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Abstract In this paper, we introduce the concept ofφ-2-absorbing elements in multiplicative
lattices. Letφ : L → L ∪ {∅} be a function. We will say a proper elementq of L to be a
φ-2-absorbing element ofL if whenevera, b, c ∈ L with abc ≤ q andabc � φ(q) implies either
ab ≤ q or ac ≤ q or bc ≤ q. We give some basic properties and establish some characterizations
of φ-2-absorbing elements in some special lattices.

1 Introduction

Several authors have studied various extensions of prime and primaryideals. A. Badawi [6]
introduced the concept of 2-absorbing ideals in a commutative ring with identity, which is a gen-
eralization of prime ideals. A. Badawi and A.Y. Darani [5] studied weakly 2-absorbing ideals
which are generalizations of weakly prime ideals [3]. Weakly prime elements in multiplica-
tive lattices are studied in [10]. The concepts of 2-absorbing primary and weakly 2-absorbing
primary ideals of commutative rings are studied in [7] and [8]. The concepts of 2-absorbing,
weakly 2-absorbing, 2-absorbing primary and weakly 2-absorbing primary elements in mul-
tiplicative lattices are studied in [16] and [11] as generalizations of prime and weakly prime
elements. Later, the concepts ofφ-prime,φ-primary ideals are recently introduced in [12], [9],
and generalizations of these are studied in [17]. In this work, our aim is to extend the concepts of
2-absorbing elements toφ-2-absorbing elements and investigate some characterizations in some
special lattices.

Throughout this paperR denotes a commutative ring with identity andL(R) denotes the
lattice of all ideals ofR. An elementa of L is said to be compact if whenevera ≤ ∨

α∈I
aα

impliesa ≤ ∨
α∈I0

aα for some finite subsetI0 of I. A multiplicative lattice, we mean a complete

latticeL with the least element 0L and compact greatest element 1L, on which there is defined
a commutative, associative, completely join distributive product for which 1L is a multiplicative
identity. Throughout this paperL denotes a multiplicative lattice andL∗ denotes the set of all
compact elements ofL. By aC-latticewe mean a (not necessarily modular) multiplicative lattice
which is generated under joins by a multiplicatively closed subsetC of compact elements. We
note that in aC-lattice, a finite product of compact elements is again compact. An elementa ∈ L
is said to beidempotentif a = a2. For anya ∈ L, L/a = {b ∈ L : a ≤ b} is a multiplicative
lattice with the multiplicationc ◦ d = cd∨ a. An elementa ∈ L is said to beproper if a < 1L. A
proper elementp of L is said to be prime ifab ≤ p implies eithera ≤ p or b ≤ p. C-lattices can
be localized. For any prime elementp of L, Lp denotes the localization atF = {xǫC : x � p}.
If 0L is prime, thenL is said to be adomain. A proper elementp is called asφ-prime if ab ≤ p
andab � φ(p) implies eithera ≤ p or b ≤ p for a, b ∈ L. In aC-lattice, an elementp is φ-prime
if and only if ab ≤ p andab � φ(p) implies eithera ≤ p or b ≤ p for all a, b ∈ L∗ by [17]. An
elementm < 1L is said to bemaximalin L if m < x ≤ 1L impliesx = 1L. It can be easily
shown that maximal elements are prime. Fora, b ∈ L, we denote(a : b) = ∨{x ∈ L : xb ≤ a}.
For a ∈ L, we define

√
a = ∧{p ∈ L : p is prime anda ≤ p}. Note that in aC-latticeL,√

a = ∧{p ∈ L : a ≤ p is a minimal prime overa} = ∨{x ∈ L∗ : xn ≤ a for somen ∈ Z+}.
A proper elementq is said to beprimary if ab ≤ q implies eithera ≤ q or b ≤ √

q for every
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pair of elementsa, b ∈ L. A proper elementq is said to beφ-primary if for every a, b ∈ L with
ab ≤ q andab � φ(q) implies eithera ≤ q or b ≤ √

q. A proper elementq of L is said to be
a 2-absorbing element if whenevera, b, c ∈ L with abc ≤ q implies eitherab ≤ q or bc ≤ q or
ac ≤ q.

A multiplicative lattice is called aNoether latticeif it is modular, principally generated (every
element is a join of some principal elements) which satisfies the ascending chain condition. A
Noether latticeL is local if it contains precisely one maximal prime. IfL is a Noether lattice
and 0L is prime, thenL is said to be aNoether domain. In [18], J. F. Wells studied the restricted
cancellation law of a Noether lattice. An elementa in a Noether latticeL satisfies the restricted
cancellation law ifab = ac 6= 0L impliesb = c for anya, b, c ∈ L.

2 φ-2-absorbing elements

Definition 2.1.Let φ : L→ L∪ {∅} be a function andq ∈ L be a proper element. Thenq is said
to be aφ-2-absorbing element ofL whenever ifa, b, c ∈ L with abc ≤ q andabc � φ(q) implies
eitherab ≤ q or ac ≤ q or bc ≤ q.

