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Abstract In [1], Murthy introduced the concept of the Smarandache Cyclic Determinant Nat-
ural Sequence, the Smarandache Cyclic Arithmetic Determinant Sequence, the Smarandache
Bisymmetric Determinant Natural Sequence, and the Smarandache Bisymmetric Arithmetic De-
terminant Sequence and in [2], Majumdar derived the n-th terms of these four sequences. In this
paper, we present some of the results found by Majumdar in [2] but of different approach..

1 Introduction

An n× n matrix C of the form

c0 c1 c2 . . . cn−2 cn−1

cn−1 c0 c1 . . . cn−3 cn−2
...

...
... . . .

...
...

c2 c3 c4 . . . c0 c1

c1 c2 c3 . . . cn−1 c0


is called a circulant matrix with circulant vector ~c = (c0, c1, c2, . . . , cn−1). It can be seen easily
that the given matrix is structured as follows:

(i) Each row is a right cyclic shift of the row above it. Thus, C is determined by the first row
(c0, c1, c2, . . . , cn−1).

(ii) ck = cij , whenever j − i ≡ k(mod n) for all i, j = 1, 2, . . . , n and k = 0, 1, 2, . . . , n− 1.

In his paper, Murthy [2] defined the Smarandache cyclic determinant natural sequence and
the Smarandache cyclic arithmetic determinant sequence as follows:

Definition 1.1. The Smarandache cyclic determinant natural sequence, {SCDNS(n)} is|1|,
1 2
2 1

,

1 2 3
2 3 1
3 1 2

,

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

, . . .

 .

Definition 1.2. The Smarandache cyclic arithmetic determinant sequence, {SCADS(n)} is|a|, a a+ d

a+ d a
,

a a+ d a+ 2d
a+ d a+ 2d a

a+ 2d a a+ 2d
, . . .

 .

Majumdar derive the explicit expressions of the n-th terms of the two determinant sequences:
Smarandache cyclic determinant natural sequence and Smarandache cyclic arithmetic determi-
nant sequence. In this paper, we present the same results shown by Majumdar and provide a
much simple proof of the formulas for the n-th terms of the two determinant sequences.

2 Preliminaries

In this section, we state some important results found by Bahsi and Solak in [3] as part of
the proof of our main results presented in section 3. We also state some formulas involving
eigenvalues.
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Lemma 2.1. The eigenvalues of the n× n matrix Ca,d are

λ0 = na+
n(n− 1)d

2
, λm =

nd

e
2πim
n − 1

,

where m = 1, 2, . . . , n− 1.

Proof. see Theorem 2.1 in [3].

Here, the circulant matrix Ca,d = [cij ] where cij ≡ a + ((j − i) mod n)d, and a and d are
real numbers as defined by Bahsi and Solak in [3].

Lemma 2.2. For any natural number n ≥ 2 we have,

n−1∏
m=1

(
e

2πim
n − 1

)
= (−1)n−1n.

Proof. Let ε = e
2πi
n be the n-th root of unity and consider the polynomial Xn − 1. Then, it is

clear that 1, ε, ε2, . . . , εn−1 are exactly n distinct roots of Xn− 1. Hence, we can express Xn− 1
as follows:

Xn − 1 = (X − 1)(X − ε)(X − ε2) · · · (X − εn−1) =
n−1∏
m=0

(X − εm).

But, Xn − 1 = (X − 1)(Xn−1 +Xn−2 + . . .+X2 +X + 1). It follows that,

(X − 1)
n−1∏
m=1

(X − εm) = (X − 1)(Xn−1 +Xn−2 + . . .+X2 +X + 1).

And so we have,

n−1∏
m=1

(εm −X) =
n−1∏
m=1

(−1)(X − εm)

= (−1)n−1
n−1∏
m=1

(X − εm)

= (−1)n−1(Xn−1 +Xn−2 + . . .+X2 +X + 1).

Letting X = 1, we will obtain
∏n−1

m=1(ε
m − 1) = (−1)n−1n.

Lemma 2.3. For any natural numbers m and n we have

m∑
i=1

⌊
n+ (m− 1)− i

m

⌋
= n− 1 =

m∑
i=1

⌊
i+ n− 2

m

⌋
.

