ON $\phi\mbox{-}2\mbox{-}ABSORBING ELEMENTS IN MULTIPLICATIVE LATTICES$

Ece Yetkin Celikel, Emel A. Ugurlu and Gulsen Ulucak

Communicated by Ayman Badawi

MSC 2010 Classifications: 03G10, 03G99.

Keywords and phrases: ϕ -prime element, ϕ -primary element, 2-absorbing element, weakly 2-absorbing element, ϕ -2-absorbing element.

Abstract In this paper, we introduce the concept of ϕ -2-absorbing elements in multiplicative lattices. Let $\phi : L \to L \cup \{\emptyset\}$ be a function. We will say a proper element q of L to be a ϕ -2-absorbing element of L if whenever $a, b, c \in L$ with $abc \leq q$ and $abc \nleq \phi(q)$ implies either $ab \leq q$ or $ac \leq q$ or $bc \leq q$. We give some basic properties and establish some characterizations of ϕ -2-absorbing elements in some special lattices.

1 Introduction

Several authors have studied various extensions of prime and primary ideals. A. Badawi [6] introduced the concept of 2-absorbing ideals in a commutative ring with identity, which is a generalization of prime ideals. A. Badawi and A.Y. Darani [5] studied weakly 2-absorbing ideals which are generalizations of weakly prime ideals [3]. Weakly prime elements in multiplicative lattices are studied in [10]. The concepts of 2-absorbing primary and weakly 2-absorbing primary ideals of commutative rings are studied in [7] and [8]. The concepts of 2-absorbing, weakly 2-absorbing, 2-absorbing primary and weakly 2-absorbing primary elements in multiplicative lattices are studied in [16] and [11] as generalizations of prime and weakly prime elements. Later, the concepts of ϕ -prime, ϕ -primary ideals are recently introduced in [12], [9], and generalizations of these are studied in [17]. In this work, our aim is to extend the concepts of 2-absorbing elements to ϕ -2-absorbing elements and investigate some characterizations in some special lattices.

Throughout this paper R denotes a commutative ring with identity and L(R) denotes the lattice of all ideals of R. An element a of L is said to be compact if whenever $a \leq \bigvee_{\alpha \in I} a_{\alpha}$ implies $a \leq \bigvee_{\alpha \in I_0} a_{\alpha}$ for some finite subset I_0 of I. A multiplicative lattice, we mean a complete lattice L with the least element 0_L and compact greatest element 1_L , on which there is defined a commutative, associative, completely join distributive product for which 1_L is a multiplicative identity. Throughout this paper L denotes a multiplicative lattice and L_* denotes the set of all compact elements of L. By a C-lattice we mean a (not necessarily modular) multiplicative lattice which is generated under joins by a multiplicatively closed subset C of compact elements. We note that in a C-lattice, a finite product of compact elements is again compact. An element $a \in L$ is said to be *idempotent* if $a = a^2$. For any $a \in L$, $L/a = \{b \in L : a \leq b\}$ is a multiplicative lattice with the multiplication $c \circ d = cd \lor a$. An element $a \in L$ is said to be *proper* if $a < 1_L$. A proper element p of L is said to be prime if $ab \le p$ implies either $a \le p$ or $b \le p$. C-lattices can be localized. For any prime element p of L, L_p denotes the localization at $F = \{x \in C : x \leq p\}$. If 0_L is prime, then L is said to be a *domain*. A proper element p is called as ϕ -prime if $ab \leq p$ and $ab \nleq \phi(p)$ implies either $a \le p$ or $b \le p$ for $a, b \in L$. In a C-lattice, an element p is ϕ -prime if and only if $ab \leq p$ and $ab \leq \phi(p)$ implies either $a \leq p$ or $b \leq p$ for all $a, b \in L_*$ by [17]. An element $m < 1_L$ is said to be *maximal* in L if $m < x \le 1_L$ implies $x = 1_L$. It can be easily shown that maximal elements are prime. For $a, b \in L$, we denote $(a : b) = \lor \{x \in L : xb \le a\}$. For $a \in L$, we define $\sqrt{a} = \wedge \{p \in L : p \text{ is prime and } a \leq p\}$. Note that in a C-lattice L, $\sqrt{a} = \wedge \{p \in L : a \le p \text{ is a minimal prime over } a\} = \vee \{x \in L_* : x^n \le a \text{ for some } n \in \mathbb{Z}^+\}.$ A proper element q is said to be *primary* if $ab \leq q$ implies either $a \leq q$ or $b \leq \sqrt{q}$ for every pair of elements $a, b \in L$. A proper element q is said to be ϕ -primary if for every $a, b \in L$ with $ab \leq q$ and $ab \leq \phi(q)$ implies either $a \leq q$ or $b \leq \sqrt{q}$. A proper element q of L is said to be a 2-absorbing element if whenever $a, b, c \in L$ with $abc \leq q$ implies either $ab \leq q$ or $bc \leq q$ or $ac \leq q$.

A multiplicative lattice is called a *Noether lattice* if it is modular, principally generated (every element is a join of some principal elements) which satisfies the ascending chain condition. A Noether lattice L is local if it contains precisely one maximal prime. If L is a *Noether lattice* and 0_L is prime, then L is said to be a *Noether domain*. In [18], J. F. Wells studied the restricted cancellation law of a Noether lattice. An element a in a Noether lattice L satisfies the restricted cancellation law if $ab = ac \neq 0_L$ implies b = c for any $a, b, c \in L$.

2 ϕ -2-absorbing elements

Definition 2.1. Let $\phi : L \to L \cup \{\emptyset\}$ be a function and $q \in L$ be a proper element. Then q is said to be a ϕ -2-absorbing element of L whenever if $a, b, c \in L$ with $abc \leq q$ and $abc \nleq \phi(q)$ implies either $ab \leq q$ or $ac \leq q$ or $bc \leq q$.