We can define the following special functionsφα as follows: Letq be aφα-2-absorbing
element ofL. Then we say

φ∅(q) = ∅ ⇒ q is a 2-absorbing element,
φ0(q) = 0 ⇒ q is a weakly 2-absorbing element,
φ2(q) = q2 ⇒ q is an almost 2-absorbing element,
...

φn(q) = qn ⇒ q is ann-almost 2-absorbing element forn > 2,
φω(q) = ∧∞

n=1q
n ⇒ q is aω-2-absorbing element.

Throughout this paper,φ denotes a function defined fromL toL ∪ {∅}. Since for an element
a ∈ L with a ≤ q buta � φ(q) implies thata � q ∧ φ(q), there is no loss generality in assuming
thatφ(q) ≤ q. We henceforth make this assumption. For any two functionsψ1, ψ2 : L→ L∪{∅},
we sayψ1 ≤ ψ2 if ψ1(a) ≤ ψ2(a) for eacha ∈ L. Thus clearly we have the following order:
φ∅ ≤ φ0 ≤ φω ≤ ... ≤ φn+1 ≤ φn ≤ ... ≤ φ2 ≤ φ1.

Lemma 2.2.Let q be a proper element ofL andψ1, ψ2 : L → L ∪ {∅} be two functions with
ψ1 ≤ ψ2. If q is aψ1-2-absorbing element ofL, thenq is aψ2-2-absorbing element ofL.

Proof. Suppose thatq is aψ1-2-absorbing element ofL anda, b, c ∈ L such thatabc ≤ q and
abc � ψ2(q). Sinceabc ≤ q andabc � ψ1(q), we are done.

Hence we have the following relations among the concepts mentioned in Definition 2.1:

Theorem 2.3.Let q be a proper element ofL. Then

(i) q is a 2-absorbing element ofL ⇒ q is a weakly 2-absorbing element ofL ⇒ q is aω-
2-absorbing element ofL ⇒ q is an(n + 1)-almost 2-absorbing element ofL ⇒ q is an
n-almost 2-absorbing element ofL for all n ≥ 2 ⇒ q is an almost 2-absorbing element of
L.

(ii) q is aφ-prime element ofL⇒ q is aφ-2-absorbing element ofL.

(iii) A proper elementq of L is an idempotent element⇒ q is aω-2-absorbing element ofL and
q is ann-almost 2-absorbing element ofL for all n ≥ 2.

(iv) q is ann-almost 2-absorbing element ofL for all n ≥ 2 ⇔ q is aω-2-absorbing element of
L.

Proof. (i) It is clear from Lemma2.2.
(ii) Suppose thata, b, c ∈ L with abc ≤ q, abc 6≤ φ(q) andab 6≤ q. Hencec ≤ q asq is a

φ-prime element ofL. Thusac ≤ q or bc ≤ q, we are done.
(iii) Suppose thatq is an idempotent element ofL. Thenq = qn for all n > 0, and so

φω(q) = ∧∞
n=1q

n = q. Thus q is a ω-2-absorbing element ofL. Finally, q is ann-almost 2-
absorbing element for alln ≥ 2 from (i).



onφ-2-absorbing elements 129

(iv) Let a, b, c ∈ L with abc ≤ q but abc � ∧∞
n=1q

n. Henceabc ≤ q but abc � qm for some
m ≥ 2. Sinceq is n-almost 2-absorbing for alln ≥ 2, this implies eitherab ≤ q or bc ≤ q or
ac ≤ q, we are done. The converse is clear from (i).

Theorem 2.4.Letq be aφ-2-absorbing element ofL. If φ(q) is a 2-absorbing element ofL, then
q is 2-absorbing.

Proof. Let abc ≤ q for somea, b, c ∈ L. If abc 6≤ φ(q), then we have eitherab ≤ q or ac ≤ q or
bc ≤ q asq is φ-2-absorbing. Suppose thatabc ≤ φ(q). Hence we conclude that eitherab ≤ φ(q)
or ac ≤ φ(q) or bc ≤ φ(q). Sinceφ(q) ≤ q, we are done.

Definition 2.5.Let q be aφ-2-absorbing element ofL anda, b, c ∈ L. If abc ≤ φ(q) but ab � q,
bc � q, ac � q, then(a, b, c) is called aφ-triple zero ofq.

Remark 2.6.If q is a φ-2-absorbing element ofL which is not 2-absorbing, then there exists
(a, b, c) aφ-triple zero ofq for somea, b, c ∈ L.

Lemma 2.7.Let q be aφ-2-absorbing element ofL and suppose that(a, b, c) is a φ-triple zero
of q for somea, b, c ∈ L. Then

(i) abq, bcq, acq ≤ φ(q).

(ii) aq2, bq2, cq2 ≤ φ(q).

(iii) q3 ≤ φ(q).

Proof. (i) Suppose thatabq � φ(q). Thenab(c∨q) � φ(q). Sinceab � q andq isφ-2-absorbing,
we havea(c∨q) ≤ q or b(c∨q) ≤ q. Soac ≤ q or bc ≤ q, which contradicts with our hypothesis.
Thusabq ≤ φ(q). Similarly one can easily show thatbcq ≤ φ(q) andacq ≤ φ(q).

