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Abstract. In this paper we extend to the higher homomorphism a well known result proved
by Herstein concerning homomorphism in prime rings. We prove results which imply that every
Jordan triple higher homomorphism (resp. generalized Jordan triple higher homomorphism) of
a ring R onto a 2-torsion-free prime rings R′ is of the form Φi = ±Ψi for all i ∈ IN , where
Ψi ∈ Ψ = (Ψi)i∈N which Ψ is either higher homomorphism or higher anti-homomorphism
(resp. Ψ is either generalized higher homomorphism or generalized higher anti-homomorphism)
of R onto R′.

1 Introduction

The study of additive mappings from one ring R into another ring R′ which preserve squares
was initiated by Ancochea[1], [2] in connection with problem arising in projective geometry.
Hua [9] and Kaplansky [12] took the subject up where Ancochea had left off and pushed his
results further. Jacobson and Rickart [10] then proceeded to carry out an extensive study of such
functions.

An additive mapping Θ of a ring R into a 2-torsion-free ring R′ is called a Jordan homo-
morphism if Θ(ab + ba) = Θ(a)Θ(b) + Θ(b)Θ(a) for all a,∈ R. A well known result due to
Herstein [6] states that every Jordan homomorphism of a ring R onto a prime ring R′ of char-
acteristic different from 2 and 3 is either a homomorphism or an anti-homomorphism. Later
Smilley [14] provided a brief proof of this result and also same time removed the requirement
that the characteristic be different from 3. Suppose R′ contains ideals U ′ and V ′ with null inter-
section. Let Φ: R → U ′ be a homomorphism and Ψ: R → V ′ be an anti-homomorphism. A
mapping Θ = Φ + Ψ is a so-called direct sum of mappings Φ and Ψ. Obviously, Θ is a Jordan
homomorphism. According to this construction we see that Herstein’s result [6] does not hold
in semiprime rings. Moreover, Baxter and Martindale [3] showed by an example that a Jordan
homomorphism Θ of a ring R onto a semiprime ring R′ is not necessarily a direct sum of a
homomorphism and an anti-homomorphism. Although they proved that there always exists an
essential ideal E of R such that the restriction of Θ to E is a direct sum of a homomorphism Φ:
E → R′ and an anti-homomorphism Ψ: E → R′ [3, Theorem 2.7]. In 1989, Bres̆ar [4, Theorem
2.3] extended this result by showing that E can be chosen so that it is a sum of ideals U and
V of R such that Φ vanishes on V and Ψ vanishes on U . Even more, for each x ∈ R we have
Θ(ux) = Θ(u)Θ(x) for all u ∈ U and Θ(vx) = Θ(v)Θ(x) for all v ∈ V .

An additive mapping Θ of ring R into a ring R′ which satisfies Θ(aba) = Θ(a)Θ(b)Θ(a)
for all a, b ∈ R will be called a Jordan homomorphism. An easy computation shows that every
Jordan homomorphism is also a Jordan triple homomorphism (see for example [8, Lemma 3.1]).
In [7] Herstein proved that a Jordan triple homomorphism Θ of a ring R into a prime ring R′
of characteristic diferent from 2 and 3 is of the form Θ = ±Φ, where Φ is a homomorphism
or an anti-homomorphism of R onto R′. In his paper Bres̆ar [4, Theorem 3.3] generalized this
result by removing the requirement that the characteristic be different from 3. In the same paper,
Bres̆ar [4] obtained a more general result where Θ is a Jordan triple homomorphism of a ring R
onto a 2-torsion-free semiprme ring R′.

An additive mapping F : R → R′ is said to be a generalized Jordan homomorphism if there
exists a Jordan homomorphism Θ: R → R′ such that F (ab + ba) = F (a)Θ(b) + F (b)Θ(a)
for all a, b ∈ R and Θ is called the relating Jordan homomorphism. An additive mapping F :
R → R′ is said to be a generalized Jordan triple homomorphism if there exists a Jordan triple
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homomorphism Θ: R→ R′ such that F (aba) = F (a)Θ(b)Θ(a), for all a, b ∈ R and Θ is called
therelating Jordan triple homomorphism.

