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Abstract In this paper, we introduce the concept/eR-absorbing elements in multiplicative
lattices. Lety : L — L U {0} be a function. We will say a proper elemenbf L to be a
¢-2-absorbing element df if whenevera, b, c € L with abc < ¢ andabe £ ¢(q) implies either
ab < g orac < g orbe < gq. We give some basic properties and establish some characterizations
of ¢-2-absorbing elements in some special lattices.

1 Introduction

Several authors have studied various extensions of prime and prideals. A. Badawi §]
introduced the concept of 2-absorbing ideals in a commutative ring wittitgewhich is a gen-
eralization of prime ideals. A. Badawi and A.Y. DaraB] ftudied weakly 2-absorbing ideals
which are generalizations of weakly prime ideas. [ Weakly prime elements in multiplica-
tive lattices are studied irlp]. The concepts of 2-absorbing primary and weakly 2-absorbing
primary ideals of commutative rings are studied Th&nd [8]. The concepts of 2-absorbing,
weakly 2-absorbing, 2-absorbing primary and weakly 2-absorbimgapy elements in mul-
tiplicative lattices are studied irllf] and [11] as generalizations of prime and weakly prime
elements. Later, the conceptsg@prime, ¢-primary ideals are recently introduced ], [9],
and generalizations of these are studiedLif.[In this work, our aim is to extend the concepts of
2-absorbing elements t&2-absorbing elements and investigate some characterizations in some
special lattices.

Throughout this papef denotes a commutative ring with identity aAdR) denotes the
lattice of all ideals ofR. An elementa of L is said to be compact if whenever < \éfa“

impliesa < V. aq for some finite subsef of 7. A multiplicative lattice we mean a complete
acly

lattice L with the least element;0and compact greatest element dn which there is defined
a commutative, associative, completely join distributive product for whjcis a multiplicative
identity. Throughout this papdr denotes a multiplicative lattice and. denotes the set of all
compact elements df. By aC-lattice we mean a (not necessarily modular) multiplicative lattice
which is generated under joins by a multiplicatively closed subset compact elements. We
note that in aC-lattice, a finite product of compact elements is again compact. An elemeiit
is said to bédempotenif a« = . Foranya € L, L/a = {b€ L:a < b} is a multiplicative
lattice with the multiplicatiorco d = ¢d v a. An elementu € L is said to beproperif a < 1. A
proper elemenp of L is said to be prime itib < p implies eithera < p orb < p. C-lattices can
be localized. For any prime elemenof L, L, denotes the localization & = {zeC : z £ p}.

If O is prime, thenl is said to be alomain A proper elemenp is called asp-primeif ab < p
andab £ ¢(p) implies eithera < p orb < pfora,b € L. In aC-lattice, an element is ¢-prime

if and only if ab < p andab £ ¢(p) implies eithera < porb < pforall a,b € L. by [17]. An
elementm < 1y is said to bemaximalin L if m < x < 1y impliesz = 1. It can be easily
shown that maximal elements are prime. kgf € L, we denotga : b) = V{z € L : b < a}.
Fora € L, we definey/a = A{p € L : pis prime anda < p}. Note that in aC-lattice L,
va=N{peL:a<pisaminimal prime ovet} = V{z € L, : 2™ < a for somen € Z*}.

A proper element; is said to beprimary if ab < ¢ implies eithera < ¢ or b < ,/q for every
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pair of elements, b € L. A proper elemeng is said to bep-primary if for everya, b € L with

ab < g andab £ ¢(q) implies eithera < g orb < ,/g. A proper elemeny of L is said to be
a 2-absorbing element if whenevern, c € L with abc < ¢ implies eitherab < q or be < ¢ or

ac < q.

A multiplicative lattice is called &loether latticef it is modular, principally generated (every
element is a join of some principal elements) which satisfies the ascertthirg condition. A
Noether latticeL is local if it contains precisely one maximal prime. Iifis a Noether lattice
and @ is prime, thenL is said to be &Noether domainin [18], J. F. Wells studied the restricted
cancellation law of a Noether lattice. An elemarih a Noether latticd. satisfies the restricted
cancellation law ifab = ac # O, impliesb = ¢ for anya, b,c € L.

2 ¢-2-absorbing elements

Definition 2.1.Let ¢ : L — LU {0} be a function ang € L be a proper element. Theris said
to be ap-2-absorbing element df whenever ifa, b, c € L with abc < g andabe £ ¢(q) implies
eitherab < gorac < gorbec < q.