(ii) Suppose thataq2 � φ(q). Hence we havea(b ∨ q)(c ∨ q) � φ(q) by (i). So we conclude
eithera(b ∨ q) ≤ q or a(c∨ q) ≤ q or (b∨ q)(c∨ q) ≤ q. Thus eitherab ≤ q or ac ≤ q or bc ≤ q,
a contradiction. Thereforeaq2 ≤ φ(q). Similarly it can be easily verified thatbq2, cq2 ≤ φ(q).

(iii) Assume thatq3 � φ(q). Then we have(a∨q)(b∨q)(c∨q)≤ q but(a∨q)(b∨q)(c∨q)�
φ(q) by (i) and (ii). Sinceq is φ-2-absorbing,(a ∨ q)(b ∨ q) ≤ q or (a ∨ q)(c ∨ q) ≤ q or
(b ∨ q)(c ∨ q) ≤ q, so we concludeab ≤ q or ac ≤ q or bc ≤ q, a contradiction. Thus
q3 ≤ φ(q).

Now we can give a condition for aφ-2-absorbing element to be a 2-absorbing element ofL.

Corollary 2.8. Let q be a proper element ofL. Then the following statements hold:

(i) If q is aφ-2-absorbing element ofL such thatq3 � φ(q), thenq is a 2-absorbing element of
L.

(ii) Let L be aC-lattice. If q is aφ-2-absorbing element ofL that is not a 2-absorbing, then√
q =

√

φ(q).

Proof. (i) The proof is clear by Remark2.6and Lemma2.7(iii).
(ii) Since q is not a 2-absorbing element ofL, q3 ≤ φ(q) by Lemma2.7 (iii). Hence

√
q ≤

√

φ(q). Sinceφ(q) ≤ q is always hold, we get
√
q =

√

φ(q).

Recall from [13] that an elemente ∈ L is said to beprincipal, if it satisfies the dual identities
(i) a ∧ be = ((a : e) ∧ b)e and (ii) ((ae ∨ b) : e) = (b : e) ∨ a. Elements satisfying the identity
(i) are calledmeet principaland elements satisfying the identity (ii) are calledjoin principal. If
the both identities are satisfied, thene is said to be a principal element ofL. Note that by [13,
Lemma 3.3 and Lemma 3.4], a finite product of principal elements ofL is again principal. If
every element ofL can be written as a join of some principal elements ofL, thenL is said to be
join principally generated lattice.

Theorem 2.9.LetL be a join principally generatedC-lattice anda, b, c be proper join principal
elements ofL. Thenabc is aφ-2-absorbing element ofL if and only ifabc = φ(abc).
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Proof. Suppose thatabc is aφ-2-absorbing element ofL. Assume thatabc 6= φ(abc). Then we
have eitherab ≤ abc or ac ≤ abc or bc ≤ abc. Without loss generality we may assume that
ab ≤ abc. Sinceab is principal, we conclude that 1L = (abc : ab) = c ∨ (0L : ab). Observe
that (0L : ab) 6= 1L. Indeed, if(0L : ab) = 1L, thenabc = 0L ≤ φ(abc), a contradiction.
Since(0L : ab) 6= 1L, c ≤ J(L) we conclude that 1L 6= c ∨ (0L : ab), a contradiction. Thus
abc = φ(abc). The converse part is clear.

Theorem 2.10.LetL be a local Noether domain. Ifq is anφn-2-absorbing element ofL for all
n > 2, thenq is a 2-absorbing element ofL.

Proof. Let abc ≤ q for somea, b, c ∈ L. If abc 6≤ φn(q), then we have eitherab ≤ q or bc ≤ q
or ac ≤ q as q is φn-2-absorbing. So suppose thatabc ≤ φn(q). Since∧∞

n=1q
n = 0L, from

Corollary 3.3 of [13], we conclude thatabc ≤ 0L. Thusa ≤ 0L or b ≤ 0L or c ≤ 0L asL is a
domain, so clearlyab ≤ q or bc ≤ q or ac ≤ q.

We remind to the reader that for anya ∈ L, L/a = {b ∈ L : a ≤ b} is a multiplicative lattice
with multiplicationc ◦ d = cd ∨ a.

Theorem 2.11.Let q be a proper element ofL. Then the following statements hold:

(i) q is aφ-2-absorbing element ofL if and only ifq is a weakly 2-absorbing element ofL/φ(q).

(ii) q is aφ-prime element ofL if and only ifq is a weakly prime element ofL/φ(q).

(iii) q is aφ-primary element ofL if and only ifq is a weakly primary element ofL/φ(q).

