations in some special lattices.

Throughout this paper R denotes a commutative ring with identity and $L(R)$ denotes the lattice of all ideals of R. An element a of L is said to be compact if whenever $a \leq \underset{\alpha \in I}{\vee} a_{\alpha}$ implies $a \leq \underset{\alpha \in I_{0}}{\vee} a_{\alpha}$ for some finite subset I_{0} of I. A multiplicative lattice, we mean a complete lattice L with the least element 0_{L} and compact greatest element 1_{L}, on which there is defined a commutative, associative, completely join distributive product for which 1_{L} is a multiplicative identity. Throughout this paper L denotes a multiplicative lattice and L_{*} denotes the set of all compact elements of L. By a C-lattice we mean a (not necessarily modular) multiplicative lattice which is generated under joins by a multiplicatively closed subset C of compact elements. We note that in a C-lattice, a finite product of compact elements is again compact. An element $a \in L$ is said to be idempotent if $a=a^{2}$. For any $a \in L, L / a=\{b \in L: a \leq b\}$ is a multiplicative lattice with the multiplication $c \circ d=c d \vee a$. An element $a \in L$ is said to be proper if $a<1_{L}$. A proper element p of L is said to be prime if $a b \leq p$ implies either $a \leq p$ or $b \leq p$. C-lattices can be localized. For any prime element p of L, L_{p} denotes the localization at $F=\{x \in C: x \not \leq p\}$. If 0_{L} is prime, then L is said to be a domain. A proper element p is called as ϕ-prime if $a b \leq p$ and $a b \not \leq \phi(p)$ implies either $a \leq p$ or $b \leq p$ for $a, b \in L$. In a C-lattice, an element p is ϕ-prime if and only if $a b \leq p$ and $a b \not \leq \phi(p)$ implies either $a \leq p$ or $b \leq p$ for all $a, b \in L_{*}$ by [17]. An element $m<1_{L}$ is said to be maximal in L if $m<x \leq 1_{L}$ implies $x=1_{L}$. It can be easily shown that maximal elements are prime. For $a, b \in L$, we denote $(a: b)=\vee\{x \in L: x b \leq a\}$. For $a \in L$, we define $\sqrt{a}=\wedge\{p \in L: p$ is prime and $a \leq p\}$. Note that in a C-lattice L, $\sqrt{a}=\wedge\{p \in L: a \leq p$ is a minimal prime over $a\}=\vee\left\{x \in L_{*}: x^{n} \leq a\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$. A proper element q is said to be primary if $a b \leq q$ implies either $a \leq q$ or $b \leq \sqrt{q}$ for every
pair of elements $a, b \in L$. A proper element q is said to be ϕ-primary if for every $a, b \in L$ with $a b \leq q$ and $a b \not \leq \phi(q)$ implies either $a \leq q$ or $b \leq \sqrt{q}$. A proper element q of L is said to be a 2-absorbing element if whenever $a, b, c \in L$ with $a b c \leq q$ implies either $a b \leq q$ or $b c \leq q$ or $a c \leq q$.

A multiplicative lattice is called a Noether lattice if it is modular, principally generated (every element is a join of some principal elements) which satisfies the ascending chain condition. A Noether lattice L is local if it contains precisely one maximal prime. If L is a Noether lattice and 0_{L} is prime, then L is said to be a Noether domain. In [18], J. F. Wells studied the restricted cancellation law of a Noether lattice. An element a in a Noether lattice L satisfies the restricted cancellation law if $a b=a c \neq 0_{L}$ implies $b=c$ for any $a, b, c \in L$.

2ϕ-2-absorbing elements

Definition 2.1. Let $\phi: L \rightarrow L \cup\{\emptyset\}$ be a function and $q \in L$ be a proper element. Then q is said to be a ϕ-2-absorbing element of L whenever if $a, b, c \in L$ with $a b c \leq q$ and $a b c \not \leq \phi(q)$ implies either $a b \leq q$ or $a c \leq q$ or $b c \leq q$.

We can define the following special functions ϕ_{α} as follows: Let q be a $\phi_{\alpha}-2$-absorbing element of L. Then we say

$$
\begin{array}{ll}
\phi_{\emptyset}(q)=\emptyset & \Rightarrow q \text { is a 2-absorbing element } \\
\phi_{0}(q)=0 & \Rightarrow q \text { is a weakly 2-absorbing element, } \\
\phi_{2}(q)=q^{2} & \Rightarrow q \text { is an almost 2-absorbing element }, \\
\ldots & \Rightarrow q \text { is an } n \text {-almost 2-absorbing element for } n>2, \\
\phi_{n}(q)=q^{n} & \Rightarrow q \text { is a } \omega \text {-2-absorbing element. }
\end{array}
$$

Throughout this paper, ϕ denotes a function defined from L to $L \cup\{\emptyset\}$. Since for an element $a \in L$ with $a \leq q$ but $a \not \leq \phi(q)$ implies that $a \not \leq q \wedge \phi(q)$, there is no loss generality in assuming that $\phi(q) \leq q$. We henceforth make this assumption. For any two functions $\psi_{1}, \psi_{2}: L \rightarrow L \cup\{\emptyset\}$, we say $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(a) \leq \psi_{2}(a)$ for each $a \in L$. Thus clearly we have the following order: $\phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq \ldots \leq \phi_{n+1} \leq \phi_{n} \leq \ldots \leq \phi_{2} \leq \phi_{1}$.

Lemma 2.2. Let q be a proper element of L and $\psi_{1}, \psi_{2}: L \rightarrow L \cup\{\emptyset\}$ be two functions with $\psi_{1} \leq \psi_{2}$. If q is a ψ_{1}-2-absorbing element of L, then q is a ψ_{2}-2-absorbing element of L.

Proof. Suppose that q is a ψ_{1}-2-absorbing element of L and $a, b, c \in L$ such that $a b c \leq q$ and $a b c \not \leq \psi_{2}(q)$. Since $a b c \leq q$ and $a b c \not \leq \psi_{1}(q)$, we are done.

Hence we have the following relations among the concepts mentioned in Definition 2.1:
Theorem 2.3. Let q be a proper element of L. Then
(i) q is a 2-absorbing element of $L \Rightarrow q$ is a weakly 2 -absorbing element of $L \Rightarrow q$ is a ω -2-absorbing element of $L \Rightarrow q$ is an $(n+1)$-almost 2-absorbing element of $L \Rightarrow q$ is an n-almost 2-absorbing element of L for all $n \geq 2 \Rightarrow q$ is an almost 2-absorbing element of L.
(ii) q is a ϕ-prime element of $L \Rightarrow q$ is a ϕ-2-absorbing element of L.
(iii) A proper element q of L is an idempotent element $\Rightarrow q$ is a ω-2-absorbing element of L and q is an n-almost 2-absorbing element of L for all $n \geq 2$.
(iv) q is an n-almost 2-absorbing element of L for all $n \geq 2 \Leftrightarrow q$ is a ω-2-absorbing element of L.