We can define the following special functiosg as follows: Letq be a¢,-2-absorbing
element ofL. Then we say

Pp(q) =10 = ¢is a 2-absorbing element,

¢o(q) =0 = ¢ s aweakly 2-absorbing element,

¢2(q) = ¢° = ¢is an almost 2-absorbing element,

Pnlq) =q" = ¢ is ann-almost 2-absorbing element for> 2,

bu(q) = N2 1¢" = ¢is aw-2-absorbing element.
Throughout this papet; denotes a function defined fromto L U {(}. Since for an element
a € Lwith a < g buta £ ¢(q) implies thata £ ¢ A ¢(g), there is no loss generality in assuming
thaté(q) < gq. We henceforth make this assumption. For any two functigng, : L — LU{0},
we sayyr < i if 11(a) < o(a) for eacha € L. Thus clearly we have the following order:
¢V)§¢0§¢wS~-~§¢n+l§¢n§~-§¢2§¢l-

Lemma 2.2.Let ¢ be a proper element of and ¢, ¢» : L — L U {0} be two functions with
Y1 < . If g is ayp1-2-absorbing element df, theng is av,-2-absorbing element df.

Proof. Suppose thag is av1-2-absorbing element af anda, b, ¢ € L such thatabe < ¢ and
abe £ 12(q). Sinceabe < q andabe £ 11(q), we are done. ]

Hence we have the following relations among the concepts mentioned intefiz 1
Theorem 2.3.Letq be a proper element df. Then

(i) ¢ is a 2-absorbing element df = ¢ is a weakly 2-absorbing element &f=- ¢ is aw-
2-absorbing element af = ¢ is an(n + 1)-almost 2-absorbing element &f=- ¢ is an
n-almost 2-absorbing element éffor all n > 2 = ¢ is an almost 2-absorbing element of
L.

(i) ¢is a¢-prime element of. = ¢ is a¢-2-absorbing element df.

(iii) A proper element; of L is an idempotent elemegt ¢ is aw-2-absorbing element df and
q is ann-almost 2-absorbing element bffor all n > 2.

(iv) ¢ is ann-almost 2-absorbing element bffor all n > 2 & ¢ is aw-2-absorbing element of
L.

Proof. (i) Itis clear from Lemma2.2

(il) Suppose that, b, c € L with abc < q, abc £ ¢(q) andab £ ¢q. Hencec < q asqis a
¢-prime element ofL. Thusac < g or be < ¢, we are done.

(iif) Suppose thay is an idempotent element df. Theng = ¢™ for all n > 0, and so
bw(q) = N22,¢™ = q. Thusgq is aw-2-absorbing element af. Finally, ¢ is ann-almost 2-

absorbing element for all > 2 from (i).
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(iv) Let a,b,c € L with abc < g butabe £ A>° ,¢". Henceabe < g butabe £ ¢™ for some
m > 2. Sinceq is n-almost 2-absorbing for alt > 2, this implies eitheub < ¢ or bc < ¢ or
ac < ¢, we are done. The converse is clear from (i). m|

Theorem 2.4.Letq be ag-2-absorbing element df. If ¢(q) is a 2-absorbing element @f, then
q is 2-absorbing.

Proof. Letabc < q for somea, b, c € L. If abe £ ¢(q), then we have eitherd < g orac < q or
be < g asq is ¢-2-absorbing. Suppose thdic < ¢(q). Hence we conclude that either < ¢(q)
orac < ¢(q) orbe < ¢(q). Sincegp(q) < q, we are done. O

Definition 2.5. Let ¢ be a¢-2-absorbing element df anda, b, c € L. If abe < ¢(q) butab £ q,
be £ q, ac % g, then(a, b, ¢) is called ap-triple zero ofg.

Remark 2.6.1f ¢ is a ¢-2-absorbing element af which is not 2-absorbing, then there exists
(a, b, c) ag¢-triple zero ofq for somea, b, c € L.

Lemma 2.7.Let ¢ be a¢-2-absorbing element af and suppose thal, b, ¢) is a ¢-triple zero
of ¢ for someua, b,c € L. Then

(i) abq, beg, acq < ¢(q).
(i) aq? be?, cg® < ¢(q).
(i) ¢* < ¢(q).