We can define the following special functions ϕ_{α} as follows: Let q be a ϕ_{α} -2-absorbing element of L. Then we say

 $\begin{array}{lll} \phi_{\emptyset}(q) = \emptyset & \Rightarrow & q \text{ is a 2-absorbing element,} \\ \phi_{0}(q) = 0 & \Rightarrow & q \text{ is a weakly 2-absorbing element,} \\ \phi_{2}(q) = q^{2} & \Rightarrow & q \text{ is an almost 2-absorbing element,} \\ \dots & & \\ \phi_{n}(q) = q^{n} & \Rightarrow & q \text{ is an n-almost 2-absorbing element for } n > 2, \\ \phi_{\omega}(q) = \wedge_{n=1}^{\infty} q^{n} & \Rightarrow & q \text{ is a } \omega\text{-2-absorbing element.} \end{array}$

Throughout this paper, ϕ denotes a function defined from L to $L \cup \{\emptyset\}$. Since for an element $a \in L$ with $a \leq q$ but $a \nleq \phi(q)$ implies that $a \nleq q \land \phi(q)$, there is no loss generality in assuming that $\phi(q) \leq q$. We henceforth make this assumption. For any two functions $\psi_1, \psi_2 : L \to L \cup \{\emptyset\}$, we say $\psi_1 \leq \psi_2$ if $\psi_1(a) \leq \psi_2(a)$ for each $a \in L$. Thus clearly we have the following order: $\phi_0 \leq \phi_0 \leq \dots \leq \phi_{n+1} \leq \phi_n \leq \dots \leq \phi_2 \leq \phi_1$.

Lemma 2.2. Let q be a proper element of L and $\psi_1, \psi_2 : L \to L \cup \{\emptyset\}$ be two functions with $\psi_1 \leq \psi_2$. If q is a ψ_1 -2-absorbing element of L, then q is a ψ_2 -2-absorbing element of L.

Proof. Suppose that q is a ψ_1 -2-absorbing element of L and $a, b, c \in L$ such that $abc \leq q$ and $abc \leq \psi_2(q)$. Since $abc \leq q$ and $abc \leq \psi_1(q)$, we are done.

Hence we have the following relations among the concepts mentioned in Definition 2.1:

Theorem 2.3. *Let q be a proper element of L. Then*

- (i) q is a 2-absorbing element of L ⇒ q is a weakly 2-absorbing element of L ⇒ q is a ω-2-absorbing element of L ⇒ q is an (n + 1)-almost 2-absorbing element of L ⇒ q is an n-almost 2-absorbing element of L for all n ≥ 2 ⇒ q is an almost 2-absorbing element of L.
- (ii) q is a ϕ -prime element of $L \Rightarrow q$ is a ϕ -2-absorbing element of L.
- (iii) A proper element q of L is an idempotent element \Rightarrow q is a ω -2-absorbing element of L and q is an n-almost 2-absorbing element of L for all $n \ge 2$.
- (iv) q is an n-almost 2-absorbing element of L for all $n \ge 2 \Leftrightarrow q$ is a ω -2-absorbing element of L.

Proof. (i) It is clear from Lemma 2.2.

(ii) Suppose that $a, b, c \in L$ with $abc \leq q$, $abc \leq \phi(q)$ and $ab \leq q$. Hence $c \leq q$ as q is a ϕ -prime element of L. Thus $ac \leq q$ or $bc \leq q$, we are done.

(iii) Suppose that q is an idempotent element of L. Then $q = q^n$ for all n > 0, and so $\phi_{\omega}(q) = \wedge_{n=1}^{\infty} q^n = q$. Thus q is a ω -2-absorbing element of L. Finally, q is an n-almost 2-absorbing element for all $n \ge 2$ from (i).

(iv) Let $a, b, c \in L$ with $abc \leq q$ but $abc \nleq \wedge_{n=1}^{\infty} q^n$. Hence $abc \leq q$ but $abc \nleq q^m$ for some $m \geq 2$. Since q is n-almost 2-absorbing for all $n \geq 2$, this implies either $ab \leq q$ or $bc \leq q$ or $ac \leq q$, we are done. The converse is clear from (i).

Theorem 2.4. Let q be a ϕ -2-absorbing element of L. If $\phi(q)$ is a 2-absorbing element of L, then q is 2-absorbing.

Proof. Let $abc \leq q$ for some $a, b, c \in L$. If $abc \not\leq \phi(q)$, then we have either $ab \leq q$ or $ac \leq q$ or $bc \leq q$ as q is ϕ -2-absorbing. Suppose that $abc \leq \phi(q)$. Hence we conclude that either $ab \leq \phi(q)$ or $ac \leq \phi(q)$ or $bc \leq \phi(q)$. Since $\phi(q) \leq q$, we are done.

Definition 2.5. Let q be a ϕ -2-absorbing element of L and $a, b, c \in L$. If $abc \leq \phi(q)$ but $ab \leq q$, $bc \leq q$, $ac \leq q$, then (a, b, c) is called a ϕ -triple zero of q.

Remark 2.6. If q is a ϕ -2-absorbing element of L which is not 2-absorbing, then there exists (a, b, c) a ϕ -triple zero of q for some $a, b, c \in L$.

Lemma 2.7. Let q be a ϕ -2-absorbing element of L and suppose that (a, b, c) is a ϕ -triple zero of q for some $a, b, c \in L$. Then

- (i) $abq, bcq, acq \le \phi(q)$.
- (ii) $aq^2, bq^2, cq^2 \le \phi(q)$.

(iii)
$$q^3 \leq \phi(q)$$
.

Proof. (i) Suppose that $abq \nleq \phi(q)$. Then $ab(c \lor q) \nleq \phi(q)$. Since $ab \nleq q$ and q is ϕ -2-absorbing, we have $a(c \lor q) \leq q$ or $b(c \lor q) \leq q$. So $ac \leq q$ or $bc \leq q$, which contradicts with our hypothesis. Thus $abq \leq \phi(q)$. Similarly one can easily show that $bcq \leq \phi(q)$ and $acq \leq \phi(q)$.

(ii) Suppose that $aq^2 \nleq \phi(q)$. Hence we have $a(b \lor q)(c \lor q) \nleq \phi(q)$ by (i). So we conclude either $a(b \lor q) \le q$ or $a(c \lor q) \le q$ or $(b \lor q)(c \lor q) \le q$. Thus either $ab \le q$ or $ac \le q$ or $bc \le q$, a contradiction. Therefore $aq^2 \le \phi(q)$. Similarly it can be easily verified that bq^2 , $cq^2 \le \phi(q)$.

(iii) Assume that $q^3 \nleq \phi(q)$. Then we have $(a \lor q)(b \lor q)(c \lor q) \le q$ but $(a \lor q)(b \lor q)(c \lor q) \nleq \phi(q)$ by (i) and (ii). Since q is ϕ -2-absorbing, $(a \lor q)(b \lor q) \le q$ or $(a \lor q)(c \lor q) \le q$ or $(b \lor q)(c \lor q) \le q$, so we conclude $ab \le q$ or $ac \le q$ or $bc \le q$, a contradiction. Thus $q^3 \le \phi(q)$.