Proof. (i) It is clear from Lemma 2.2.
(ii) Suppose that $a, b, c \in L$ with $a b c \leq q, a b c \not \leq \phi(q)$ and $a b \not \leq q$. Hence $c \leq q$ as q is a ϕ-prime element of L. Thus $a c \leq q$ or $b c \leq q$, we are done.
(iii) Suppose that q is an idempotent element of L. Then $q=q^{n}$ for all $n>0$, and so $\phi_{\omega}(q)=\wedge_{n=1}^{\infty} q^{n}=q$. Thus q is a ω-2-absorbing element of L. Finally, q is an n-almost 2 absorbing element for all $n \geq 2$ from (i).
(iv) Let $a, b, c \in L$ with $a b c \leq q$ but $a b c \not \subset \wedge_{n=1}^{\infty} q^{n}$. Hence $a b c \leq q$ but $a b c \not \leq q^{m}$ for some $m \geq 2$. Since q is n-almost 2-absorbing for all $n \geq 2$, this implies either $a b \leq q$ or $b c \leq q$ or $a c \leq q$, we are done. The converse is clear from (i).

Theorem 2.4. Let q be a ϕ-2-absorbing element of L. If $\phi(q)$ is a 2-absorbing element of L, then q is 2-absorbing.

Proof. Let $a b c \leq q$ for some $a, b, c \in L$. If $a b c \not \leq \phi(q)$, then we have either $a b \leq q$ or $a c \leq q$ or $b c \leq q$ as q is ϕ-2-absorbing. Suppose that $a b c \leq \phi(q)$. Hence we conclude that either $a b \leq \phi(q)$ or $a c \leq \phi(q)$ or $b c \leq \phi(q)$. Since $\phi(q) \leq q$, we are done.

Definition 2.5. Let q be a ϕ-2-absorbing element of L and $a, b, c \in L$. If $a b c \leq \phi(q)$ but $a b \not \leq q$, $b c \not \leq q, a c \not \leq q$, then (a, b, c) is called a ϕ-triple zero of q.

Remark 2.6. If q is a ϕ-2-absorbing element of L which is not 2-absorbing, then there exists (a, b, c) a ϕ-triple zero of q for some $a, b, c \in L$.

Lemma 2.7. Let q be a ϕ-2-absorbing element of L and suppose that (a, b, c) is a ϕ-triple zero of q for some $a, b, c \in L$. Then
(i) $a b q, b c q, a c q \leq \phi(q)$.
(ii) $a q^{2}, b q^{2}, c q^{2} \leq \phi(q)$.
(iii) $q^{3} \leq \phi(q)$.

Proof. (i) Suppose that $a b q \not \leq \phi(q)$. Then $a b(c \vee q) \not \leq \phi(q)$. Since $a b \not \leq q$ and q is ϕ-2-absorbing, we have $a(c \vee q) \leq q$ or $b(c \vee q) \leq q$. So $a c \leq q$ or $b c \leq q$, which contradicts with our hypothesis. Thus $a b q \leq \phi(q)$. Similarly one can easily show that $b c q \leq \phi(q)$ and $a c q \leq \phi(q)$.
(ii) Suppose that $a q^{2} \not \leq \phi(q)$. Hence we have $a(b \vee q)(c \vee q) \not \leq \phi(q)$ by (i). So we conclude either $a(b \vee q) \leq q$ or $a(c \vee q) \leq q$ or $(b \vee q)(c \vee q) \leq q$. Thus either $a b \leq q$ or $a c \leq q$ or $b c \leq q$, a contradiction. Therefore $a q^{2} \leq \phi(q)$. Similarly it can be easily verified that $b q^{2}, c q^{2} \leq \phi(q)$.
(iii) Assume that $q^{3} \not \leq \phi(q)$. Then we have $(a \vee q)(b \vee q)(c \vee q) \leq q$ but $(a \vee q)(b \vee q)(c \vee q) \not \leq$ $\phi(q)$ by (i) and (ii). Since q is ϕ-2-absorbing, $(a \vee q)(b \vee q) \leq q$ or $(a \vee q)(c \vee q) \leq q$ or $(b \vee q)(c \vee q) \leq q$, so we conclude $a b \leq q$ or $a c \leq q$ or $b c \leq q$, a contradiction. Thus $q^{3} \leq \phi(q)$.

Now we can give a condition for a ϕ-2-absorbing element to be a 2 -absorbing element of L.

Corollary 2.8. Let q be a proper element of L. Then the following statements hold:

(i) If q is a ϕ-2-absorbing element of L such that $q^{3} \not \leq \phi(q)$, then q is a 2-absorbing element of L.
(ii) Let L be a C-lattice. If q is a ϕ-2-absorbing element of L that is not a 2-absorbing, then $\sqrt{q}=\sqrt{\phi(q)}$.

Proof. (i) The proof is clear by Remark 2.6 and Lemma 2.7 (iii).
(ii) Since q is not a 2 -absorbing element of $L, q^{3} \leq \phi(q)$ by Lemma 2.7 (iii). Hence $\sqrt{q} \leq$ $\sqrt{\phi(q)}$. Since $\phi(q) \leq q$ is always hold, we get $\sqrt{q}=\sqrt{\phi(q)}$.

Recall from [13] that an element $e \in L$ is said to be principal, if it satisfies the dual identities (i) $a \wedge b e=((a: e) \wedge b) e$ and (ii) $((a e \vee b): e)=(b: e) \vee a$. Elements satisfying the identity (i) are called meet principal and elements satisfying the identity (ii) are called join principal. If the both identities are satisfied, then e is said to be a principal element of L. Note that by [13, Lemma 3.3 and Lemma 3.4], a finite product of principal elements of L is again principal. If every element of L can be written as a join of some principal elements of L, then L is said to be join principally generated lattice.

Theorem 2.9. Let L be a join principally generated C-lattice and a, b, c be proper join principal elements of L. Then $a b c$ is a ϕ-2-absorbing element of L if and only if abc $=\phi(a b c)$.