Proof. (i) Suppose thatbg £ ¢(q). Thenab(cVq) £ ¢(q). Sinceab £ ¢ andg is ¢-2-absorbing,
we haveu(cVq) < gorb(cVq) < q. Soac < g orbe < g, which contradicts with our hypothesis.
Thusabg < ¢(q). Similarly one can easily show thétq < ¢(q) andacq < ¢(q).

(i) Suppose thatig®> £ ¢(q). Hence we have(b Vv q)(c Vv q) £ ¢(g) by (i). So we conclude
eithera(bVv q) <qgora(cVq) <qor(bVq)(cVq) <q.Thus eitheb < gorac < gorbec <gq,

a contradiction. Therefor@;? < ¢(q). Similarly it can be easily verified that?, cq® < ¢(q).

(iii) Assume thatg® £ #(g). Then we havéa Vv q)(bVg)(cVgq) < gbut(aVvg)(bVg)(cVq) %
#(q) by (i) and (ii). Sinceq is ¢-2-absorbing,(a V ¢)(bV ¢) < g or (aV q)(cV q) < g or
bV q)(cVq) < q sowe concludeb < q orac < g or be < ¢, a contradiction. Thus
¢* < 6(q). =

Now we can give a condition for &2-absorbing element to be a 2-absorbing elemeiit of

Corollary 2.8. Letq be a proper element df. Then the following statements hold:

(i) If ¢ is ag-2-absorbing element df such that® £ ¢(q), theng is a 2-absorbing element of
L.

(i) Let L be aC-lattice. If q is a¢-2-absorbing element af that is not a 2-absorbinghen

V= /(q).

Proof. (i) The proof is clear by Remark.6 and Lemma2.7 (iii).
(i) Since ¢ is not a 2-absorbing element &f ¢ < ¢(q) by Lemma2.7 (iii). Hence /g <

Vo(q). Sinceg(q) < q is always holdwe get,/q = \/¢(q). O

Recall from [L3] that an element € L is said to beprincipal, if it satisfies the dual identities
() anbve=((a:e)Abeand (i) ((ae V1) : e) = (b: e) Va. Elements satisfying the identity
(i) are calledmeet principaland elements satisfying the identity (ii) are caljeoh principal. If
the both identities are satisfied, thers said to be a principal element &f Note that by 13,
Lemma 3.3 and Lemma 3.4], a finite product of principal elements @f again principal. If
every element of. can be written as a join of some principal elementg athenL is said to be
join principally generated lattice.

Theorem 2.9.Let L be a join principally generated'-lattice anda, b, c be proper join principal
elements of.. Thenabc is a ¢-2-absorbing element df if and only ifabc = ¢(abc).
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Proof. Suppose thatic is a¢-2-absorbing element df. Assume thatibc # ¢(abc). Then we
have eitheb < abc or ac < abe or be < abe. Without loss generality we may assume that
ab < abe. Sinceab is principal, we conclude that;1= (abc : ab) = ¢V (0 : ab). Observe
that (Or : ab) # 1. Indeed, if (O : ab) = 1., thenabc = 0 < ¢(abc), a contradiction.
Since (0, : ab) # 1, ¢ < J(L) we conclude that 1 # ¢V (O, : ab), a contradiction. Thus
abc = ¢(abc). The converse part is clear. i

Theorem 2.10.Let L be a local Noether domain. {fis an¢,-2-absorbing element df for all
n > 2, theng is a 2-absorbing element @f.

Proof. Let abc < ¢ for somea,b,c € L. If abc £ ¢,(q), then we have eitherh < g or bc < ¢
or ac < g asq is ¢,-2-absorbing. So suppose that: < ¢,(q). Sincen® ,¢q™ = 0y, from
Corollary 3.3 of [L3], we conclude thatibc < Or. Thusa < 0p orb < 0p orc < 0 asLisa
domain, so clearlyib < gorbc < gorac < gq. O

We remind to the reader that for anye L, L/a = {b € L : a < b} is a multiplicative lattice
with multiplicationcod = ¢d V a.

Theorem 2.11.Letq be a proper element di. Then the following statements hold:

(i) ¢isa¢-2-absorbing element df if and only ifq is a weakly 2-absorbing elementiof$(q).
(i) qisag-prime element of. if and only ifq is a weakly prime element @f/¢(q).

(iii) ¢is ag-primary element of. if and only ifq is a weakly primary element @f/¢(q).