Now we can give a condition for a ϕ -2-absorbing element to be a 2-absorbing element of L.

Corollary 2.8. *Let q be a proper element of L. Then the following statements hold:*

- (i) If q is a ϕ -2-absorbing element of L such that $q^3 \nleq \phi(q)$, then q is a 2-absorbing element of L.
- (ii) Let L be a C-lattice. If q is a ϕ -2-absorbing element of L that is not a 2-absorbing, then $\sqrt{q} = \sqrt{\phi(q)}$.

Proof. (i) The proof is clear by Remark 2.6 and Lemma 2.7 (iii).

(ii) Since q is not a 2-absorbing element of $L, q^3 \le \phi(q)$ by Lemma 2.7 (iii). Hence $\sqrt{q} \le \sqrt{\phi(q)}$. Since $\phi(q) \le q$ is always hold, we get $\sqrt{q} = \sqrt{\phi(q)}$.

Recall from [13] that an element $e \in L$ is said to be *principal*, if it satisfies the dual identities (i) $a \wedge be = ((a : e) \wedge b)e$ and (ii) $((ae \vee b) : e) = (b : e) \vee a$. Elements satisfying the identity (i) are called *meet principal* and elements satisfying the identity (ii) are called *join principal*. If the both identities are satisfied, then e is said to be a principal element of L. Note that by [13, Lemma 3.3 and Lemma 3.4], a finite product of principal elements of L is again principal. If every element of L can be written as a join of some principal elements of L, then L is said to be join principally generated lattice.

Theorem 2.9. Let *L* be a join principally generated *C*-lattice and *a*, *b*, *c* be proper join principal elements of L. Then abc is a ϕ -2-absorbing element of L if and only if $abc = \phi(abc)$.

Proof. Suppose that abc is a ϕ -2-absorbing element of L. Assume that $abc \neq \phi(abc)$. Then we have either $ab \leq abc$ or $ac \leq abc$ or $bc \leq abc$. Without loss generality we may assume that $ab \leq abc$. Since ab is principal, we conclude that $1_L = (abc : ab) = c \lor (0_L : ab)$. Observe that $(0_L : ab) \neq 1_L$. Indeed, if $(0_L : ab) = 1_L$, then $abc = 0_L \leq \phi(abc)$, a contradiction. Since $(0_L : ab) \neq 1_L$, $c \leq J(L)$ we conclude that $1_L \neq c \lor (0_L : ab)$, a contradiction. Thus $abc = \phi(abc)$. The converse part is clear.

Theorem 2.10. Let *L* be a local Noether domain. If *q* is an ϕ_n -2-absorbing element of *L* for all $n \ge 2$, then *q* is a 2-absorbing element of *L*.

Proof. Let $abc \leq q$ for some $a, b, c \in L$. If $abc \not\leq \phi_n(q)$, then we have either $ab \leq q$ or $bc \leq q$ or $ac \leq q$ as q is ϕ_n -2-absorbing. So suppose that $abc \leq \phi_n(q)$. Since $\wedge_{n=1}^{\infty}q^n = 0_L$, from Corollary 3.3 of [13], we conclude that $abc \leq 0_L$. Thus $a \leq 0_L$ or $b \leq 0_L$ or $c \leq 0_L$ as L is a domain, so clearly $ab \leq q$ or $bc \leq q$ or $ac \leq q$.

We remind to the reader that for any $a \in L$, $L/a = \{b \in L : a \leq b\}$ is a multiplicative lattice with multiplication $c \circ d = cd \lor a$.

Theorem 2.11. Let q be a proper element of L. Then the following statements hold:

(i) q is a ϕ -2-absorbing element of L if and only if q is a weakly 2-absorbing element of $L/\phi(q)$.

- (ii) q is a ϕ -prime element of L if and only if q is a weakly prime element of $L/\phi(q)$.
- (iii) q is a ϕ -primary element of L if and only if q is a weakly primary element of $L/\phi(q)$.

Proof. (i) If $\phi(q) = \emptyset$, then there is nothing to prove. Thus assume that $\phi(q) \neq \emptyset$. Let $\phi(q) \neq (a \lor \phi(q)) \circ (b \lor \phi(q)) \circ (c \lor \phi(q)) = abc \lor \phi(q) \leq q$ for some $a, b, c \in L$. Then $abc \leq q$, but $abc \nleq \phi(q)$. Hence either $ab \leq q$ or $bc \leq q$ or $ac \leq q$. So $(a \lor \phi(q)) \circ (b \lor \phi(q)) \leq q$ or $(b \lor \phi(q)) \circ (c \lor \phi(q)) \leq q$ or $(a \lor \phi(q)) \circ (c \lor \phi(q)) \leq q$. Therefore q is a weakly 2-absorbing element of $L/\phi(q)$.

Conversely, let $abc \leq q$ and $abc \leq \phi(q)$ for some $a, b, c \in L$. Then $\phi(q) \neq (a \lor \phi(q)) \circ (b \lor \phi(q)) \circ (c \lor \phi(q)) \leq q$. Hence $(a \lor \phi(q)) \circ (b \lor \phi(q)) \leq q$ or $(b \lor \phi(q)) \circ (c \lor \phi(q)) \leq q$ or $(a \lor \phi(q)) \circ (c \lor \phi(q)) \leq q$. Thus $ab \leq q$ or $bc \leq q$ or $ac \leq q$. Similarly one can easily prove (ii) and (iii).

Corollary 2.12. *Let* q *be a proper element of* L *and* $n \ge 2$ *. Then*

(i) q is a ϕ_n -2-absorbing element of L if and only if q is a weakly 2-absorbing element of L/q^n .

(ii) q is a ϕ_n -prime element of L if and only if q is a weakly prime element of L/q^n .

(iii) q is a ϕ_n -primary element of L if and only if q is a weakly primary element of L/q^n .

Proof. Since $\phi_n(q) = q^n$, the proof is clear by Theorem 2.11.

Corollary 2.13. *Let* q *be a* ϕ -2*-absorbing element of* L *such that* $\phi \leq \phi_3$ *. Then*

- (i) q is a ϕ_n -2-absorbing element of L for every $n \ge 3$.
- (ii) q is a ϕ_{ω} -2-absorbing element of L.