In the present paper our objective is to study the concept of higher homomorphism, Jordan
higher homomorphism, Jordan triple higher homomorphism and generalized Jordan triple higher
homomorphism.

The rings R and R′ used in the whole paper will be all associative ones with center Z(R),
and for each x, y ∈ R, the symbol [x, y] will represent the usual commutator xy − yx.

2 Preliminary results

Our goal is to study the case of higher homomorphisms. Let IN be the set of all natural numbers
and let Θ = (Φi)i∈IN be a family of additive mappings of a ring R into a ring R′. Then Θ is
called:

(a). a Higher Homomorphism (HH, for short) if for each n ∈ IN , Φn(ab) =
n∑

i=1
Φi(a)Φi(b), for

all a, b ∈ R;

(b). a Jordan Higher Homomorphism (JHH, for short) if for each n ∈ IN , Φn(ab + ba) =
n∑

i=1
Φi(a)Φi(b)+Φi(b)Φi(a), for all a, b ∈ R. When R′ is 2-torsion-free we define a JHH

by merely insisting that Φn(a2) =
n∑

i=1
(Φi(a))2, for all a ∈ R, n ∈ IN ;

(c). a Jordan Triple Higher Homomorphism (JTHH, for short) if for each n ∈ IN , Φn(aba) =
n∑

i=1
Φi(a)Φi(b)φi(a), for all a, b ∈ R;

(d). a Higher Anti-Homomorphism (HAH, for short) if for each n ∈ IN , Φn(ab) =
n∑

i=1
Φi(b)Φi(a),

for all a, b ∈ R.

Remark 2.1. Every Higher Homomorphism is a Jordan Higher Homomorphism, but the converse
need not be true in general, following example shows:

Example 2.1. Let S by any ring with involution ∗, set R = S ⊕ S and a ∈ S such that a ∈ Z(S)
and s1as2 = 0 for all s1, s2 ∈ S. Let Θ = (Φi)i∈IN be a family of mappings of R into itself
defined by

Φn(s, t) =

{
((2− nas, (n− 1)t∗), n = 1, 2, for all (s, t) ∈ R;

0, n ≥ 3.

Then it is easy to see that Θ is JHH. Since

(0, (t1, t2)∗ = Φ2(s1s2, t1t2) = Φ2((s1, t1), (s2, t2)) 6=
6= Φ1(s1, t1)Φ1(s2, t2) + Φ2(s1, t1)Φ2(s2, t2) =

= 0 + (0, t∗1)(0, t
∗
2) = (0, t∗1t

∗
2),

therefore Θ is not HH.

To facilitate our discussion, we shall begin with the following known results:

Lemma 2.1. [4, Lemma 1.1 ] LetR be a semiprime ring. If a, b ∈ R are such that axb+bxa = 0,
for all x ∈ R, then axb = bxa = 0, for all x ∈ R. If R is semiprime, then axb = 0, for all x ∈ R,
implies bxa = ab = ba = 0, too.

Lemma 2.2. [4, Lemma 1.2] LetG1, G2, · · · , Gn be additive groups,R a 2-torsion-free semiprime
ring. Suppose that mappings S: G1 ×G2 × · · · ×Gn −→ R and T : G1 ×G2 × · · · ×Gn −→ R
are addtitive in each argument. If S(a1, a2, · · · , an)xT (a1, a2, · · · , an) = 0, for all x ∈ R,
ai ∈ Gi, i = 1, 2, · · ·n, then S(a1, a2, · · · , an)xT (b1, b2, · · · , bn) = 0, for all x ∈ R, ai, bi ∈ Gi

i = 1, 2, · · ·n.