Proof. (i) If ¢(q) = 0, then there is nothing to prove. Thus assume #iaj # 0. Let¢(q) #
(aV é(q)o(bV @(q)) o (cV@lq) = abecV ¢(q) < g for somea,b,c € L. Thenabe < g,
but abc £ ¢(g). Hence eitheb < g orbc < gorac < g. So(aV ¢(q)) o (bV ¢(q)) < g or
bV é(q)o(cVa(q) <qgor(aV g(q))o(cVd(q)) < q. Thereforeg is a weakly 2-absorbing
element ofL /¢(q).

Conversely, letibe < g andabe £ ¢(q) for somea, b, c € L. Theng(q) # (aV ¢(q)) o (bV
¢(q)) o (¢ V ¢(q)) < g. Hence(a V ¢(q)) o (bV ¢(q)) < qor (bV ¢(q)) o (cVd(q) < qor
(aV(q)o(cVd(q)) <q.Thusab < g orbe < g orac < g. Similarly one can easily prove (ii)
and (jii). m

Corollary 2.12. Letq be a proper element df andn > 2. Then
(i) qisaq,-2-absorbing element df if and only ifq is a weakly 2-absorbing elementiofq”.

(i) qis ag,-prime element of. if and only ifq is a weakly prime element @f/¢".

(i) ¢is a¢,-primary element of. if and only ifq is a weakly primary element @f/¢".
Proof. Since¢,(q) = ¢, the proof is clear by Theorei11 O
Corollary 2.13. Let ¢ be a¢-2-absorbing element df such thatp < ¢3. Then

() qisag,-2-absorbing element df for everyn > 3.

(i) ¢qis a¢,-2-absorbing element df.

Proof. Suppose thaj is a 2-absorbing element @f Hence (i) and (ii) are clear.

(i) Assume thatg is not a 2-absorbing element &f Thusq¢® < ¢(q) by Lemma2.7 (iii) .
Then we have?® < ¢(q) < ¢® as¢ < ¢s3. This follows ¢® = ¢" = ¢(q) for everyn > 3, so we
are done.

(i) Let abc < g andabe £ A2 1¢™. Thenabe £ ¢" for somen > 2. If n > 3, thenitis clear
from (i). So suppose that = 2. Henceabc £ ¢* which implies thatabe £ ¢3, so from (i) the
result is obtained. ]

Theorem 2.14 Letx andy be two proper elements @fsuch thatr < y and letn > 2. If y is a
¢n-2-absorbing element df, theny is a ¢,,-2-absorbing element df/z.
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Proof. Suppose thaj is a¢,,-2-absorbing element df. Assume thata Vv z)o (bVz)o(cVa) =
abcVz <yand(aVz)o(bVz)o(cVa)=abeVa £ y" forsomea,b,c € L.Asy € L/z, then
y" = yoyoyo...oy =y" V. Sincex < y andabcVz £ y" = y" Vz, then we havebc < y and
abc £ y™. Thusab < y orac < y orbc < y. Hence(a V) o (bVz) <yor(aVz)o(cVz) <y
or (bVx)o(cVa)<ywhich means thaj is a¢,-2-absorbing primary element @f/x. m]

Corollary 2.15. Letz andy be two proper elements afsuch thate < y. If y is a¢,,-2-absorbing
element of., theny is a ¢,,-2-absorbing element df/x.

Proof. Similar to the proof of Theorerd.14 ]

Definition 2.16.Let = be a proper element adf/q such thaty < z. Thenz is called a¢,-2-
absorbing element af /¢ if whenevera, b, c € L/q with abc < z andabc £ ¢(x) V ¢ implies
ab<xzorac<zorbc<z.

Theorem 2.17 Letp andq be two elements df with g < p < 1. If pis a¢-2-absorbing element
of L, thenp is a ¢,-2-absorbing element df/q.

Proof. Let (aV g) o (bV g) o (¢Vq) < pandabcVg= (aVgq)o(bVg)o(cVq) £ ¢(p) Vg
for somea, b, ¢ € L. Henceabe < p andabe £ ¢(p). Sincep is ¢-2-absorbing element df, we
conclude thattb < porac <porbc < p.Sowe gefaVvg)o(bVg) <por(aVvg)o(cVvg) <p
or(bvq)o(cVvq) <p. O

Theorem 2.18.Letp andq be two proper elements @fsuch that; < ¢(p). Then the following
statements are equivalent:

() pisag-2-absorbing element df.
(i) pisag¢,-2-absorbing element df/q.
(iii) pisagyn-2-absorbing element di/q".