Proof. Suppose that q is a 2-absorbing element of L. Hence (i) and (ii) are clear.

(i) Assume that q is not a 2-absorbing element of L. Thus $q^3 \leq \phi(q)$ by Lemma 2.7 (iii). Then we have $q^3 \leq \phi(q) \leq q^3$ as $\phi \leq \phi_3$. This follows $q^3 = q^n = \phi(q)$ for every $n \geq 3$, so we are done.

(ii) Let $abc \leq q$ and $abc \not\leq \wedge_{n=1}^{\infty} q^n$. Then $abc \not\leq q^n$ for some $n \geq 2$. If $n \geq 3$, then it is clear from (i). So suppose that n = 2. Hence $abc \not\leq q^2$ which implies that $abc \not\leq q^3$, so from (i) the result is obtained.

Theorem 2.14. Let x and y be two proper elements of L such that $x \le y$ and let $n \ge 2$. If y is a ϕ_n -2-absorbing element of L, then y is a ϕ_n -2-absorbing element of L/x.

Proof. Suppose that y is a ϕ_n -2-absorbing element of L. Assume that $(a \lor x) \circ (b \lor x) \circ (c \lor x) = abc \lor x \leq y$ and $(a \lor x) \circ (b \lor x) \circ (c \lor x) = abc \lor x \leq y^n$ for some $a, b, c \in L$. As $y \in L/x$, then $y^n = y \circ y \circ y \circ \ldots \circ y = y^n \lor x$. Since $x \leq y$ and $abc \lor x \leq y^n = y^n \lor x$, then we have $abc \leq y$ and $abc \notin y^n$. Thus $ab \leq y$ or $ac \leq y$ or $bc \leq y$. Hence $(a \lor x) \circ (b \lor x) \leq y$ or $(a \lor x) \circ (c \lor x) \leq y$ or $(b \lor x) \circ (c \lor x) \leq y$ which means that y is a ϕ_n -2-absorbing primary element of L/x.

Corollary 2.15. Let x and y be two proper elements of L such that $x \le y$. If y is a ϕ_{ω} -2-absorbing element of L, then y is a ϕ_{ω} -2-absorbing element of L/x.

Proof. Similar to the proof of Theorem 2.14.

Definition 2.16. Let x be a proper element of L/q such that $q \le x$. Then x is called a ϕ_q -2-absorbing element of L/q if whenever $a, b, c \in L/q$ with $abc \le x$ and $abc \le \phi(x) \lor q$ implies $ab \le x$ or $ac \le x$ or $bc \le x$.

Theorem 2.17. Let p and q be two elements of L with $q \le p < 1$. If p is a ϕ -2-absorbing element of L, then p is a ϕ_q -2-absorbing element of L/q.

Proof. Let $(a \lor q) \circ (b \lor q) \circ (c \lor q) \le p$ and $abc \lor q = (a \lor q) \circ (b \lor q) \circ (c \lor q) \nleq \phi(p) \lor q$ for some $a, b, c \in L$. Hence $abc \le p$ and $abc \nleq \phi(p)$. Since p is ϕ -2-absorbing element of L, we conclude that $ab \le p$ or $ac \le p$ or $bc \le p$. So we get $(a \lor q) \circ (b \lor q) \le p$ or $(a \lor q) \circ (c \lor q) \le p$ or $(b \lor q) \circ (c \lor q) \le p$.

Theorem 2.18. Let p and q be two proper elements of L such that $q \le \phi(p)$. Then the following statements are equivalent:

- (*i*) p is a ϕ -2-absorbing element of L.
- (ii) p is a ϕ_q -2-absorbing element of L/q.
- (iii) p is a ϕ_{q^n} -2-absorbing element of L/q^n .

Proof. (i) \Rightarrow (ii): It is clear by Theorem 2.17.

(ii) \Rightarrow (iii): Let $n \ge 1$. Since $q \le \phi(p)$, we have $q^n \le q \le \phi(p)$. Suppose that $(a \lor q^n) \circ (b \lor q^n) \circ (c \lor q^n) \le p$ and $(a \lor q^n) \circ (b \lor q^n) \circ (c \lor q^n) \le \phi(p) \lor q^n$ for some $a, b, c \in L$. Hence $abc \le \phi(p)$. Since $q \le \phi(p)$ and $abc \le \phi(p)$, we have $abc \le q$. Thus $(a \lor q) \circ (b \lor q) \circ (c \lor q) \le p$ and $(a \lor q) \circ (b \lor q) \circ (c \lor q) \le \phi(p) \lor q$. Since p is a ϕ_q -2-absorbing element of L/q, one can conclude that $ab \le p$ or $ac \le p$ or $bc \le p$. Thus $ab \lor q^n \le p$ or $ac \lor q^n \le p$ or $bc \lor q^n \le p$ (in L/q^n).

(iii) \Rightarrow (i): Suppose that $abc \leq p$ and $abc \nleq \phi(p)$ for some $a, b, c \in L$. Since $q^n \leq \phi(p)$, we have $abc \nleq q^n$. As $q^n \leq \phi(p) \leq p$, we get $(a \lor q^n) \circ (b \lor q^n) \circ (c \lor q^n) = abc \lor q^n \leq p$ and $(a \lor q^n) \circ (b \lor q^n) \circ (c \lor q^n) \nleq \phi(p) \lor q^n$. Since p is a ϕ_{q^n} -2-absorbing element of L/q^n , one can conclude that $ab \leq p$ or $ac \leq p$ or $bc \leq p$.

Corollary 2.19. Let *p* and *q* be two proper elements of L. Suppose that *q* is not a weakly 2-absorbing element of L. The following statements are equivalent:

- (i) p is a ϕ -2-absorbing element of L.
- (ii) p is a ϕ_{p^3} -2-absorbing element of L/p^3 .
- (iii) p is a ϕ_{p^n} -2-absorbing element of L/p^n for every $n \ge 3$.

Proof. Suppose that p is not a weakly 2-absorbing element of L. Hence p is not a 2-absorbing element of L. So we conclude $p^3 \le \phi(q)$ by Lemma 2.7. Thus we are done by Theorem 2.18. \Box

Definition 2.20. Let q be a proper element of L and $n \ge 2$. We call q as an n-potent 2-absorbing if whenever $a, b, c \in L$ with $abc \le q^n$, then $ab \le q$ or $bc \le q$ or $ac \le q$.