Proof. (i) If φ(q) = ∅, then there is nothing to prove. Thus assume thatφ(q) 6= ∅. Let φ(q) 6=
(a ∨ φ(q)) ◦ (b ∨ φ(q)) ◦ (c ∨ φ(q)) = abc ∨ φ(q) ≤ q for somea, b, c ∈ L. Thenabc ≤ q,
but abc � φ(q). Hence eitherab ≤ q or bc ≤ q or ac ≤ q. So (a ∨ φ(q)) ◦ (b ∨ φ(q)) ≤ q or
(b ∨ φ(q)) ◦ (c ∨ φ(q)) ≤ q or (a ∨ φ(q)) ◦ (c ∨ φ(q)) ≤ q. Thereforeq is a weakly 2-absorbing
element ofL/φ(q).

Conversely, letabc ≤ q andabc � φ(q) for somea, b, c ∈ L. Thenφ(q) 6= (a ∨ φ(q)) ◦ (b ∨
φ(q)) ◦ (c ∨ φ(q)) ≤ q. Hence(a ∨ φ(q)) ◦ (b ∨ φ(q)) ≤ q or (b ∨ φ(q)) ◦ (c ∨ φ(q)) ≤ q or
(a ∨ φ(q)) ◦ (c ∨ φ(q)) ≤ q. Thusab ≤ q or bc ≤ q or ac ≤ q. Similarly one can easily prove (ii)
and (iii).

Corollary 2.12. Let q be a proper element ofL andn ≥ 2. Then

(i) q is aφn-2-absorbing element ofL if and only ifq is a weakly 2-absorbing element ofL/qn.

(ii) q is aφn-prime element ofL if and only ifq is a weakly prime element ofL/qn.

(iii) q is aφn-primary element ofL if and only ifq is a weakly primary element ofL/qn.

Proof. Sinceφn(q) = qn, the proof is clear by Theorem2.11.

Corollary 2.13. Let q be aφ-2-absorbing element ofL such thatφ ≤ φ3. Then

(i) q is aφn-2-absorbing element ofL for everyn ≥ 3.

(ii) q is aφω-2-absorbing element ofL.

Proof. Suppose thatq is a 2-absorbing element ofL. Hence (i) and (ii) are clear.
(i) Assume thatq is not a 2-absorbing element ofL. Thusq3 ≤ φ(q) by Lemma2.7 (iii) .

Then we haveq3 ≤ φ(q) ≤ q3 asφ ≤ φ3. This followsq3 = qn = φ(q) for everyn ≥ 3, so we
are done.

(ii) Let abc ≤ q andabc � ∧∞
n=1q

n. Thenabc � qn for somen ≥ 2. If n ≥ 3, then it is clear
from (i). So suppose thatn = 2. Henceabc � q2 which implies thatabc � q3, so from (i) the
result is obtained.

Theorem 2.14.Letx andy be two proper elements ofL such thatx ≤ y and letn ≥ 2. If y is a
φn-2-absorbing element ofL, theny is aφn-2-absorbing element ofL/x.
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Proof. Suppose thaty is aφn-2-absorbing element ofL. Assume that(a∨x)◦ (b∨x)◦ (c∨x) =
abc∨x ≤ y and(a∨ x) ◦ (b∨x) ◦ (c∨x) = abc∨ x � yn for somea, b, c ∈ L. As y ∈ L/x, then
yn = y◦y◦y◦ ...◦y = yn∨x. Sincex ≤ y andabc∨x � yn = yn∨x, then we haveabc ≤ y and
abc � yn. Thusab ≤ y or ac ≤ y or bc ≤ y. Hence(a∨ x) ◦ (b∨ x) ≤ y or (a∨ x) ◦ (c∨ x) ≤ y
or (b ∨ x) ◦ (c ∨ x) ≤ y which means thaty is aφn-2-absorbing primary element ofL/x.

Corollary 2.15. Letx andy be two proper elements ofL such thatx ≤ y. If y is aφω-2-absorbing
element ofL, theny is aφω-2-absorbing element ofL/x.

Proof. Similar to the proof of Theorem2.14.

Definition 2.16.Let x be a proper element ofL/q such thatq ≤ x. Thenx is called aφq-2-
absorbing element ofL/q if whenevera, b, c ∈ L/q with abc ≤ x andabc � φ(x) ∨ q implies
ab ≤ x or ac ≤ x or bc ≤ x.

Theorem 2.17.Letp andq be two elements ofL with q ≤ p < 1. If p is aφ-2-absorbing element
of L, thenp is aφq-2-absorbing element ofL/q.

Proof. Let (a ∨ q) ◦ (b ∨ q) ◦ (c ∨ q) ≤ p andabc ∨ q = (a ∨ q) ◦ (b ∨ q) ◦ (c ∨ q) � φ(p) ∨ q
for somea, b, c ∈ L. Henceabc ≤ p andabc � φ(p). Sincep is φ-2-absorbing element ofL, we
conclude thatab ≤ p or ac ≤ p or bc ≤ p. So we get(a∨ q) ◦ (b∨ q) ≤ p or (a∨ q) ◦ (c∨ q) ≤ p
or (b ∨ q) ◦ (c ∨ q) ≤ p.