Proof. (i)=(ii): Itis clear by Theoren?.17.

(i) =(iii): Let n > 1. Sinceq < ¢(p), we haveg” < g < ¢(p). Suppose thata vV ¢") o (b V
qg")o(cVg®) <pand(aVg®)o(bVqg)o(cVq™) £ ¢(p)Vq" for somea,b,c € L. Hence
abe £ ¢(p). Sinceg < ¢(p) andabe £ ¢(p), we haveabe £ . Thus(aVg)o (bVg)o(cVg) <p
and(aVgq)o(bVq)o(cVq) % ¢(p)V q. Sincep is ag,- 2-absorbing element df/q, one can
conclude thatb < porac < porbec < p. ThusabV ¢q" < poracV ¢® < porbcVqg® < p(in
L/q").

(iii) =(i): Suppose thatibc < p andabc £ ¢(p) for somea, b, c € L. Sinceq™ < ¢(p), we
haveabc £ ¢". As ¢" < ¢(p) < p, we get(aV ¢™)o (bV g")o (cVq") = abcVg¢" < pand
(@Vg®)o(bVg®)o(cVq™) £ ¢é(p)V q". Sincep is ap,~-2-absorbing element df /¢™, one
can conclude thatb < p orac < p or bc < p. O

Corollary 2.19. Let p and ¢ be two proper elements df. Suppose thag is not a weakly 2-
absorbing element df. The following statements are equivalent:

(i) pisa¢-2-absorbing element df.
(i) pis a¢,s-2-absorbing element df/p°.
(iii) pis a¢,n-2-absorbing element df/p™ for everyn > 3.

Proof. Suppose that is not a weakly 2-absorbing element bf Hencep is not a 2-absorbing
element ofZ.. So we conclude® < ¢(q) by Lemma2.7. Thus we are done by Theorél8 o

Definition 2.20.Let ¢ be a proper element df andn > 2. We callq as amn-potent 2-absorbing
if whenevera, b, c € L with abc < ¢™, thenab < g orbe < g orac < g.

Theorem 2.21.Let ¢ be ann-almost 2-absorbing element for some> 2. If ¢ is k-potent 2-
absorbing for somé < n, theng is a 2-absorbing element.
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Proof. Suppose thag is ann-almost 2-absorbing element. L&ic < ¢ for somea,b,c € L.
If abe £ ¢", thenabe £ ¢". It implies eitherab < g or be < ¢ or ac < q asq is ann-almost
2-absorbing element. Hbc < ¢*, then we obtain the same result@is k-potent 2-absorbing,
sSo we are done. O

In the following theorems, we obtain some conditions under whigkaabsorbing element
of L is a 2-absorbing element éf
Let J(L) = A{m € L : mis a maximal element af }.

Theorem 2.22Let L be a Noether domain. Then an elementif L with ¢ < J(L) is a 2-
absorbing element df if and only ifq is a ¢,,-2-absorbing element df for all n > 2.

Proof. If ¢ is 2-absorbing, then is ¢,,-2-absorbing by Theorer@.3. Conversely, suppose that
q is ¢,,-2-absorbing for alkh > 2 and leta, b, ¢ € L with abe < g. If abe £ ¢* for somek > 2,
we have eithend < g or bc < g or ac < q. So suppose thathc < ¢™ for all n > 2. SinceL is
a Noether domain, we concludéc < AS° ,¢™ = O by Corollary 1.4 in fi]. Since @ is prime,
we get eithelw = 0y orb = 0y or ¢ = 0y. Without loss generality suppose that= 0.. This
implies thatad = 0 < ¢ which completes the proof. ]

Theorem 2.23.Let L be a Noether lattice. Let be a non-zero non-nilpotent proper element of
L satisfying the restricted cancellation law. Thetis a ¢-2-absorbing element df for some
¢ < ¢, and for alln > 2if and only ifq is a 2-absorbing element d@f.

Proof. Assume that is a 2-absorbing element @& Theng is a¢-2-absorbing element df for
all . Thusgq is ¢-2-absorbing for some < ¢,, and for alln > 2.