Lemma 2.3. [4, Theorem 2.3] Let Θ be a Jordan homomorphism of a ring R onto a 2-torsion-
free semiprime ring R′. Then there exist ideals U and V of R such that, for all x ∈ R, Θ(ux) =
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Θ(u)Θ(x), for all u ∈ U and Θ(vx) = Θ(v)Θ(x), for all v ∈ V . The ideal U + V is an
essential ideal of R, U ∩ V = ker(Θ), Θ(U) and Θ(V ) are ideals of R′, Θ(U) ∩Θ(V ) = 0, and
Θ(U)⊕Θ(V ) is an essential ideal of R′. If U = ker(Θ), then Θ is an anti-homomorphism, and
V = ker(Θ) if and only if Θ is a homomorphism.

Lemma 2.4. [4, Lemma 3.1] Let Θ be a Jordan triple homomorphism of a ring R onto a ring
R′. Then S(a, b, c)Θ(x)T (a, b, c) + T (a, b, c)Θ(x)S(a, b, c) = 0, for all a, b, c, x ∈ R, where
S(a, b, c) = Θ(abc)−Θ(a)Θ(b)Θ(c) and T (a, b, c) = Θ(abc)−Θ(c)Θ(b)Θ(a).

Lemma 2.5. [4, Theorem 3.3] Let Θ be a Jordan triple homomorphism of a ring R onto a prime
ring R′ of characteristic different from 2. Then Θ = ±Φ, where Φ is a homomorphism or
anti-homomorphism of R onto R′.

Lemma 2.6. [13] Let F be a generalized Jordan triple homomorphism of a ring R onto ring R′
and let Θ: R→ R′ be the relating Jordan triple homomorphism. Then S∗(a, b, c)Θ(x)T (a, b, c)+
T ∗(a, b, c)Θ(x)S(a, b, c) = 0, for all a, b, c, x ∈ R, where S∗(a, b, c) = F (abc)− F (a)Θ(b)Θ(c)
and T ∗(a, b, c) = F (abc)− F (c)Θ(b)Θ(a).

Lemma 2.7. [13] Let F be a generalized Jordan triple homomorphism of a ring R onto a 2-
torsion-free prime ring R′. Then F = ±Ψ, where Ψ is either a generalized homomorphism or a
generalized anti-homomorphism of R onto R′.

We are going to continue our discussion with the following results which are essential for
developing the proof of our main theorem.

Lemma 2.8. Let Θ = (Φi)i∈IN be a Jordan Higher Homomorphism of R into R′ which is a
2-torsion-free ring. Then Θ is a Jordan Triple Higher Homomorphism.

Proof. We have

Φn(ab+ ba) =
n∑

i=1

Φi(a)Φi(b) + Φi(b)Φi(a), for all a, b ∈ R. (2.1)

Replacing b by ab+ ba in (2.1) and using (2.1), we get

Φn(a(ab+ ba) + (ab+ ba)a) =
n∑

i=1
Φi(a)

(
i∑

l=1
Φl(a)Φl(b) + Φl(b)Φl(a)

)
+

+
n∑

i=1

(
i∑
l

Φl(a)Φl(b) + Φl(b)Φl(a)

)
Φi(a) =

=
n∑

i=1

i∑
l=1

Φi(a)Φl(a)Φl(b) +
n∑

i=1

i∑
l=1

Φi(a)Φl(b)Φl(a)+

+
n∑

i=1

i∑
l=1

Φl(a)Φl(b)Φi(a) +
n∑

i=1

i∑
l=1

Φl(b)Φl(a)Φi(a),

and hence

Φn(a(ab+ ba) + (ab+ ba)a) =
n∑

i=1
(Φi(a))2Φi(b) + 2

n∑
i=1

Φi(a)Φi(b)Φi(a) +
n∑

i=1
Φi(b)(Φi(a))2.

On the other hand,

Φn(a(ab+ ba) + (ab+ ba)a) = Φn(a2b+ ba2) + 2Φn(aba) =
n∑

i=1

(
Φi(a2)Φi(b) + Φi(b)Φi(a2

)
+ 2Φn(aba).

On comparing the last two equations, we get the required result.