Theorem 2.18.Let p andq be two proper elements ofL such thatq ≤ φ(p). Then the following
statements are equivalent:

(i) p is aφ-2-absorbing element ofL.

(ii) p is aφq-2-absorbing element ofL/q.

(iii) p is aφqn -2-absorbing element ofL/qn.

Proof. (i)⇒(ii): It is clear by Theorem2.17.
(ii)⇒(iii): Let n ≥ 1. Sinceq ≤ φ(p), we haveqn ≤ q ≤ φ(p). Suppose that(a ∨ qn) ◦ (b ∨

qn) ◦ (c ∨ qn) ≤ p and(a ∨ qn) ◦ (b ∨ qn) ◦ (c ∨ qn) � φ(p) ∨ qn for somea, b, c ∈ L. Hence
abc � φ(p). Sinceq ≤ φ(p) andabc � φ(p), we haveabc � q. Thus(a∨ q) ◦ (b∨ q) ◦ (c∨ q) ≤ p
and(a ∨ q) ◦ (b ∨ q) ◦ (c ∨ q) � φ(p) ∨ q. Sincep is aφq- 2-absorbing element ofL/q, one can
conclude thatab ≤ p or ac ≤ p or bc ≤ p. Thusab ∨ qn ≤ p or ac ∨ qn ≤ p or bc ∨ qn ≤ p (in
L/qn).

(iii)⇒(i): Suppose thatabc ≤ p andabc � φ(p) for somea, b, c ∈ L. Sinceqn ≤ φ(p), we
haveabc � qn. As qn ≤ φ(p) ≤ p, we get(a ∨ qn) ◦ (b ∨ qn) ◦ (c ∨ qn) = abc ∨ qn ≤ p and
(a ∨ qn) ◦ (b ∨ qn) ◦ (c ∨ qn) � φ(p) ∨ qn. Sincep is aφqn -2-absorbing element ofL/qn, one
can conclude thatab ≤ p or ac ≤ p or bc ≤ p.

Corollary 2.19. Let p and q be two proper elements ofL. Suppose thatq is not a weakly 2-
absorbing element ofL. The following statements are equivalent:

(i) p is aφ-2-absorbing element ofL.

(ii) p is aφp3-2-absorbing element ofL/p3.

(iii) p is aφpn -2-absorbing element ofL/pn for everyn ≥ 3.

Proof. Suppose thatp is not a weakly 2-absorbing element ofL. Hencep is not a 2-absorbing
element ofL. So we concludep3 ≤ φ(q) by Lemma2.7. Thus we are done by Theorem2.18.

Definition 2.20.Let q be a proper element ofL andn ≥ 2. We callq as ann-potent 2-absorbing
if whenevera, b, c ∈ L with abc ≤ qn, thenab ≤ q or bc ≤ q or ac ≤ q.

Theorem 2.21.Let q be ann-almost 2-absorbing element for somen ≥ 2. If q is k-potent 2-
absorbing for somek ≤ n, thenq is a 2-absorbing element.
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Proof. Suppose thatq is ann-almost 2-absorbing element. Letabc ≤ q for somea, b, c ∈ L.
If abc � qk, thenabc � qn. It implies eitherab ≤ q or bc ≤ q or ac ≤ q asq is ann-almost
2-absorbing element. Ifabc ≤ qk, then we obtain the same result asq is k-potent 2-absorbing,
so we are done.

In the following theorems, we obtain some conditions under which aφ-2-absorbing element
of L is a 2-absorbing element ofL.

Let J(L) = ∧{m ∈ L : m is a maximal element ofL}.

Theorem 2.22.Let L be a Noether domain. Then an elementq of L with q ≤ J(L) is a 2-
absorbing element ofL if and only ifq is aφn-2-absorbing element ofL for all n ≥ 2.

Proof. If q is 2-absorbing, thenq is φn-2-absorbing by Theorem2.3. Conversely, suppose that
q is φn-2-absorbing for alln ≥ 2 and leta, b, c ∈ L with abc ≤ q. If abc � qk for somek ≥ 2,
we have eitherab ≤ q or bc ≤ q or ac ≤ q. So suppose thatabc ≤ qn for all n ≥ 2. SinceL is
a Noether domain, we concludeabc ≤ ∧∞

n=1q
n = 0L by Corollary 1.4 in [4]. Since 0L is prime,

we get eithera = 0L or b = 0L or c = 0L. Without loss generality suppose thata = 0L. This
implies thatab = 0L ≤ q which completes the proof.

Theorem 2.23.LetL be a Noether lattice. Letq be a non-zero non-nilpotent proper element of
L satisfying the restricted cancellation law. Thenq is a φ-2-absorbing element ofL for some
φ ≤ φn and for alln ≥ 2 if and only ifq is a 2-absorbing element ofL.

Proof. Assume thatq is a 2-absorbing element ofL. Thenq is aφ-2-absorbing element ofL for
all φ. Thusq is φ-2-absorbing for someφ ≤ φn and for alln ≥ 2.