Conversely assume thatis a ¢-2-absorbing element af for some¢ < ¢, for alln > 2.
Hencegq is a ¢,,-2-absorbing element df for all n > 2 by Lemma2.2. Let abc < ¢ for some
a,b,cin L. Here there are two cases:

Case 1: Letibc £ ¢" for somen > 2. Then by hypothesis we gek < g orbc < g orac < q.
Case 2: Letbc < ¢" for all n > 2. We have that(b \ q)(c V q) = abe V abq Vacg V ag? < q.
If a(bVq)(cVq) £ q" thena(bV q) < gora(cVg) <qgor(bVg)(cVq) <q. Itfollows that
eitherab < gorbec < gorac < q. If a(bV q)(cV q) < q", thena(bV q)(cV q) = abc V abg
VacqVag® < ¢ < ¢%. By [18, Lemma 1.11], we getb < ¢ andac < ¢. Thusg is a 2-absorbing
element ofL. O

Remark 2.24.Let L = L; x Ly x ...L, whereL, Ly, ..., L,, are multiplicative latticegn > 1)

and let¢ = 91 X 9o x ... X ¢, wherev; : L; — L; U {0} (i = 1,...,n) be a function. Let
a = (ay,az,...,a,) be an element of.. Observe that if);(a;) = () for somei = 1,...,n, then
there is no element af(a) and vice versa. Thug(a) = 0 if and only if ¢);(a;) = () for some
i=1,..,n.

Lemma 2.25.Let L = Ly x L, whereLy, L, are two multiplicative lattices. Let = 1 x v,
wherey; : L, — L; U{0} (: = 1,2) is a function Theng; is a 2-absorbing element @f; if and
only if g = (q1,11,) is a 2-absorbing element @f.

Proof. Suppose thaj; is a 2-absorbing element éf; and(a, 1,)(b, 11,)(¢,11,) < ¢ for some
elements(a, 1.,), (b,11,), (¢,1,) of L. Thenabc < ¢1 which implies that eithetb < ¢; or
be < qq orac < qq. ltfollows (a,1;,)(b,11,) < gor(b,11,)(c,1r,) < gor(a,1r,)(c,1,) <q.
Thusgq is a 2-absorbing element &f

Conversely suppose that= (¢1,1z,) is a 2-absorbing element éfbut assume thag; is not
a 2-absorbing element df;. Hence there exists, b, c € L1 with abc < ¢; but neitherab < ¢;
nor be < g1 norac < ¢1. Thus we concludéa, 11,)(b, 11,)(c,11,) < g but(a,1.,)(b,11,) £ ¢
and(b,1;,)(c,11,) £ gand(a,1z,)(c,11,) £ g, a contradiction. i

Theorem 2.26.Let L = L; x L, whereL,, L, are two multiplicative lattices. Let = 1)1 x 1,
wherey; : L; — L; U{0} (: = 1,2) is a function Then the following statements hold:

() If ¢; is a proper element of; with v;(¢;) = ¢; (i = 1,2), theng = (q1,¢2) is a ¢-2-
absorbing element af.
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(i) If q1 is aw1-2-absorbing element afy, andy»(1.,) = 1z,, theng = (q1,1.,) is a¢-2-
absorbing element aof.

(iii) If g2 is a,-2-absorbing element df, and;(1.,) = 1., theng = (1.,,q2) is a¢-2-
absorbing element aof.

Proof. (i) If 11(q1) = ¢1 andi2(q2) = g2, then there is no such an eleméatb) which satisfies
(a,b) < (q1,q2) and(a,b) £ ¢(q1,q2) = (q1, q2), SO we are done.

(i) Suppose that1(¢) = 0. Theng = (q1,1z,) is a¢-2-absorbing element df by Lemma
2.25 So assume thati(q) # 0 andq is ¢;-2-absorbing element af;. Let a = (aq, az),
b = (b1,b2) andc = (c1,c2) such thatabe < g andabe £ ¢(q). Henceabier < ¢ and
arbicr £ 1(qa), this implies that eitheti;by < g1 0rbicr < g1 0rager < g1. Thus eitheb < ¢
orbc < gorac<gq.

(iiif) This can be easily obtained similar to (ii). O

Theorem 2.27Let L = L1 x L, whereL1, L, are two multiplicative lattices angd = 1 x v,
wherey; : L; — L; U{0} (i = 1,2) is a function such that,(1.,) # 1.,. Letq; be a proper
element of; andq = (¢1,1z,). Then the following statements are equivalent:

() (q1,1L,) is a¢-2-absorbing element df.
(i) (q1,1.,) is a 2-absorbing element @f
(i) ¢ is a 2-absorbing element @f;.