Theorem 2.21. Let q be an n-almost 2-absorbing element for some $n \ge 2$. If q is k-potent 2absorbing for some $k \le n$, then q is a 2-absorbing element.

Proof. Suppose that q is an n-almost 2-absorbing element. Let $abc \leq q$ for some $a, b, c \in L$. If $abc \leq q^k$, then $abc \leq q^n$. It implies either $ab \leq q$ or $bc \leq q$ or $ac \leq q$ as q is an n-almost 2-absorbing element. If $abc \leq q^k$, then we obtain the same result as q is k-potent 2-absorbing, so we are done.

In the following theorems, we obtain some conditions under which a ϕ -2-absorbing element of L is a 2-absorbing element of L.

Let $J(L) = \wedge \{m \in L : m \text{ is a maximal element of } L\}.$

Theorem 2.22. Let L be a Noether domain. Then an element q of L with $q \leq J(L)$ is a 2-absorbing element of L if and only if q is a ϕ_n -2-absorbing element of L for all $n \geq 2$.

Proof. If q is 2-absorbing, then q is ϕ_n -2-absorbing by Theorem 2.3. Conversely, suppose that q is ϕ_n -2-absorbing for all $n \ge 2$ and let $a, b, c \in L$ with $abc \le q$. If $abc \le q^k$ for some $k \ge 2$, we have either $ab \le q$ or $bc \le q$ or $ac \le q$. So suppose that $abc \le q^n$ for all $n \ge 2$. Since L is a Noether domain, we conclude $abc \le \wedge_{n=1}^{\infty} q^n = 0_L$ by Corollary 1.4 in [4]. Since 0_L is prime, we get either $a = 0_L$ or $b = 0_L$ or $c = 0_L$. Without loss generality suppose that $a = 0_L$. This implies that $ab = 0_L \le q$ which completes the proof.

Theorem 2.23. Let *L* be a Noether lattice. Let *q* be a non-zero non-nilpotent proper element of *L* satisfying the restricted cancellation law. Then *q* is a ϕ -2-absorbing element of *L* for some $\phi \leq \phi_n$ and for all $n \geq 2$ if and only if *q* is a 2-absorbing element of *L*.

Proof. Assume that q is a 2-absorbing element of L. Then q is a ϕ -2-absorbing element of L for all ϕ . Thus q is ϕ -2-absorbing for some $\phi \leq \phi_n$ and for all $n \geq 2$.

Conversely assume that q is a ϕ -2-absorbing element of L for some $\phi \leq \phi_n$ for all $n \geq 2$. Hence q is a ϕ_n -2-absorbing element of L for all $n \geq 2$ by Lemma 2.2. Let $abc \leq q$ for some a, b, c in L. Here there are two cases:

Case 1: Let $abc \nleq q^n$ for some $n \ge 2$. Then by hypothesis we get $ab \le q$ or $bc \le q$ or $ac \le q$. Case 2: Let $abc \le q^n$ for all $n \ge 2$. We have that $a(b \lor q)(c \lor q) = abc \lor abq \lor acq \lor aq^2 \le q$. If $a(b \lor q)(c \lor q) \nleq q^n$, then $a(b \lor q) \le q$ or $a(c \lor q) \le q$ or $(b \lor q)(c \lor q) \le q$. It follows that either $ab \le q$ or $bc \le q$ or $ac \le q$. If $a(b \lor q)(c \lor q) \le q^n$, then $a(b \lor q)(c \lor q) = abc \lor abq$ $\lor acq \lor aq^2 \le q^n \le q^2$. By [18, Lemma 1.11], we get $ab \le q$ and $ac \le q$. Thus q is a 2-absorbing element of L.

Remark 2.24. Let $L = L_1 \times L_2 \times ... L_n$ where $L_1, L_2, ..., L_n$ are multiplicative lattices $(n \ge 1)$ and let $\phi = \psi_1 \times \psi_2 \times ... \times \psi_n$ where $\psi_i : L_i \to L_i \cup \{\emptyset\}$ (i = 1, ..., n) be a function. Let $a = (a_1, a_2, ..., a_n)$ be an element of L. Observe that if $\psi_i(a_i) = \emptyset$ for some i = 1, ..., n, then there is no element of $\phi(a)$ and vice versa. Thus $\phi(a) = \emptyset$ if and only if $\psi_i(a_i) = \emptyset$ for some i = 1, ..., n.

Lemma 2.25. Let $L = L_1 \times L_2$ where L_1, L_2 are two multiplicative lattices. Let $\phi = \psi_1 \times \psi_2$, where $\psi_i : L_i \to L_i \cup \{\emptyset\}$ (i = 1, 2) is a function. Then q_1 is a 2-absorbing element of L_1 if and only if $q = (q_1, 1_{L_2})$ is a 2-absorbing element of L.

Proof. Suppose that q_1 is a 2-absorbing element of L_1 and $(a, 1_{L_2})(b, 1_{L_2})(c, 1_{L_2}) \leq q$ for some elements $(a, 1_{L_2}), (b, 1_{L_2}), (c, 1_{L_2})$ of L. Then $abc \leq q_1$ which implies that either $ab \leq q_1$ or $bc \leq q_1$ or $ac \leq q_1$. It follows $(a, 1_{L_2})(b, 1_{L_2}) \leq q$ or $(b, 1_{L_2})(c, 1_{L_2}) \leq q$ or $(a, 1_{L_2})(c, 1_{L_2}) \leq q$. Thus q is a 2-absorbing element of L.

Conversely suppose that $q = (q_1, 1_{L_2})$ is a 2-absorbing element of L but assume that q_1 is not a 2-absorbing element of L_1 . Hence there exists $a, b, c \in L_1$ with $abc \leq q_1$ but neither $ab \leq q_1$ nor $bc \leq q_1$ nor $ac \leq q_1$. Thus we conclude $(a, 1_{L_2})(b, 1_{L_2})(c, 1_{L_2}) \leq q$ but $(a, 1_{L_2})(b, 1_{L_2}) \not\leq q$ and $(b, 1_{L_2})(c, 1_{L_2}) \not\leq q$ and $(a, 1_{L_2})(c, 1_{L_2}) \not\leq q$, a contradiction.