Conversely assume thatq is aφ-2-absorbing element ofL for someφ ≤ φn for all n ≥ 2.
Henceq is aφn-2-absorbing element ofL for all n ≥ 2 by Lemma2.2. Let abc ≤ q for some
a, b, c in L. Here there are two cases:

Case 1: Letabc � qn for somen ≥ 2. Then by hypothesis we getab ≤ q or bc ≤ q or ac ≤ q.
Case 2: Letabc ≤ qn for all n ≥ 2. We have thata(b ∨ q)(c ∨ q) = abc ∨ abq ∨acq ∨ aq2 ≤ q.
If a(b ∨ q)(c ∨ q) � qn, thena(b ∨ q) ≤ q or a(c ∨ q) ≤ q or (b ∨ q)(c ∨ q) ≤ q. It follows that
eitherab ≤ q or bc ≤ q or ac ≤ q. If a(b ∨ q)(c ∨ q) ≤ qn, thena(b ∨ q)(c ∨ q) = abc ∨ abq
∨acq∨aq2 ≤ qn ≤ q2. By [18, Lemma 1.11], we getab ≤ q andac ≤ q. Thusq is a 2-absorbing
element ofL.

Remark 2.24.Let L = L1 × L2 × ...Ln whereL1, L2, ..., Ln are multiplicative lattices(n ≥ 1)
and letφ = ψ1 × ψ2 × ... × ψn whereψi : Li → Li ∪ {∅} (i = 1, ..., n) be a function. Let
a = (a1, a2, ..., an) be an element ofL. Observe that ifψi(ai) = ∅ for somei = 1, ..., n, then
there is no element ofφ(a) and vice versa. Thusφ(a) = ∅ if and only if ψi(ai) = ∅ for some
i = 1, ..., n.

Lemma 2.25.LetL = L1 × L2 whereL1, L2 are two multiplicative lattices. Letφ = ψ1 × ψ2,
whereψi : Li → Li ∪ {∅} (i = 1,2) is a function. Thenq1 is a 2-absorbing element ofL1 if and
only if q = (q1,1L2) is a 2-absorbing element ofL.

Proof. Suppose thatq1 is a 2-absorbing element ofL1 and(a,1L2)(b,1L2)(c,1L2) ≤ q for some
elements(a,1L2), (b,1L2), (c,1L2) of L. Thenabc ≤ q1 which implies that eitherab ≤ q1 or
bc ≤ q1 or ac ≤ q1. It follows (a,1L2)(b,1L2) ≤ q or (b,1L2)(c,1L2) ≤ q or (a,1L2)(c,1L2) ≤ q.
Thusq is a 2-absorbing element ofL.

Conversely suppose thatq = (q1,1L2) is a 2-absorbing element ofL but assume thatq1 is not
a 2-absorbing element ofL1. Hence there existsa, b, c ∈ L1 with abc ≤ q1 but neitherab ≤ q1

nor bc ≤ q1 nor ac ≤ q1. Thus we conclude(a,1L2)(b,1L2)(c,1L2) ≤ q but (a,1L2)(b,1L2) 6≤ q
and(b,1L2)(c,1L2) 6≤ q and(a,1L2)(c,1L2) 6≤ q, a contradiction.

Theorem 2.26.LetL = L1 × L2 whereL1, L2 are two multiplicative lattices. Letφ = ψ1 × ψ2,
whereψi : Li → Li ∪ {∅} (i = 1,2) is a function. Then the following statements hold:

(i) If qi is a proper element ofLi with ψi(qi) = qi (i = 1,2), thenq = (q1, q2) is a φ-2-
absorbing element ofL.
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(ii) If q1 is aψ1-2-absorbing element ofL1, andψ2(1L2) = 1L2, thenq = (q1,1L2) is aφ-2-
absorbing element ofL.

(iii) If q2 is aψ2-2-absorbing element ofL2 andψ1(1L1) = 1L1, thenq = (1L1, q2) is aφ-2-
absorbing element ofL.

Proof. (i) If ψ1(q1) = q1 andψ2(q2) = q2, then there is no such an element(a, b) which satisfies
(a, b) ≤ (q1, q2) and(a, b) � φ(q1, q2) = (q1, q2), so we are done.

(ii) Suppose thatψ1(q) = ∅. Thenq = (q1,1L2) is aφ-2-absorbing element ofL by Lemma
2.25. So assume thatψ1(q) 6= ∅ and q1 is ψ1-2-absorbing element ofL1. Let a = (a1, a2),
b = (b1, b2) and c = (c1, c2) such thatabc ≤ q and abc � φ(q). Hencea1b1c1 ≤ q1 and
a1b1c1 � ψ1(q1), this implies that eithera1b1 ≤ q1 or b1c1 ≤ q1 or a1c1 ≤ q1. Thus eitherab ≤ q
or bc ≤ q or ac ≤ q.

(iii) This can be easily obtained similar to (ii).

Theorem 2.27.LetL = L1 × L2 whereL1, L2 are two multiplicative lattices andφ = ψ1 × ψ2,
whereψi : Li −→ Li ∪ {∅} (i = 1,2) is a function such thatψ2(1L2) 6= 1L2. Letq1 be a proper
element ofL1 andq = (q1,1L2). Then the following statements are equivalent:

(i) (q1,1L2) is aφ-2-absorbing element ofL.