Proof. Suppose that $a b c$ is a ϕ-2-absorbing element of L. Assume that $a b c \neq \phi(a b c)$. Then we have either $a b \leq a b c$ or $a c \leq a b c$ or $b c \leq a b c$. Without loss generality we may assume that $a b \leq a b c$. Since $a b$ is principal, we conclude that $1_{L}=(a b c: a b)=c \vee\left(0_{L}: a b\right)$. Observe that $\left(0_{L}: a b\right) \neq 1_{L}$. Indeed, if $\left(0_{L}: a b\right)=1_{L}$, then $a b c=0_{L} \leq \phi(a b c)$, a contradiction. Since $\left(0_{L}: a b\right) \neq 1_{L}, c \leq J(L)$ we conclude that $1_{L} \neq c \vee\left(0_{L}: a b\right)$, a contradiction. Thus $a b c=\phi(a b c)$. The converse part is clear.

Theorem 2.10. Let L be a local Noether domain. If q is an ϕ_{n}-2-absorbing element of L for all $n \geqslant 2$, then q is a 2-absorbing element of L.

Proof. Let $a b c \leq q$ for some $a, b, c \in L$. If $a b c \not \leq \phi_{n}(q)$, then we have either $a b \leq q$ or $b c \leq q$ or $a c \leq q$ as q is ϕ_{n}-2-absorbing. So suppose that $a b c \leq \phi_{n}(q)$. Since $\wedge_{n=1}^{\infty} q^{n}=0_{L}$, from Corollary 3.3 of [13], we conclude that $a b c \leq 0_{L}$. Thus $a \leq 0_{L}$ or $b \leq 0_{L}$ or $c \leq 0_{L}$ as L is a domain, so clearly $a b \leq q$ or $b c \leq q$ or $a c \leq q$.

We remind to the reader that for any $a \in L, L / a=\{b \in L: a \leq b\}$ is a multiplicative lattice with multiplication $c \circ d=c d \vee a$.

Theorem 2.11. Let q be a proper element of L. Then the following statements hold:
(i) q is a ϕ-2-absorbing element of L if and only if q is a weakly 2-absorbing element of $L / \phi(q)$.
(ii) q is a ϕ-prime element of L if and only if q is a weakly prime element of $L / \phi(q)$.
(iii) q is a ϕ-primary element of L if and only if q is a weakly primary element of $L / \phi(q)$.

Proof. (i) If $\phi(q)=\emptyset$, then there is nothing to prove. Thus assume that $\phi(q) \neq \emptyset$. Let $\phi(q) \neq$ $(a \vee \phi(q)) \circ(b \vee \phi(q)) \circ(c \vee \phi(q))=a b c \vee \phi(q) \leq q$ for some $a, b, c \in L$. Then $a b c \leq q$, but $a b c \not \leq \phi(q)$. Hence either $a b \leq q$ or $b c \leq q$ or $a c \leq q$. So $(a \vee \phi(q)) \circ(b \vee \phi(q)) \leq q$ or $(b \vee \phi(q)) \circ(c \vee \phi(q)) \leq q$ or $(a \vee \phi(q)) \circ(c \vee \phi(q)) \leq q$. Therefore q is a weakly 2-absorbing element of $L / \phi(q)$.

Conversely, let $a b c \leq q$ and $a b c \not \leq \phi(q)$ for some $a, b, c \in L$. Then $\phi(q) \neq(a \vee \phi(q)) \circ(b \vee$ $\phi(q)) \circ(c \vee \phi(q)) \leq q$. Hence $(a \vee \phi(q)) \circ(b \vee \phi(q)) \leq q$ or $(b \vee \phi(q)) \circ(c \vee \phi(q)) \leq q$ or $(a \vee \phi(q)) \circ(c \vee \phi(q)) \leq q$. Thus $a b \leq q$ or $b c \leq q$ or $a c \leq q$. Similarly one can easily prove (ii) and (iii).

Corollary 2.12. Let q be a proper element of L and $n \geq 2$. Then
(i) q is a ϕ_{n}-2-absorbing element of L if and only if q is a weakly 2-absorbing element of L / q^{n}.
(ii) q is a ϕ_{n}-prime element of L if and only if q is a weakly prime element of L / q^{n}.
(iii) q is a ϕ_{n}-primary element of L if and only if q is a weakly primary element of L / q^{n}.

Proof. Since $\phi_{n}(q)=q^{n}$, the proof is clear by Theorem 2.11.
Corollary 2.13. Let q be a ϕ-2-absorbing element of L such that $\phi \leq \phi_{3}$. Then
(i) q is a ϕ_{n}-2-absorbing element of L for every $n \geq 3$.
(ii) q is a ϕ_{ω}-2-absorbing element of L.

Proof. Suppose that q is a 2-absorbing element of L. Hence (i) and (ii) are clear.
(i) Assume that q is not a 2-absorbing element of L. Thus $q^{3} \leq \phi(q)$ by Lemma 2.7 (iii). Then we have $q^{3} \leq \phi(q) \leq q^{3}$ as $\phi \leq \phi_{3}$. This follows $q^{3}=q^{n}=\bar{\phi}(q)$ for every $n \geq 3$, so we are done.
(ii) Let $a b c \leq q$ and $a b c \not \leq \wedge_{n=1}^{\infty} q^{n}$. Then $a b c \not \leq q^{n}$ for some $n \geq 2$. If $n \geq 3$, then it is clear from (i). So suppose that $n=2$. Hence $a b c \not \leq q^{2}$ which implies that $a b c \not \leq q^{3}$, so from (i) the result is obtained.

Theorem 2.14. Let x and y be two proper elements of L such that $x \leq y$ and let $n \geq 2$. If y is a ϕ_{n}-2-absorbing element of L, then y is a ϕ_{n}-2-absorbing element of L / x.

Proof. Suppose that y is a ϕ_{n}-2-absorbing element of L. Assume that $(a \vee x) \circ(b \vee x) \circ(c \vee x)=$ $a b c \vee x \leq y$ and $(a \vee x) \circ(b \vee x) \circ(c \vee x)=a b c \vee x \not \leq y^{n}$ for some $a, b, c \in L$. As $y \in L / x$, then $y^{n}=y \circ y \circ y \circ \ldots \circ y=y^{n} \vee x$. Since $x \leq y$ and $a b c \vee x \not \leq y^{n}=y^{n} \vee x$, then we have $a b c \leq y$ and $a b c \not \leq y^{n}$. Thus $a b \leq y$ or $a c \leq y$ or $b c \leq y$. Hence $(a \vee x) \circ(b \vee x) \leq y$ or $(a \vee x) \circ(c \vee x) \leq y$ or $(b \vee x) \circ(c \vee x) \leq y$ which means that y is a ϕ_{n}-2-absorbing primary element of L / x.