Theorem 2.26. Let $L = L_1 \times L_2$ where L_1, L_2 are two multiplicative lattices. Let $\phi = \psi_1 \times \psi_2$, where $\psi_i : L_i \to L_i \cup \{\emptyset\}$ (i = 1, 2) is a function. Then the following statements hold:

(i) If q_i is a proper element of L_i with $\psi_i(q_i) = q_i$ (i = 1, 2), then $q = (q_1, q_2)$ is a ϕ -2-absorbing element of L.

- (ii) If q_1 is a ψ_1 -2-absorbing element of L_1 , and $\psi_2(1_{L_2}) = 1_{L_2}$, then $q = (q_1, 1_{L_2})$ is a ϕ -2-absorbing element of L.
- (iii) If q_2 is a ψ_2 -2-absorbing element of L_2 and $\psi_1(1_{L_1}) = 1_{L_1}$, then $q = (1_{L_1}, q_2)$ is a ϕ -2-absorbing element of L.

Proof. (i) If $\psi_1(q_1) = q_1$ and $\psi_2(q_2) = q_2$, then there is no such an element (a, b) which satisfies $(a, b) \leq (q_1, q_2)$ and $(a, b) \nleq \phi(q_1, q_2) = (q_1, q_2)$, so we are done.

(ii) Suppose that $\psi_1(q) = \emptyset$. Then $q = (q_1, 1_{L_2})$ is a ϕ -2-absorbing element of L by Lemma 2.25. So assume that $\psi_1(q) \neq \emptyset$ and q_1 is ψ_1 -2-absorbing element of L_1 . Let $a = (a_1, a_2)$, $b = (b_1, b_2)$ and $c = (c_1, c_2)$ such that $abc \leq q$ and $abc \nleq \phi(q)$. Hence $a_1b_1c_1 \leq q_1$ and $a_1b_1c_1 \nleq \psi_1(q_1)$, this implies that either $a_1b_1 \leq q_1$ or $b_1c_1 \leq q_1$ or $a_1c_1 \leq q_1$. Thus either $ab \leq q$ or $bc \leq q$ or $ac \leq q$.

(iii) This can be easily obtained similar to (ii).

Theorem 2.27. Let $L = L_1 \times L_2$ where L_1 , L_2 are two multiplicative lattices and $\phi = \psi_1 \times \psi_2$, where $\psi_i : L_i \longrightarrow L_i \cup \{\emptyset\}$ (i = 1, 2) is a function such that $\psi_2(1_{L_2}) \neq 1_{L_2}$. Let q_1 be a proper element of L_1 and $q = (q_1, 1_{L_2})$. Then the following statements are equivalent:

- (i) $(q_1, 1_{L_2})$ is a ϕ -2-absorbing element of L.
- (ii) $(q_1, 1_{L_2})$ is a 2-absorbing element of L.
- (iii) q_1 is a 2-absorbing element of L_1 .

Proof. If $\psi_1(q_1) = \emptyset$ and $\psi_2(1_{L_2}) = \emptyset$, then $\phi(q) = \emptyset$ by Remark 2.24. So we are done from Lemma 2.25. Thus assume that $\psi_1(q_1) \neq \emptyset$ or $\psi_2(1_{L_2}) \neq \emptyset$.

(i) \Rightarrow (ii): Assume that $q = (q_1, 1_{L_2})$ is a ϕ -2-absorbing element of L. Then q_1 is a ψ_1 -2-absorbing element of L_1 . Indeed, if q_1 is not a ψ_1 -2-absorbing element of L_1 , then there exist a, b, c in L_1 such that $abc \leq q_1$ and $abc \nleq \psi_1(q_1)$ but $ab \nleq q_1$ and $bc \nleq q_1$ and $ac \nleq q_1$. Then $(abc, 1_{L_2}) = (a, 1_{L_2})(b, 1_{L_2})(c, 1_{L_2}) \leq q$ and $(abc, 1_{L_2}) = (a, 1_{L_2})(b, 1_{L_2})(c, 1_{L_2}) \leq q$ and $(abc, 1_{L_2}) = (a, 1_{L_2})(b, 1_{L_2})(c, 1_{L_2}) \notin (\psi_1(p_1), \psi_2(1_{L_2})) = \phi(q)$. This implies $(ab, 1_{L_2}) = (a, 1_{L_2})(b, 1_{L_2}) \leq q$ or $(bc, 1_{L_2}) = (b, 1_{L_2})(c, 1_{L_2}) \leq q$ or $(ac, 1_{L_2}) = (a, 1_{L_2})(c, 1_{L_2}) \leq q$, which means $ab \leq q_1$ or

 $(bc, 1_{L_2}) = (b, 1_{L_2})(c, 1_{L_2}) \leq q$ or $(ac, 1_{L_2}) = (a, 1_{L_2})(c, 1_{L_2}) \leq q$, which means $ab \leq q_1$ or $bc \leq q_1$ or $ac \leq q_1$, a contradiciton. Thus q_1 is a ψ_1 -2-absorbing element of L_1 .

If q_1 is a 2-absorbing element of L_1 , then it is clear. Assume that q_1 is not a 2-absorbing element of L_1 . Hence q_1 has a ψ_1 -triple-zero (x, y, z) for some x, y, z in L_1 by Remark 2.6. Since $\psi_2(1_{L_2}) \neq 1_{L_2}$, then we get $(xyz, 1_{L_2}) = (x, 1_{L_2})(y, 1_{L_2})(z, 1_{L_2}) \leq q$ and $(xyz, 1_{L_2}) = (x, 1_{L_2})(y, 1_{L_2})(z, 1_{L_2}) \leq q$ and $(xyz, 1_{L_2}) = (x, 1_{L_2})(y, 1_{L_2})(z, 1_{L_2}) \leq q$. Therefore $(x, 1_{L_2})(y, 1_{L_2}) \leq q$ or $(y, 1_{L_2})(z, 1_{L_2}) \leq q$ or $(x, 1_{L_2})(z, 1_{L_2}) \leq q$. So we get $xy \leq q_1$ or $yz \leq q_1$ or $xz \leq q_1$, a contradiction. Thus q_1 is a 2-absorbing element of L_1 .

(ii) \Rightarrow (iii): It can be easily shown similar to the argument in (i) \Rightarrow (ii). (iii) \Rightarrow (i): It is clear.