Proof. If ¢1(q1) = 0 andy»(1,,) = 0, theng(q) = 0 by Remark2.24 So we are done from
Lemma2.25 Thus assume that(q1) # 0 or¢»(1, ) # 0.

()=(ii): Assume thaty = (q1,1.,) is a ¢-2-absorbing element of. Theng; is a ¢1-
2-absorbing element aof;. Indeed, ifg; is not ay,-2-absorbing element af,, then there
exista, b, c in Ly such thatabe < ¢ andabc £ ¢1(q1) butab £ ¢1 andbe £ ¢1 andac ¢
q1. Then(abe, 1r,) = (a,1r,)(b, 1r,)(c, 1z,) < g and(abe, 1r,) = (a,11,)(b, 1r,)(c,1z,) £
("/)l(pl)a ¢2(1L2)) = ¢(Q) This implies(ab, 1L2) = (aa 1L2)(b7 1L2) <gqor
(be,1p,) = (b,11,)(c,1,) < qor (ac,1p,) = (a,1,)(c,11,) < ¢, which meansib < ¢; or
bc < q1 orac < ¢, a contradiciton. Thug, is avy1-2-absorbing element df;.

If ¢; is a 2-absorbing element dfy, then it is clear. Assume that is not a 2-absorbing
element ofZ;. Hencegq; has ai;-triple-zero(x,y, z) for somez, y, 2 in L; by Remark2.6.
Sincey(1L,) # 1z,, then we gefzyz,1.,) = (z,1.,)(y,11,)(2,11,) < g and(zyz,1.,) =
(.23, 1L2)(y7 1L2)(za 1L2) ﬁ ¢(q) Therefore(xv 1L2)(ya 1L2) < qor (ya 1L2)(za 1L2) < qor
(z,17,)(2,1,) < q. Sowe getry < q; oryz < g1 or zz < q1, a contradiction. Thus, is
a 2-absorbing element @f;. Consequentlyq1,1.,) is a 2-absorbing element &f

(i) = (iii): It can be easily shown similar to the argument(in = (ii).

(iii) =(i): Itis clear. m|

Lemma 2.28.Let L = L; x L, x Lz whereLq, L,, Lz are C-lattices. Letp = 11 x 1 X 13,
wherey; : L, — L; U{0} (« = 1,2, 3) is a function withy;(1.,) # 11,. If ¢ = (q1,q2,q3) IS a
¢-2-absorbing element df, then eitherg = ¢(q) or ¢ is a 2-absorbing element @f.

Proof. If ¢(q) = 0, then we are done. So assuri@) # (). Suppose thaj # ¢(q). Hence there
is an elementa, b, ¢) € L with (a,b,c) < g but(a,b,c) £ ¢(q). SO

(CL, b, C) = (CL, 1., 1L3)(1L1a b, 1L3)(1L1a 1., C) <q ImplleS that eithe(aa 1., 1L3)(1L1a b, 1L3) <
gor(1.,,b,11,)(1z,,11,,¢) < gor(a,1r,,1,)(1r,, 11,,¢) < q. Without loss of generality as-
sume thata, 1;,,17,)(11,,b,15,) < q. Thengz = 11, which means thai® £ ¢(q). Thusgis a
2-absorbing element df by Corollary2.8. ]

Theorem 2.29.Let L = L, x Ly x Lz whereLq, L,, Lz are C-lattices. Letp = 11 x ¢, x 13,
wherey; : L; — L; U {0} (i = 1,2,3) is a function withy;(1.,) # 1.,. If ¢ # ¢(q), then the
followings are equivalent:

(i) qis ag¢-2-absorbing element df.

(i) ¢is a 2-absorbing element @f
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(i) ¢ isin one of the following type:
1) g = (1.,, 92, q3), Whereg; is a prime element of , andgz is a prime element of 3.
) ¢ = (q1,1L,,q3), Wwhereg; is a prime element of; andgs is a prime element of 3.
) ¢ = (q1,92,1L,), Whereg; is a prime element of; andg; is a prime element of.,.

IV) For somei € {1,2,3}, ¢; is a 2-absorbing element af; andq; = 1;, for every
7 €{1,2,3}\{i}.