Corollary 2.15. Let x and y be two proper elements of L such that $x \leq y$. If y is a $\phi_{\omega}-2$-absorbing element of L, then y is a $\phi_{\omega}-2$-absorbing element of L / x.

Proof. Similar to the proof of Theorem 2.14.
Definition 2.16. Let x be a proper element of L / q such that $q \leq x$. Then x is called a $\phi_{q}-2-$ absorbing element of L / q if whenever $a, b, c \in L / q$ with $a b c \leq x$ and $a b c \not \leq \phi(x) \vee q$ implies $a b \leq x$ or $a c \leq x$ or $b c \leq x$.

Theorem 2.17. Let p and q be two elements of L with $q \leq p<1$. If p is a ϕ-2-absorbing element of L, then p is a ϕ_{q}-2-absorbing element of L / q.

Proof. Let $(a \vee q) \circ(b \vee q) \circ(c \vee q) \leq p$ and $a b c \vee q=(a \vee q) \circ(b \vee q) \circ(c \vee q) \not \leq \phi(p) \vee q$ for some $a, b, c \in L$. Hence $a b c \leq p$ and $a b c \not \leq \phi(p)$. Since p is ϕ-2-absorbing element of L, we conclude that $a b \leq p$ or $a c \leq p$ or $b c \leq p$. So we get $(a \vee q) \circ(b \vee q) \leq p$ or $(a \vee q) \circ(c \vee q) \leq p$ or $(b \vee q) \circ(c \vee q) \leq p$.

Theorem 2.18. Let p and q be two proper elements of L such that $q \leq \phi(p)$. Then the following statements are equivalent:
(i) p is a ϕ-2-absorbing element of L.
(ii) p is a ϕ_{q}-2-absorbing element of L / q.
(iii) p is a $\phi_{q^{n}-2-a b s o r b i n g ~ e l e m e n t ~ o f ~} L / q^{n}$.

Proof. (i) \Rightarrow (ii): It is clear by Theorem 2.17.
(ii) \Rightarrow (iii): Let $n \geq 1$. Since $q \leq \phi(p)$, we have $q^{n} \leq q \leq \phi(p)$. Suppose that $\left(a \vee q^{n}\right) \circ(b \vee$ $\left.q^{n}\right) \circ\left(c \vee q^{n}\right) \leq p$ and $\left(a \vee q^{n}\right) \circ\left(b \vee q^{n}\right) \circ\left(c \vee q^{n}\right) \not \leq \phi(p) \vee q^{n}$ for some $a, b, c \in L$. Hence $a b c \not \leq \phi(p)$. Since $q \leq \phi(p)$ and $a b c \not \leq \phi(p)$, we have $a b c \not \leq q$. Thus $(a \vee q) \circ(b \vee q) \circ(c \vee q) \leq p$ and $(a \vee q) \circ(b \vee q) \circ(c \vee q) \not \leq \phi(p) \vee q$. Since p is a ϕ_{q} - 2-absorbing element of L / q, one can conclude that $a b \leq p$ or $a c \leq p$ or $b c \leq p$. Thus $a b \vee q^{n} \leq p$ or $a c \vee q^{n} \leq p$ or $b c \vee q^{n} \leq p$ (in $\left.L / q^{n}\right)$.
(iii) \Rightarrow (i): Suppose that $a b c \leq p$ and $a b c \not \leq \phi(p)$ for some $a, b, c \in L$. Since $q^{n} \leq \phi(p)$, we have $a b c \not \leq q^{n}$. As $q^{n} \leq \phi(p) \leq p$, we get $\left(a \vee q^{n}\right) \circ\left(b \vee q^{n}\right) \circ\left(c \vee q^{n}\right)=a b c \vee q^{n} \leq p$ and $\left(a \vee q^{n}\right) \circ\left(b \vee q^{n}\right) \circ\left(c \vee q^{n}\right) \npreceq \phi(p) \vee q^{n}$. Since p is a $\phi_{q^{n}}-2$-absorbing element of L / q^{n}, one can conclude that $a b \leq p$ or $a c \leq p$ or $b c \leq p$.

Corollary 2.19. Let p and q be two proper elements of L. Suppose that q is not a weakly 2absorbing element of L. The following statements are equivalent:
(i) p is a ϕ-2-absorbing element of L.

(iii) p is a $\phi_{p^{n}}-2$-absorbing element of L / p^{n} for every $n \geq 3$.

Proof. Suppose that p is not a weakly 2-absorbing element of L. Hence p is not a 2-absorbing element of L. So we conclude $p^{3} \leq \phi(q)$ by Lemma 2.7. Thus we are done by Theorem 2.18.

Definition 2.20. Let q be a proper element of L and $n \geq 2$. We call q as an n-potent 2-absorbing if whenever $a, b, c \in L$ with $a b c \leq q^{n}$, then $a b \leq q$ or $b c \leq q$ or $a c \leq q$.

Theorem 2.21. Let q be an n-almost 2 -absorbing element for some $n \geq 2$. If q is k-potent 2absorbing for some $k \leq n$, then q is a 2-absorbing element.

Proof. Suppose that q is an n-almost 2-absorbing element. Let $a b c \leq q$ for some $a, b, c \in L$. If $a b c \not \leq q^{k}$, then $a b c \not \leq q^{n}$. It implies either $a b \leq q$ or $b c \leq q$ or $a c \leq q$ as q is an n-almost 2-absorbing element. If $a b c \leq q^{k}$, then we obtain the same result as q is k-potent 2-absorbing, so we are done.

In the following theorems, we obtain some conditions under which a ϕ-2-absorbing element of L is a 2 -absorbing element of L.

Let $J(L)=\wedge\{m \in L: m$ is a maximal element of $L\}$.
Theorem 2.22. Let L be a Noether domain. Then an element q of L with $q \leq J(L)$ is a 2absorbing element of L if and only if q is a ϕ_{n}-2-absorbing element of L for all $n \geq 2$.