Lemma 2.28. Let $L = L_1 \times L_2 \times L_3$ where L_1, L_2, L_3 are C-lattices. Let $\phi = \psi_1 \times \psi_2 \times \psi_3$, where $\psi_i : L_i \longrightarrow L_i \cup \{\emptyset\}$ (i = 1, 2, 3) is a function with $\psi_i(1_{L_i}) \neq 1_{L_i}$. If $q = (q_1, q_2, q_3)$ is a ϕ -2-absorbing element of L, then either $q = \phi(q)$ or q is a 2-absorbing element of L.

Proof. If $\phi(q) = \emptyset$, then we are done. So assume $\phi(q) \neq \emptyset$. Suppose that $q \neq \phi(q)$. Hence there is an element $(a, b, c) \in L$ with $(a, b, c) \leq q$ but $(a, b, c) \leq \phi(q)$. So

 $(a, b, c) = (a, 1_{L_2}, 1_{L_3})(1_{L_1}, b, 1_{L_3})(1_{L_1}, 1_{L_2}, c) \leq q$ implies that either $(a, 1_{L_2}, 1_{L_3})(1_{L_1}, b, 1_{L_3}) \leq q$ or $(1_{L_1}, b, 1_{L_3})(1_{L_1}, 1_{L_2}, c) \leq q$. Without loss of generality assume that $(a, 1_{L_2}, 1_{L_3})(1_{L_1}, b, 1_{L_3}) \leq q$. Then $q_3 = 1_{L_3}$ which means that $q^3 \not\leq \phi(q)$. Thus q is a 2-absorbing element of L by Corollary 2.8.

Theorem 2.29. Let $L = L_1 \times L_2 \times L_3$ where L_1, L_2, L_3 are *C*-lattices. Let $\phi = \psi_1 \times \psi_2 \times \psi_3$, where $\psi_i : L_i \longrightarrow L_i \cup \{\emptyset\}$ (i = 1, 2, 3) is a function with $\psi_i(1_{L_i}) \neq 1_{L_i}$. If $q \neq \phi(q)$, then the followings are equivalent:

- (i) q is a ϕ -2-absorbing element of L.
- (ii) q is a 2-absorbing element of L.

(iii) q is in one of the following type:

I) $q = (1_{L_1}, q_2, q_3)$, where q_2 is a prime element of L_2 and q_3 is a prime element of L_3 . II) $q = (q_1, 1_{L_2}, q_3)$, where q_1 is a prime element of L_1 and q_3 is a prime element of L_3 . III) $q = (q_1, q_2, 1_{L_3})$, where q_1 is a prime element of L_1 and q_2 is a prime element of L_2 . IV) For some $i \in \{1, 2, 3\}$, q_i is a 2-absorbing element of L_i and $q_j = 1_{l_j}$ for every $j \in \{1, 2, 3\} \setminus \{i\}$.

Proof. (i) \Rightarrow (ii): If $\phi(q) = \emptyset$ and q is a ϕ -2-absorbing element, then obviously q is a 2-absorbing element of L. So assume that $\phi(q) \neq \emptyset$. Let $q = (q_1, q_2, q_3)$ be a ϕ -2-absorbing element of L, then q is a 2-absorbing element of L by Lemma 2.28.

(ii) \Rightarrow (iii): Suppose that q is a 2-absorbing element of L. Since $q \neq \phi(q)$, there is a compact element of L such that $(a_1, a_2, a_3) \leq q$ and $(a_1, a_2, a_3) \not\leq \phi(q)$. Since $(a_1, a_2, a_3) = (a_1, 1_{L_2}, 1_{L_3})(1_{L_1}, a_2, 1_{L_3})(1_{L_1}, 1_{L_2}, a_3)$ and q is ϕ -2-absorbing, we have $(a_1, a_2, 1_{L_3}) \leq q$ or $(1_{L_1}, a_2, a_3) \leq q$ or $(a_1, 1_{L_2}, a_3) \leq q$. This means that either $q_1 = 1_{L_1}$ or $q_2 = 1_{L_2}$ or $q_3 = 1_{L_3}$.

Case I. Suppose that $q = (1_{L_1}, q_2, q_3)$ where $q_2 \neq 1_{L_2}$ and $q_3 \neq 1_{L_3}$. We show that q_2 is a prime element of L_2 . Let $xy \leq q_2$. Hence $(1_{L_1}, x, 1_{L_3})(1_{L_1}, 1_{L_2}, q_3)(1_{L_1}, y, 1_{L_3}) \leq q$ and it implies that $(1_{L_1}, x, 1_{L_3})(1_{L_1}, 1_{L_2}, 0_{L_3}) \leq q$ or $(1_{L_1}, x, 1_{L_3})(1_{L_1}, y, 1_{L_3}) \leq q$ or

 $(1_{L_1}, 1_{L_2}, 0_{L_3})(1_{L_1}, y, 1_{L_3}) \leq q$. Since q_3 is proper, we get

 $(1_{L_1}, xy, 1_{L_3}) = (1_{L_1}, x, 1_{L_3})(1_{L_1}, y, 1_{L_3}) \not\leq q$. Thus $x \leq q_2$ or $y \leq q_2$, which shows that q_2 is prime. By the similar argument one can easily show that q_3 is a prime element of L_3 .

Case II. $q = (q_1, 1_{L_2}, q_3)$, where $q_1 \neq 1_{L_1}$ and $q_3 \neq 1_{L_3}$ and Case III. $q = (q_1, q_2, 1_{L_3})$, where $q_1 \neq 1_{L_1}$ and $q_2 \neq 1_{L_2}$ can be easily obtained similar to Case I.

Case IV. Without loss of generality suppose that $q = (q_1, 1_2, 1_{L_3})$ where q_1 is a proper element of L_1 . Let $x_1x_2x_3 \le q_1$ for some $x_1, x_2, x_3 \in L_1$. Then

 $(x_1x_2x_3, 1_{L_2}, 0_{L_3}) = (x_1, 1_{L_2}, 0_{L_3})(x_2, 1_{L_2}, 0_{L_3})(x_3, 1_{L_2}, 0_{L_3}) \leq q$ and $(x_1x_2x_3, 1_{L_2}, 0_{L_3}) \leq \phi(q)$. Since q is ϕ -2-absorbing, we have either $(x_1x_2, 1_{L_2}, 0_{L_3}) \leq q$ or $(x_2x_3, 1_{L_2}, 0_{L_3}) \leq q$ or $(x_1x_3, 1_{L_2}, 0_{L_3}) \leq q$. So $x_1x_2 \leq q_1$ or $x_2x_3 \leq q_1$ or $x_2x_3 \leq q_1$.