(ii) (q1,1L2) is a 2-absorbing element ofL.

(iii) q1 is a 2-absorbing element ofL1.

Proof. If ψ1(q1) = ∅ andψ2(1L2
) = ∅, thenφ(q) = ∅ by Remark2.24. So we are done from

Lemma2.25. Thus assume thatψ1(q1) 6= ∅ or ψ2(1L2
) 6= ∅.

(i)⇒(ii): Assume thatq = (q1,1L2) is a φ-2-absorbing element ofL. Then q1 is a ψ1-
2-absorbing element ofL1. Indeed, ifq1 is not aψ1-2-absorbing element ofL1, then there
exist a, b, c in L1 such thatabc ≤ q1 andabc � ψ1(q1) but ab � q1 and bc � q1 andac �
q1. Then(abc,1L2) = (a,1L2)(b,1L2)(c,1L2) ≤ q and(abc,1L2) = (a,1L2)(b,1L2)(c,1L2) �
(ψ1(p1), ψ2(1L2)) = φ(q). This implies(ab,1L2) = (a,1L2)(b,1L2) ≤ q or
(bc,1L2) = (b,1L2)(c,1L2) ≤ q or (ac,1L2) = (a,1L2)(c,1L2) ≤ q, which meansab ≤ q1 or
bc ≤ q1 or ac ≤ q1, a contradiciton. Thusq1 is aψ1-2-absorbing element ofL1.

If q1 is a 2-absorbing element ofL1, then it is clear. Assume thatq1 is not a 2-absorbing
element ofL1. Henceq1 has aψ1-triple-zero(x, y, z) for somex, y, z in L1 by Remark2.6.
Sinceψ2(1L2) 6= 1L2, then we get(xyz,1L2) = (x,1L2)(y,1L2)(z,1L2) ≤ q and(xyz,1L2) =
(x,1L2)(y,1L2)(z,1L2) � φ(q). Therefore(x,1L2)(y,1L2) ≤ q or (y,1L2)(z,1L2) ≤ q or
(x,1L2)(z,1L2) ≤ q. So we getxy ≤ q1 or yz ≤ q1 or xz ≤ q1, a contradiction. Thusq1 is
a 2-absorbing element ofL1. Consequently,(q1,1L2) is a 2-absorbing element ofL.

(ii)⇒ (iii): It can be easily shown similar to the argument in(i) ⇒ (ii).
(iii)⇒(i): It is clear.

Lemma 2.28.LetL = L1 × L2 × L3 whereL1, L2, L3 areC-lattices. Letφ = ψ1 × ψ2 × ψ3,
whereψi : Li −→ Li ∪ {∅} (i = 1,2,3) is a function withψi(1Li

) 6= 1Li
. If q = (q1, q2, q3) is a

φ-2-absorbing element ofL, then eitherq = φ(q) or q is a 2-absorbing element ofL.

Proof. If φ(q) = ∅, then we are done. So assumeφ(q) 6= ∅. Suppose thatq 6= φ(q). Hence there
is an element(a, b, c) ∈ L with (a, b, c) ≤ q but (a, b, c) 6≤ φ(q). So
(a, b, c) = (a,1L2,1L3)(1L1, b,1L3)(1L1,1L2, c) ≤ q implies that either(a,1L2,1L3)(1L1, b,1L3) ≤
q or (1L1, b,1L3)(1L1,1L2, c) ≤ q or (a,1L2,1L3)(1L1,1L2, c) ≤ q. Without loss of generality as-
sume that(a,1L2,1L3)(1L1, b,1L3) ≤ q. Thenq3 = 1L3 which means thatq3 6≤ φ(q). Thusq is a
2-absorbing element ofL by Corollary2.8.

Theorem 2.29.LetL = L1 × L2 × L3 whereL1, L2, L3 areC-lattices. Letφ = ψ1 × ψ2 × ψ3,
whereψi : Li −→ Li ∪ {∅} (i = 1,2,3) is a function withψi(1Li

) 6= 1Li
. If q 6= φ(q), then the

followings are equivalent:

(i) q is aφ-2-absorbing element ofL.

(ii) q is a 2-absorbing element ofL.
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(iii) q is in one of the following type:

I) q = (1L1, q2, q3), whereq2 is a prime element ofL2 andq3 is a prime element ofL3.

II) q = (q1,1L2, q3), whereq1 is a prime element ofL1 andq3 is a prime element ofL3.

III) q = (q1, q2,1L3), whereq1 is a prime element ofL1 andq2 is a prime element ofL2.

IV) For somei ∈ {1,2,3}, qi is a 2-absorbing element ofLi and qj = 1lj for every
j ∈ {1,2,3}\{i}.