Proof. see Lemma 2.5 in [3].

3 Main Results

We now provide a much simple proof of the following theorem.

Theorem 3.1. The n-th term of the Smarandache cyclic determinant natural sequence, SCDNS(n)
is

SCDNS(n) =

1 2 3 . . . n− 2 n− 1 n

2 3 4 . . . n− 1 n 1
3 4 5 . . . n 1 2
...

n− 1 n 1 . . . n− 4 n− 3 n− 2
n 1 2 . . . n− 3 n− 2 n− 1

= (−1)b
n
2 cn+ 1

2
nn−1.
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Proof. First we let [dij ] be an n×n matrix with entries dij = k+1, whenever j− i = k(mod n)
for all i, j = 1, 2, . . . , n and k = 0, 1, 2, . . . , n − 1. Obviously, |dij | = |C1,1|. Moreover, |dij | =
SCDNS(n) for n < 3. Now, for n ≥ 3 we fixed the first row of SCDNS(n) and apply the row
operation Ri ↔ Rn+2−i for 2 ≤ i ≤ n. If n is even, n = 2l for some l = 0, 1, 2, . . .. Hence, we
apply the row operation Ri ↔ R2(l+1)−i for 1 ≤ i − 1 ≤ 2l − 1. On the other hand, if n is odd,
we have n = 2l + 1 for some l = 0, 1, 2, . . .. So, we apply the row operation Ri ↔ R2(l+1)+1−i

for 1 ≤ i − 1 ≤ 2l. It follows that (−1)b
n−1

2 cSCDNS(n) = |dij |. Then, from Lemma 2.1 and
2.2 we have,

(−1)b
n−1

2 cSCDNS(n) = |C1,1|

=
n−1∏
m=0

λm

=

(
n+

n(n− 1)
2

) n−1∏
m=1

(
n

e
2πim
n − 1

)

=

(
n(n+ 1)

2

)
(−1)n−1nn−1

n
.

Using Lemma (2.3) we’ll obtain,

SCDNS(n) = (−1)n−1−bn−1
2 c
(
n+ 1

2

)
nn−1

= (−1)b
n
2 cn+ 1

2
nn−1.

This completes the proof of the theorem.

We now proceed to a more general form of the Smarandache cyclic determinant natural se-
quence.

Theorem 3.2. The n-th term of the Smarandache cyclic arithmetic determinant sequence, is

SCADS(n) =

a a+ d . . . a+ (n− 2)d a+ (n− 1)d
a+ d a+ 2d . . . a+ (n− 1)d a

a+ 2d a+ 3d . . . a a+ d
...

a+ (n− 2)d a+ (n− 1)d . . . a+ (n− 4)d a+ (n− 3)d
a+ (n− 1)d a . . . a+ (n− 3)d a+ (n− 2)d

= (−1)b
n
2 c
(
a+

n− 1
2

d

)
(nd)n−1.

Proof. The proof is similar to the previous theorem. Consider the circulant matrix Ca,d = [cij ]
with entries cij = a + ((j − i) mod n)d for all i, j = 1, 2, . . . , n and k = 0, 1, 2, . . . , n − 1.
It can be seen easily that Ca,d = SCADS(n) for n < 3. Now, for n ≥ 3 we fixed the first
row of SCADS(n) and apply the row operation Ri ↔ Rn+2−i for 2 ≤ i ≤

⌊
n+1

2

⌋
obtaining

(−1)b
n−1

2 cSCADS(n) = |cij |.
Then, from Lemma (2.1) and (2.2) we have,

(−1)b
n−1

2 cSCADS(n) = |Ca,d|

=
n−1∏
m=0

λm

=

(
na+

n(n− 1)d
2

) n−1∏
m=1

(
nd

e
2πim
n − 1

)

=

(
na+

n(n− 1)d
2

)
(−1)n−1(nd)n−1

n
.
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Using Lemma (2.3) we’ll obtain,

SCADS(n) = (−1)n−1−bn−1
2 c
(
a+

(n− 1)d
2

)
(nd)n−1

= (−1)b
n
2 c
(
a+

(n− 1)d
2

)
(nd)n−1.

This completes the proof of the theorem.
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