(iii) \Rightarrow (i): Suppose that q_2 and q_3 are prime elements of L_2 and L_3 , respectively and $q = (1_{L_1}, q_2, q_3)$. Let $(a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3) \in L$ such that

 $(a_1, a_2, a_3)(b_1, b_2, b_3)(c_1, c_2, c_3) \leq q$ and $(a_1, a_2, a_3)(b_1, b_2, b_3)(c_1, c_2, c_3) \not\leq \phi(q)$. Assume that $(a_1, a_2, a_3)(b_1, b_2, b_3) \not\leq q$. Hence $a_2b_2 \not\leq q_2$ or $a_3b_3 \not\leq q_3$. Without loss of generality we may suppose that $a_2b_2 \not\leq q_2$ and $a_3b_3 \leq q_3$. Since q_2 is prime, we have $c_2 \leq q_2$, which implies that $(a_1, a_2, a_3)(c_1, c_2, c_3) \leq q$, we are done.

If $q = (q_1, 1_2, 1_{L_3})$ where q_1 is a 2-absorbing element of L_1 , then it can be seen that q is a 2-absorbing element of L. Thus q is a ϕ -2-absorbing element of L.

Theorem 2.30. Let $L = L_1 \times L_2 \times L_3$ where L_1, L_2, L_3 are multiplicative lattices. Let $\phi = \psi_1 \times \psi_2 \times \psi_3$, where $\psi_i : L_i \longrightarrow L_i \cup \{\emptyset\}$ (i = 1, 2, 3) is a function. If a proper $a = (a_1, a_2, a_3) \in L$ is a ϕ -2-absorbing element, then $\psi_i(a_i) = \emptyset$ or $\psi_i(a_i) = a_i$ (i = 1, 2, 3) for every proper element a_i of L_i .

Proof. Assume on the contrary that $\psi_1(a_1) \neq a_1$ and $\psi_1(a_1) \neq \emptyset$ for some proper element $a_1 \in L_1$. Put $a = (a_1, 0_{L_2}, 0_{L_3})$. Hence $(a_1, 1_{L_2}, 1_{L_3})(1_{L_1}, 0_{L_2}, 1_{L_3})(1_{L_1}, 1_{L_2}, 0_{L_3}) \leq a$, but $(a_1, 1_{L_2}, 1_{L_3})(1_{L_1}, 0_{L_2}, 1_{L_3})(1_{L_1}, 0_{L_2}, 1_{L_3})(1_{L_1}, 0_{L_2}, 1_{L_3})(1_{L_1}, 0_{L_2}, 1_{L_3})(1_{L_1}, 0_{L_2}, 1_{L_3}) \leq a$ or $(1_{L_1}, 0_{L_2}, 1_{L_3})(1_{L_1}, 1_{L_2}, 0_{L_3}) \leq a$ or $(1_{L_1}, 0_{L_2}, 1_{L_3})(1_{L_1}, 1_{L_2}, 0_{L_3}) \leq a$ or $(a_1, 1_{L_2}, 1_{L_3})(1_{L_1}, 1_{L_2}, 0_{L_3}) \leq a$. It follows $1_{L_3} \leq a_3$ or $1_{L_1} \leq a_1$ or $1_{L_2} \leq a_2$, which are contra-

 $(a_1, 1_{L_2}, 1_{L_3})(1_{L_1}, 1_{L_2}, 0_{L_3}) \leq a$. It follows $1_{L_3} \leq a_3$ of $1_{L_1} \leq a_1$ of $1_{L_2} \leq a_2$, which are contradictions. Thus $\psi_i(a_i) = a_i$ (i = 1, 2, 3) for every proper element a_i of L_i .

References

- [1] D.D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36, 686-696 (2008).
- [2] D.D. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646-1672 (2011).
- [3] D.D. Anderson and E. Smith, Weakly prime ideals, Houston Journal of Math., 29, 831-840 (2003).
- [4] F. Alarcon, D.D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, *Periodica Mathematica Hungarica*, 30, 1-26 (1995).

- [5] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings, *Houston Journal of Math.* 39, 441-452 (2013).
- [6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429 (2007).
- [7] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, *Bulletin Korean Mathematical Society*, 4, 1163-1173 (2014).
- [8] A. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52, 97-111 (2015).
- [9] M. Batanieh and K. Dofa, Generalizations of primary ideals and submodules, *Int. J. Contemp. Math. Sciences*, 6, 811-824 (2011).
- [10] F. Callialp, C. Jayaram and U. Tekir, Weakly prime elements in multiplicative lattices, *Comm. Algebra*, 40, 2825-2840 (2012).
- [11] F. Callialp, E. Yetkin and U. Tekir, On 2-absorbing primary and weakly 2-absorbing primary elements in multiplicative lattices, *Italian Journal of Pure and Applied Mathematics*, 34, 263-276 (2015).
- [12] A.Y. Darani, Generalizations of primary ideals in commutative rings, Novi Sad J. Math. 42, 27-35 (2012).
- [13] R.P. Dilworth, Abstract commutative ideal theory, Pacific Journal of Mathematics, 12, 481-498 (1962).
- [14] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra, 40, 1268-1279 (2012).
- [15] A.K. Jabbar and C.A. Ahmed, On almost primary ideals, *International Journal of Algebra*, 5, 627-636 (2011).
- [16] C. Jayaram, U. Tekir and E. Yetkin, 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, *Comm. Algebra*, 42, 1-16 (2014).
- [17] C.S. Manjarekar and A.V. Bingi, φ-prime and φ-primary elements in multiplicative lattices, *Hindawi Publishing Corporation Algebra*, **2014**, 1-7 (2014).
- [18] J.F. Wells, The restricted cancellation law in a Noether lattice, *Fundamental Mathematicae*, **75**, 235-247 (1972).

Author information

Ece Yetkin Celikel, Gaziantep University, Department of Mathematics, 27310, Gaziantep, Turkey. E-mail: yetkinece@gmail.com

Emel A. Ugurlu, Marmara University, Department of Mathematics, Ziverbey, Goztepe, Istanbul, Turkey. E-mail: emel.aslankarayigit@marmara.edu.tr

Gulsen Ulucak, Gebze Technical University, Department of Mathematics, 141 41400 Kocaeli, Turkey. E-mail: gulsenulucak@gtu.edu.tr

Received: May 29, 2015.

Accepted: August 25, 2015