Proof. (i) ⇒ (ii): If φ(q) = ∅ andq is aφ-2-absorbing element, then obviouslyq is a 2-absorbing
element ofL. So assume thatφ(q) 6= ∅. Let q = (q1, q2, q3) be aφ-2-absorbing element ofL,
thenq is a 2-absorbing element ofL by Lemma2.28.

(ii) ⇒ (iii): Suppose thatq is a 2-absorbing element ofL. Sinceq 6= φ(q), there is a com-
pact element ofL such that(a1, a2, a3) ≤ q and (a1, a2, a3) 6≤ φ(q). Since(a1, a2, a3) =
(a1,1L2,1L3)(1L1, a2,1L3)(1L1,1L2, a3) and q is φ-2-absorbing, we have(a1, a2,1L3) ≤ q or
(1L1, a2, a3) ≤ q or (a1,1L2, a3) ≤ q. This means that eitherq1 = 1L1 or q2 = 1L2 or q3 = 1L3.

Case I. Suppose thatq = (1L1, q2, q3) whereq2 6= 1L2 and q3 6= 1L3. We show thatq2 is
a prime element ofL2. Let xy ≤ q2. Hence(1L1, x,1L3)(1L1,1L2, q3)(1L1, y,1L3) ≤ q and it
implies that(1L1, x,1L3)(1L1,1L2,0L3) ≤ q or (1L1, x,1L3)(1L1, y,1L3) ≤ q or
(1L1,1L2,0L3)(1L1, y,1L3) ≤ q. Sinceq3 is proper, we get
(1L1, xy,1L3) = (1L1, x,1L3)(1L1, y,1L3) 6≤ q. Thusx ≤ q2 or y ≤ q2, which shows thatq2 is
prime. By the similar argument one can easily show thatq3 is a prime element ofL3.

Case II.q = (q1,1L2, q3), whereq1 6= 1L1 andq3 6= 1L3 and Case III.q = (q1, q2,1L3), where
q1 6= 1L1 andq2 6= 1L2 can be easily obtained similar to Case I.

Case IV. Without loss of generality suppose thatq = (q1,12,1L3) whereq1 is a proper ele-
ment ofL1. Let x1x2x3 ≤ q1 for somex1, x2, x3 ∈ L1. Then
(x1x2x3,1L2,0L3) = (x1,1L2,0L3)(x2,1L2,0L3)(x3,1L2,0L3) ≤ q and (x1x2x3,1L2,0L3) 6≤
φ(q). Sinceq is φ-2-absorbing, we have either(x1x2,1L2,0L3) ≤ q or (x2x3,1L2,0L3) ≤ q
or (x1x3,1L2,0L3) ≤ q. Sox1x2 ≤ q1 or x2x3 ≤ q1 or x2x3 ≤ q1.

(iii)⇒ (i): Suppose thatq2 andq3 are prime elements ofL2 andL3, respectively andq =
(1L1, q2, q3). Let (a1, a2, a3), (b1, b2, b3), (c1, c2, c3) ∈ L such that
(a1, a2, a3)(b1, b2, b3)(c1, c2, c3) ≤ q and (a1, a2, a3)(b1, b2, b3)(c1, c2, c3) 6≤ φ(q). Assume that
(a1, a2, a3)(b1, b2, b3) 6≤ q. Hencea2b2 6≤ q2 or a3b3 6≤ q3. Without loss of generality we may
suppose thata2b2 6≤ q2 anda3b3 ≤ q3. Sinceq2 is prime, we havec2 ≤ q2, which implies that
(a1, a2, a3)(c1, c2, c3) ≤ q, we are done.

If q = (q1,12,1L3) whereq1 is a 2-absorbing element ofL1, then it can be seen thatq is a
2-absorbing element ofL. Thusq is aφ-2-absorbing element ofL.

Theorem 2.30.LetL = L1×L2×L3 whereL1, L2, L3 are multiplicative lattices. Letφ = ψ1×
ψ2×ψ3, whereψi : Li −→ Li∪{∅} (i = 1,2,3) is a function. If a propera = (a1, a2, a3) ∈ L is
a φ-2-absorbing element, thenψi(ai) = ∅ or ψi(ai) = ai (i = 1,2,3) for every proper element
ai ofLi.

Proof. Assume on the contrary thatψ1(a1) 6= a1 andψ1(a1) 6= ∅ for some proper element
a1 ∈ L1. Put a = (a1,0L2,0L3). Hence(a1,1L2,1L3)(1L1,0L2,1L3)(1L1,1L2,0L3) ≤ a, but
(a1,1L2,1L3)(1L1,0L2,1L3)(1L1,1L2,0L3) 6≤ φ(a). Sincea is aφ-2-absorbing element, we con-
clude either(a1,1L2,1L3)(1L1,0L2,1L3) ≤ a or (1L1,0L2,1L3)(1L1,1L2,0L3) ≤ a or
(a1,1L2,1L3)(1L1,1L2,0L3) ≤ a. It follows 1L3 ≤ a3 or 1L1 ≤ a1 or 1L2 ≤ a2, which are contra-
dictions. Thusψi(ai) = ai (i = 1,2,3) for every proper elementai of Li.
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