Proof. If q is 2-absorbing, then q is ϕ_{n}-2-absorbing by Theorem 2.3. Conversely, suppose that q is ϕ_{n}-2-absorbing for all $n \geq 2$ and let $a, b, c \in L$ with $a b c \leq q$. If $a b c \not \leq q^{k}$ for some $k \geq 2$, we have either $a b \leq q$ or $b c \leq q$ or $a c \leq q$. So suppose that $a b c \leq q^{n}$ for all $n \geq 2$. Since L is a Noether domain, we conclude $a b c \leq \wedge_{n=1}^{\infty} q^{n}=0_{L}$ by Corollary 1.4 in [4]. Since 0_{L} is prime, we get either $a=0_{L}$ or $b=0_{L}$ or $c=0_{L}$. Without loss generality suppose that $a=0_{L}$. This implies that $a b=0_{L} \leq q$ which completes the proof.

Theorem 2.23. Let L be a Noether lattice. Let q be a non-zero non-nilpotent proper element of L satisfying the restricted cancellation law. Then q is a ϕ-2-absorbing element of L for some $\phi \leq \phi_{n}$ and for all $n \geq 2$ if and only if q is a 2-absorbing element of L.

Proof. Assume that q is a 2-absorbing element of L. Then q is a ϕ-2-absorbing element of L for all ϕ. Thus q is ϕ-2-absorbing for some $\phi \leq \phi_{n}$ and for all $n \geq 2$.

Conversely assume that q is a ϕ-2-absorbing element of L for some $\phi \leq \phi_{n}$ for all $n \geq 2$. Hence q is a ϕ_{n}-2-absorbing element of L for all $n \geq 2$ by Lemma 2.2. Let $a b c \leq q$ for some a, b, c in L. Here there are two cases:

Case 1: Let $a b c \not \leq q^{n}$ for some $n \geq 2$. Then by hypothesis we get $a b \leq q$ or $b c \leq q$ or $a c \leq q$. Case 2: Let $a b c \leq q^{n}$ for all $n \geq 2$. We have that $a(b \vee q)(c \vee q)=a b c \vee a b q \vee a c q \vee a q^{2} \leq q$. If $a(b \vee q)(c \vee q) \not \leq q^{n}$, then $a(b \vee q) \leq q$ or $a(c \vee q) \leq q$ or $(b \vee q)(c \vee q) \leq q$. It follows that either $a b \leq q$ or $b c \leq q$ or $a c \leq q$. If $a(b \vee q)(c \vee q) \leq q^{n}$, then $a(b \vee q)(c \vee q)=a b c \vee a b q$ $\vee a c q \vee a q^{2} \leq q^{n} \leq q^{2}$. By [18, Lemma 1.11], we get $a b \leq q$ and $a c \leq q$. Thus q is a 2-absorbing element of L.

Remark 2.24. Let $L=L_{1} \times L_{2} \times \ldots L_{n}$ where $L_{1}, L_{2}, \ldots, L_{n}$ are multiplicative lattices $(n \geq 1)$ and let $\phi=\psi_{1} \times \psi_{2} \times \ldots \times \psi_{n}$ where $\psi_{i}: L_{i} \rightarrow L_{i} \cup\{\emptyset\}(i=1, \ldots, n)$ be a function. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be an element of L. Observe that if $\psi_{i}\left(a_{i}\right)=\emptyset$ for some $i=1, \ldots, n$, then there is no element of $\phi(a)$ and vice versa. Thus $\phi(a)=\emptyset$ if and only if $\psi_{i}\left(a_{i}\right)=\emptyset$ for some $i=1, \ldots, n$.

Lemma 2.25. Let $L=L_{1} \times L_{2}$ where L_{1}, L_{2} are two multiplicative lattices. Let $\phi=\psi_{1} \times \psi_{2}$, where $\psi_{i}: L_{i} \rightarrow L_{i} \cup\{\emptyset\}(i=1,2)$ is a function. Then q_{1} is a 2-absorbing element of L_{1} if and only if $q=\left(q_{1}, 1_{L_{2}}\right)$ is a 2-absorbing element of L.

Proof. Suppose that q_{1} is a 2-absorbing element of L_{1} and $\left(a, 1_{L_{2}}\right)\left(b, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \leq q$ for some elements $\left(a, 1_{L_{2}}\right),\left(b, 1_{L_{2}}\right),\left(c, 1_{L_{2}}\right)$ of L. Then $a b c \leq q_{1}$ which implies that either $a b \leq q_{1}$ or $b c \leq q_{1}$ or $a c \leq q_{1}$. It follows $\left(a, 1_{L_{2}}\right)\left(b, 1_{L_{2}}\right) \leq q$ or $\left(b, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \leq q$ or $\left(a, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \leq q$. Thus q is a 2 -absorbing element of L.

Conversely suppose that $q=\left(q_{1}, 1_{L_{2}}\right)$ is a 2-absorbing element of L but assume that q_{1} is not a 2-absorbing element of L_{1}. Hence there exists $a, b, c \in L_{1}$ with $a b c \leq q_{1}$ but neither $a b \leq q_{1}$ nor $b c \leq q_{1}$ nor $a c \leq q_{1}$. Thus we conclude $\left(a, 1_{L_{2}}\right)\left(b, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \leq q$ but $\left(a, 1_{L_{2}}\right)\left(b, 1_{L_{2}}\right) \not \leq q$ and $\left(b, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \not 又 q$ and $\left(a, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \not \leq q$, a contradiction.

Theorem 2.26. Let $L=L_{1} \times L_{2}$ where L_{1}, L_{2} are two multiplicative lattices. Let $\phi=\psi_{1} \times \psi_{2}$, where $\psi_{i}: L_{i} \rightarrow L_{i} \cup\{\emptyset\}(i=1,2)$ is a function. Then the following statements hold:
(i) If q_{i} is a proper element of L_{i} with $\psi_{i}\left(q_{i}\right)=q_{i}(i=1,2)$, then $q=\left(q_{1}, q_{2}\right)$ is a ϕ-2absorbing element of L.
(ii) If q_{1} is a ψ_{1}-2-absorbing element of L_{1}, and $\psi_{2}\left(1_{L_{2}}\right)=1_{L_{2}}$, then $q=\left(q_{1}, 1_{L_{2}}\right)$ is a ϕ-2absorbing element of L.
(iii) If q_{2} is a ψ_{2}-2-absorbing element of L_{2} and $\psi_{1}\left(1_{L_{1}}\right)=1_{L_{1}}$, then $q=\left(1_{L_{1}}, q_{2}\right)$ is a ϕ-2absorbing element of L.