Proof. (i) = (ii): If ¢(q) = 0 andgq is a¢-2-absorbing element, then obviouglis a 2-absorbing
element ofL. So assume that(q) # 0. Let g = (q1, q2, q3) be ag-2-absorbing element aof,
theng is a 2-absorbing element @fby Lemma2.28

(i) = (iii): Suppose thay is a 2-absorbing element df. Sinceq # ¢(q), there is a com-
pact element of. such that(ai,az,a3) < ¢ and (a1, a2,a3) £ &(q). Since(ay,az, az) =
(a1,1r,,11,) (1, a2,11,) (11, 11,, a3) and g is ¢-2-absorbing, we havéus,az,11,) < g or
(11,,a2,a3) < qor(ag,1r,,a3) < q. This means that eithef = 1;, org; = 1, orqz = 1.

Case |. Suppose that= (1.,, g2, q3) Whereq, # 1., andgs # 1.,. We show that is
a prime element of ,. Letzy < ¢o. Hence(1.,,2,17,)(1r,,1r,,43)(1r,,y,11,) < g and it
imp”eS that(lLu Z, 1L3)(1L17 1, OLs) <gqor (1L17 €, 1L3)(1L17 Y, 1L3) <gqgor
(1z,,11,,01,)(1z,, v, 11,) < q. Sincegs is proper, we get
(1p,,2y,15,) = (Lp,,2,10,)(1n,, v, 1r,) £ q. Thusx < g ory < gz, which shows that is
prime. By the similar argument one can easily show ¢hé a prime element of .

Case ll.g = (q1,11,, g3), Whereq; # 11, andqgs # 1, and Case lllg = (q1, q2, 11,), where
q1 # 11, andgy # 1;, can be easily obtained similar to Case I.

Case IV. Without loss of generality suppose that (q1,12,1.,) whereq; is a proper ele-
ment of L. Let z1xo23 < ¢p for somexy, x5, 23 € L1. Then
(.231.132.2?3, 1L27 OLS) = (.131, 1L27 OLa)(x27 1L25 OLs)(x?n 1L25 OLs) < q
#(q). Sinceq is ¢-2-absorbing, we have eith€gqz2,1;,,0.,) <
or (z123,11,,01,) < q. SOz122 < g1 OF 2223 < g1 OF 2223 < 1.

(iii) = (i): Suppose that, and ¢z are prime elements af, and L3, respectively and =
(1L17 q2, Q3). Let (al, az, ag), (bl, ba, bg), (Cl, c2, 63) € L such that
(al, az, a3)(b1, bo, bg) (C]_7 c2, (33) < q and (a]_, ay, a3) (b]_, bo, bg)(cl, c2, (33) ﬁ ¢(q) Assume that
(a1, az,a3) (b1, b2, b3) £ q. Henceazb, £ g2 Or agbs £ g3. Without loss of generality we may
suppose thatb, £ g2 andagbs < ¢3. Sinceq, is prime, we have, < ¢, which implies that
(a1, az, az)(c1, c2, c3) < q, we are done.

If ¢ = (q1,12,11,) Whereq; is a 2-absorbing element @f;, then it can be seen thatis a
2-absorbing element df. Thusgq is a¢-2-absorbing element df. O

and (zy7213,11,,0r,) £
q or (1'25537 1LzaOL3) < q

Theorem 2.30.Let L = Ly x L, x Lz whereL1, L,, L3 are multiplicative lattices. Leb = v x
2 X 13, Wherey; : L; — L;U{0} (i = 1, 2,3) is a function. If a propet: = (a1, ap, a3) € Lis
a ¢-2-absorbing element, thefy(a;) = 0 or v;(a;) = a; (i = 1,2, 3) for every proper element
a; of L;

Proof. Assume on the contrary that(a1) # a1 andys(a1) # 0 for some proper element
a1 € Li. Puta = (a1,0L2,0L3). Hence (a]_, 1L2, 1L3)(1L170L27 1L3)(1L1, 1L270L3) < a, but
(a1,11,,17.)(11,,01,,11,)(1,,11,,05,) £ é(a). Sincea is ag-2-absorbing element, we con-
clude eithef(a]_, 1L2; 1L3)(1L1; Osz 1L3) < aor (1L1; Osz 1L3)(1L17 1L2; OL3) <aor

(al, 1L2; 1L3)(1L17 1L2; OL3) <a.lt follows lL3 < azo0r 1L1 < apOr 1L2 < ap, which are contra-
dictions. Thus);(a;) = a; (i = 1,2, 3) for every proper element; of ;. O
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