Proof. (i) If $\psi_{1}\left(q_{1}\right)=q_{1}$ and $\psi_{2}\left(q_{2}\right)=q_{2}$, then there is no such an element (a, b) which satisfies $(a, b) \leq\left(q_{1}, q_{2}\right)$ and $(a, b) \not \leq \phi\left(q_{1}, q_{2}\right)=\left(q_{1}, q_{2}\right)$, so we are done.
(ii) Suppose that $\psi_{1}(q)=\emptyset$. Then $q=\left(q_{1}, 1_{L_{2}}\right)$ is a ϕ-2-absorbing element of L by Lemma 2.25. So assume that $\psi_{1}(q) \neq \emptyset$ and q_{1} is $\psi_{1}-2$-absorbing element of L_{1}. Let $a=\left(a_{1}, a_{2}\right)$, $b=\left(b_{1}, b_{2}\right)$ and $c=\left(c_{1}, c_{2}\right)$ such that $a b c \leq q$ and $a b c \not \leq \phi(q)$. Hence $a_{1} b_{1} c_{1} \leq q_{1}$ and $a_{1} b_{1} c_{1} \not \leq \psi_{1}\left(q_{1}\right)$, this implies that either $a_{1} b_{1} \leq q_{1}$ or $b_{1} c_{1} \leq q_{1}$ or $a_{1} c_{1} \leq q_{1}$. Thus either $a b \leq q$ or $b c \leq q$ or $a c \leq q$.
(iii) This can be easily obtained similar to (ii).

Theorem 2.27. Let $L=L_{1} \times L_{2}$ where L_{1}, L_{2} are two multiplicative lattices and $\phi=\psi_{1} \times \psi_{2}$, where $\psi_{i}: L_{i} \longrightarrow L_{i} \cup\{\emptyset\}(i=1,2)$ is a function such that $\psi_{2}\left(1_{L_{2}}\right) \neq 1_{L_{2}}$. Let q_{1} be a proper element of L_{1} and $q=\left(q_{1}, 1_{L_{2}}\right)$. Then the following statements are equivalent:
(i) $\left(q_{1}, 1_{L_{2}}\right)$ is a ϕ-2-absorbing element of L.
(ii) $\left(q_{1}, 1_{L_{2}}\right)$ is a 2-absorbing element of L.
(iii) q_{1} is a 2-absorbing element of L_{1}.

Proof. If $\psi_{1}\left(q_{1}\right)=\emptyset$ and $\psi_{2}\left(1_{L_{2}}\right)=\emptyset$, then $\phi(q)=\emptyset$ by Remark 2.24. So we are done from Lemma 2.25. Thus assume that $\psi_{1}\left(q_{1}\right) \neq \emptyset$ or $\psi_{2}\left(1_{L_{2}}\right) \neq \emptyset$.
(i) \Rightarrow (ii): Assume that $q=\left(q_{1}, 1_{L_{2}}\right)$ is a ϕ-2-absorbing element of L. Then q_{1} is a $\psi_{1^{-}}$ 2-absorbing element of L_{1}. Indeed, if q_{1} is not a $\psi_{1}-2$-absorbing element of L_{1}, then there exist a, b, c in L_{1} such that $a b c \leq q_{1}$ and $a b c \not \leq \psi_{1}\left(q_{1}\right)$ but $a b \not \leq q_{1}$ and $b c \not \leq q_{1}$ and $a c \not \leq$ q_{1}. Then $\left(a b c, 1_{L_{2}}\right)=\left(a, 1_{L_{2}}\right)\left(b, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \leq q$ and $\left(a b c, 1_{L_{2}}\right)=\left(a, 1_{L_{2}}\right)\left(b, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \not \leq$ $\left(\psi_{1}\left(p_{1}\right), \psi_{2}\left(1_{L_{2}}\right)\right)=\phi(q)$. This implies $\left(a b, 1_{L_{2}}\right)=\left(a, 1_{L_{2}}\right)\left(b, 1_{L_{2}}\right) \leq q$ or
$\left(b c, 1_{L_{2}}\right)=\left(b, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \leq q$ or $\left(a c, 1_{L_{2}}\right)=\left(a, 1_{L_{2}}\right)\left(c, 1_{L_{2}}\right) \leq q$, which means $a b \leq q_{1}$ or $b c \leq q_{1}$ or $a c \leq q_{1}$, a contradiciton. Thus q_{1} is a ψ_{1}-2-absorbing element of L_{1}.

If q_{1} is a 2-absorbing element of L_{1}, then it is clear. Assume that q_{1} is not a 2-absorbing element of L_{1}. Hence q_{1} has a ψ_{1}-triple-zero (x, y, z) for some x, y, z in L_{1} by Remark 2.6. Since $\psi_{2}\left(1_{L_{2}}\right) \neq 1_{L_{2}}$, then we get $\left(x y z, 1_{L_{2}}\right)=\left(x, 1_{L_{2}}\right)\left(y, 1_{L_{2}}\right)\left(z, 1_{L_{2}}\right) \leq q$ and $\left(x y z, 1_{L_{2}}\right)=$ $\left(x, 1_{L_{2}}\right)\left(y, 1_{L_{2}}\right)\left(z, 1_{L_{2}}\right) \not \leq \phi(q)$. Therefore $\left(x, 1_{L_{2}}\right)\left(y, 1_{L_{2}}\right) \leq q$ or $\left(y, 1_{L_{2}}\right)\left(z, 1_{L_{2}}\right) \leq q$ or $\left(x, 1_{L_{2}}\right)\left(z, 1_{L_{2}}\right) \leq q$. So we get $x y \leq q_{1}$ or $y z \leq q_{1}$ or $x z \leq q_{1}$, a contradiction. Thus q_{1} is a 2 -absorbing element of L_{1}. Consequently, $\left(q_{1}, 1_{L_{2}}\right)$ is a 2 -absorbing element of L.
(ii) \Rightarrow (iii): It can be easily shown similar to the argument in $(i) \Rightarrow$ (ii).
(iii) \Rightarrow (i): It is clear.

Lemma 2.28. Let $L=L_{1} \times L_{2} \times L_{3}$ where L_{1}, L_{2}, L_{3} are C-lattices. Let $\phi=\psi_{1} \times \psi_{2} \times \psi_{3}$, where $\psi_{i}: L_{i} \longrightarrow L_{i} \cup\{\emptyset\}(i=1,2,3)$ is a function with $\psi_{i}\left(1_{L_{i}}\right) \neq 1_{L_{i}}$. If $q=\left(q_{1}, q_{2}, q_{3}\right)$ is a ϕ-2-absorbing element of L, then either $q=\phi(q)$ or q is a 2-absorbing element of L.

Proof. If $\phi(q)=\emptyset$, then we are done. So assume $\phi(q) \neq \emptyset$. Suppose that $q \neq \phi(q)$. Hence there is an element $(a, b, c) \in L$ with $(a, b, c) \leq q$ but $(a, b, c) \not \leq \phi(q)$. So
$(a, b, c)=\left(a, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, b, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, c\right) \leq q$ implies that either $\left(a, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, b, 1_{L_{3}}\right) \leq$ q or $\left(1_{L_{1}}, b, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, c\right) \leq q$ or $\left(a, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, c\right) \leq q$. Without loss of generality assume that $\left(a, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, b, 1_{L_{3}}\right) \leq q$. Then $q_{3}=1_{L_{3}}$ which means that $q^{3} \not \leq \phi(q)$. Thus q is a 2-absorbing element of L by Corollary 2.8.

Theorem 2.29. Let $L=L_{1} \times L_{2} \times L_{3}$ where L_{1}, L_{2}, L_{3} are C-lattices. Let $\phi=\psi_{1} \times \psi_{2} \times \psi_{3}$, where $\psi_{i}: L_{i} \longrightarrow L_{i} \cup\{\emptyset\}(i=1,2,3)$ is a function with $\psi_{i}\left(1_{L_{i}}\right) \neq 1_{L_{i}}$. If $q \neq \phi(q)$, then the followings are equivalent:
(i) q is a ϕ-2-absorbing element of L.
(ii) q is a 2-absorbing element of L.
(iii) q is in one of the following type:
I) $q=\left(1_{L_{1}}, q_{2}, q_{3}\right)$, where q_{2} is a prime element of L_{2} and q_{3} is a prime element of L_{3}.
II) $q=\left(q_{1}, 1_{L_{2}}, q_{3}\right)$, where q_{1} is a prime element of L_{1} and q_{3} is a prime element of L_{3}.
III) $q=\left(q_{1}, q_{2}, 1_{L_{3}}\right)$, where q_{1} is a prime element of L_{1} and q_{2} is a prime element of L_{2}.
IV) For some $i \in\{1,2,3\}, q_{i}$ is a 2 -absorbing element of L_{i} and $q_{j}=1_{l_{j}}$ for every $j \in\{1,2,3\} \backslash\{i\}$.

Proof. (i) \Rightarrow (ii): If $\phi(q)=\emptyset$ and q is a ϕ-2-absorbing element, then obviously q is a 2-absorbing element of L. So assume that $\phi(q) \neq \emptyset$. Let $q=\left(q_{1}, q_{2}, q_{3}\right)$ be a ϕ-2-absorbing element of L, then q is a 2-absorbing element of L by Lemma 2.28.
(ii) \Rightarrow (iii): Suppose that q is a 2-absorbing element of L. Since $q \neq \phi(q)$, there is a compact element of L such that $\left(a_{1}, a_{2}, a_{3}\right) \leq q$ and $\left(a_{1}, a_{2}, a_{3}\right) \not \leq \phi(q)$. Since $\left(a_{1}, a_{2}, a_{3}\right)=$ $\left(a_{1}, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, a_{2}, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, a_{3}\right)$ and q is ϕ-2-absorbing, we have $\left(a_{1}, a_{2}, 1_{L_{3}}\right) \leq q$ or $\left(1_{L_{1}}, a_{2}, a_{3}\right) \leq q$ or $\left(a_{1}, 1_{L_{2}}, a_{3}\right) \leq q$. This means that either $q_{1}=1_{L_{1}}$ or $q_{2}=1_{L_{2}}$ or $q_{3}=1_{L_{3}}$.

Case I. Suppose that $q=\left(1_{L_{1}}, q_{2}, q_{3}\right)$ where $q_{2} \neq 1_{L_{2}}$ and $q_{3} \neq 1_{L_{3}}$. We show that q_{2} is a prime element of L_{2}. Let $x y \leq q_{2}$. Hence $\left(1_{L_{1}}, x, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, q_{3}\right)\left(1_{L_{1}}, y, 1_{L_{3}}\right) \leq q$ and it implies that $\left(1_{L_{1}}, x, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, 0_{L_{3}}\right) \leq q$ or $\left(1_{L_{1}}, x, 1_{L_{3}}\right)\left(1_{L_{1}}, y, 1_{L_{3}}\right) \leq q$ or $\left(1_{L_{1}}, 1_{L_{2}}, 0_{L_{3}}\right)\left(1_{L_{1}}, y, 1_{L_{3}}\right) \leq q$. Since q_{3} is proper, we get $\left(1_{L_{1}}, x y, 1_{L_{3}}\right)=\left(1_{L_{1}}, x, 1_{L_{3}}\right)\left(1_{L_{1}}, y, 1_{L_{3}}\right) \not \leq q$. Thus $x \leq q_{2}$ or $y \leq q_{2}$, which shows that q_{2} is prime. By the similar argument one can easily show that q_{3} is a prime element of L_{3}.

Case II. $q=\left(q_{1}, 1_{L_{2}}, q_{3}\right)$, where $q_{1} \neq 1_{L_{1}}$ and $q_{3} \neq 1_{L_{3}}$ and Case III. $q=\left(q_{1}, q_{2}, 1_{L_{3}}\right)$, where $q_{1} \neq 1_{L_{1}}$ and $q_{2} \neq 1_{L_{2}}$ can be easily obtained similar to Case I.

Case IV. Without loss of generality suppose that $q=\left(q_{1}, 1_{2}, 1_{L_{3}}\right)$ where q_{1} is a proper element of L_{1}. Let $x_{1} x_{2} x_{3} \leq q_{1}$ for some $x_{1}, x_{2}, x_{3} \in L_{1}$. Then
$\left(x_{1} x_{2} x_{3}, 1_{L_{2}}, 0_{L_{3}}\right)=\left(x_{1}, 1_{L_{2}}, 0_{L_{3}}\right)\left(x_{2}, 1_{L_{2}}, 0_{L_{3}}\right)\left(x_{3}, 1_{L_{2}}, 0_{L_{3}}\right) \leq q$ and $\left(x_{1} x_{2} x_{3}, 1_{L_{2}}, 0_{L_{3}}\right) \not 又$ $\phi(q)$. Since q is ϕ-2-absorbing, we have either $\left(x_{1} x_{2}, 1_{L_{2}}, 0_{L_{3}}\right) \leq q$ or $\left(x_{2} x_{3}, 1_{L_{2}}, 0_{L_{3}}\right) \leq q$ or $\left(x_{1} x_{3}, 1_{L_{2}}, 0_{L_{3}}\right) \leq q$. So $x_{1} x_{2} \leq q_{1}$ or $x_{2} x_{3} \leq q_{1}$ or $x_{2} x_{3} \leq q_{1}$.
(iii) \Rightarrow (i): Suppose that q_{2} and q_{3} are prime elements of L_{2} and L_{3}, respectively and $q=$ $\left(1_{L_{1}}, q_{2}, q_{3}\right)$. Let $\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right),\left(c_{1}, c_{2}, c_{3}\right) \in L$ such that
$\left(a_{1}, a_{2}, a_{3}\right)\left(b_{1}, b_{2}, b_{3}\right)\left(c_{1}, c_{2}, c_{3}\right) \leq q$ and $\left(a_{1}, a_{2}, a_{3}\right)\left(b_{1}, b_{2}, b_{3}\right)\left(c_{1}, c_{2}, c_{3}\right) \not \leq \phi(q)$. Assume that $\left(a_{1}, a_{2}, a_{3}\right)\left(b_{1}, b_{2}, b_{3}\right) \not \leq q$. Hence $a_{2} b_{2} \not \leq q_{2}$ or $a_{3} b_{3} \not \leq q_{3}$. Without loss of generality we may suppose that $a_{2} b_{2} \not \leq q_{2}$ and $a_{3} b_{3} \leq q_{3}$. Since q_{2} is prime, we have $c_{2} \leq q_{2}$, which implies that $\left(a_{1}, a_{2}, a_{3}\right)\left(c_{1}, c_{2}, c_{3}\right) \leq q$, we are done.

If $q=\left(q_{1}, 1_{2}, 1_{L_{3}}\right)$ where q_{1} is a 2 -absorbing element of L_{1}, then it can be seen that q is a 2-absorbing element of L. Thus q is a ϕ-2-absorbing element of L.

Theorem 2.30. Let $L=L_{1} \times L_{2} \times L_{3}$ where L_{1}, L_{2}, L_{3} are multiplicative lattices. Let $\phi=\psi_{1} \times$ $\psi_{2} \times \psi_{3}$, where $\psi_{i}: L_{i} \longrightarrow L_{i} \cup\{\emptyset\}(i=1,2,3)$ is a function. If a proper $a=\left(a_{1}, a_{2}, a_{3}\right) \in L$ is a ϕ-2-absorbing element, then $\psi_{i}\left(a_{i}\right)=\emptyset$ or $\psi_{i}\left(a_{i}\right)=a_{i}(i=1,2,3)$ for every proper element a_{i} of L_{i}.

Proof. Assume on the contrary that $\psi_{1}\left(a_{1}\right) \neq a_{1}$ and $\psi_{1}\left(a_{1}\right) \neq \emptyset$ for some proper element $a_{1} \in L_{1}$. Put $a=\left(a_{1}, 0_{L_{2}}, 0_{L_{3}}\right)$. Hence $\left(a_{1}, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, 0_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, 0_{L_{3}}\right) \leq a$, but $\left(a_{1}, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, 0_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, 0_{L_{3}}\right) \not \leq \phi(a)$. Since a is a ϕ-2-absorbing element, we conclude either $\left(a_{1}, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, 0_{L_{2}}, 1_{L_{3}}\right) \leq a$ or $\left(1_{L_{1}}, 0_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, 0_{L_{3}}\right) \leq a$ or $\left(a_{1}, 1_{L_{2}}, 1_{L_{3}}\right)\left(1_{L_{1}}, 1_{L_{2}}, 0_{L_{3}}\right) \leq a$. It follows $1_{L_{3}} \leq a_{3}$ or $1_{L_{1}} \leq a_{1}$ or $1_{L_{2}} \leq a_{2}$, which are contradictions. Thus $\psi_{i}\left(a_{i}\right)=a_{i}(i=1,2,3)$ for every proper element a_{i} of L_{i}.

References

[1] D.D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36, 686-696 (2008).
[2] D.D. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 16461672 (2011).
[3] D.D. Anderson and E. Smith, Weakly prime ideals, Houston Journal of Math., 29, 831-840 (2003).
[4] F. Alarcon, D.D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Periodica Mathematica Hungarica, 30, 1-26 (1995).
[5] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston Journal of Math. 39, 441-452 (2013).
[6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429 (2007).
[7] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bulletin Korean Mathematical Society, 4, 1163-1173 (2014).
[8] A. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52, 97-111 (2015).
[9] M. Batanieh and K. Dofa, Generalizations of primary ideals and submodules, Int. J. Contemp. Math. Sciences, 6, 811-824 (2011).
[10] F. Callialp, C. Jayaram and U. Tekir, Weakly prime elements in multiplicative lattices, Comm. Algebra, 40, 2825-2840 (2012).
[11] F. Callialp, E. Yetkin and U. Tekir, On 2-absorbing primary and weakly 2-absorbing primary elements in multiplicative lattices, Italian Journal of Pure and Applied Mathematics, 34, 263-276 (2015).
[12] A.Y. Darani, Generalizations of primary ideals in commutative rings, Novi Sad J. Math. 42, 27-35 (2012).
[13] R.P. Dilworth, Abstract commutative ideal theory, Pacific Journal of Mathematics, 12, 481-498 (1962).
[14] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra, 40, 1268-1279 (2012).
[15] A.K. Jabbar and C.A. Ahmed, On almost primary ideals, International Journal of Algebra, 5, 627-636 (2011).
[16] C. Jayaram, U. Tekir and E. Yetkin, 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, Comm. Algebra, 42, 1-16 (2014).
[17] C.S. Manjarekar and A.V. Bingi, ϕ-prime and ϕ-primary elements in multiplicative lattices, Hindawi Publishing Corporation Algebra, 2014, 1-7 (2014).
[18] J.F. Wells, The restricted cancellation law in a Noether lattice, Fundamental Mathematicae, 75, 235-247 (1972).

Author information

Ece Yetkin Celikel, Gaziantep University, Department of Mathematics, 27310, Gaziantep, Turkey. E-mail: yetkinece@gmail.com

Emel A. Ugurlu, Marmara University, Department of Mathematics, Ziverbey, Goztepe, Istanbul, Turkey. E-mail: emel.aslankarayigit@marmara.edu.tr

Gulsen Ulucak, Gebze Technical University, Department of Mathematics, 14141400 Kocaeli, Turkey. E-mail: gulsenulucak@gtu.edu.tr

Received: May 29, 2015.
Accepted: August 25, 2015