If we linearize Φn(aba) =
n∑

i=1
Φi(a)Φi(b)Φi(a) on a, we get the following

Corollary 2.1. Let Θ = (Φi)i∈IN be a Jordan Triple Higher Homomorphism of a ringR into ring

R′ which is a 2-torsion-free. Then φn(abc+ cba) =
n∑

i=1
(Φi(a)Φi(b)Φi(c) + Φi(c)Φi(b)Φi(a)),

for all a, b, c ∈ R, n ∈ IN .

Let Θ = (Φi)i∈IN be a Jordan Triple Higher Homomorphism (JTHH) of a ring R into ring R′
for every fixed n ∈ IN and for each a, b, c ∈ R. For the purpose of this section, we shall write:

(i). (ab)n = Φn(ab)−
n∑

i=1
Φi(a)Φi(b) and (ab)n = Φn(ab)−

n∑
i=1

Φi(b)Φi(a);

(ii). Sn(a, b, c) = Φn(abc)−
n∑

i=1
Φi(a)Φi(b)Φi(c) and Tn(a, b, c) = Φn(abc)−

n∑
i=1

Φi(c)Φi(b)Φi(a).
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Lemma 2.9. Let Θ = (Φi)i∈IN be a Jordan Triple Higher Homomorphism of R into a ring R′.
Then (ab)nΦ(x)(ab)n + (ab)nΦ(x)(ab)n, for all x, a, b ∈ R, n ∈ IN .

Proof. Since (ab)Φ(x)(ab) + (ab)Φ(x)(ab), for all x, a, b ∈ R, by induction we can assume that
(ab)mΦm(x)(ab)m + (ab)mΦm(x)(ab)m, for all x, a, b ∈ R, m,n ∈ IN , m < n.

Let W = abxba+ baxab. Then
Φn(W ) = Φn(a(bxb)a+ b(axa)b) =

n∑
i=1

Φi(a)Φi(bxb)Φi(a) +
n∑
i=1

Φi(b)Φi(axa)Φi(b) =

=
n∑
i=1

Φi(a)

(
i∑

l=1
Φl(b)Φl(x)Φl(b)

)
Φi(a) +

n∑
i=1

Φi(b)

(
i∑

l=1
Φl(a)Φl(x)Φl(a)

)
Φi(b) =

=
n∑
i=1

Φi(a)Φi(b)Φi(x)Φi(b)Φi(a) +
n∑
i=1

Φi(b)Φi(a)Φi(x)Φi(a)Φi(b) =

=

(
n∑
i=1

Φi(a)Φi(b)Φi(x)

)
i∑

l=1
Φl(b)Φl(a) +

(
n∑
i=1

Φi(b)Φi(a)Φi(x)

)
i∑

l=1
Φl(a)Φl(b) =

= Φn(a)Φn(b)Φn(x)
i∑

l=1
Φl(b)Φl(a) +

(
n−1∑
i=1

Φi(a)Φi(b)Φi(x)

)
i∑

l=1
Φl(b)Φl(a)+

+Φn(b)Φn(a)Φn(x)
i∑

l=1
Φl(a)Φl(b) +

(
n−1∑
i=1

Φi(b)Φi(a)Φi(x)

)
i∑

l=1
Φl(a)Φl(b).

On the other hand, Φn(W ) = Φn ((ab)x(ba) + (ba)x(ab)). Thus, by Corollary 2.1 and the
definition of HH, we get

Φn(W ) =
n∑
i=1

Φi(ab)Φi(x)

(
i∑

l=1
Φl(a)Φl(b) + Φl(b)Φl(a)− Φi(ab)

)
+

+
n∑
i=1

(
i∑

l=1
Φl(a)Φl(b) + Φl(b)Φl(a)− Φi(ab)

)
Φi(x)Φi(ab) =

=
n∑
i=1

Φi(ab)Φi(x)
i∑

l=1
Φl(a)Φl(b) +

n∑
i=1

Φi(ab)Φi(x)
i∑

l=1
Φl(b)Φl(a)−

n∑
i=1

Φi(ab)Φi(x)Φi(ab)+

+
n∑
i=1

Φi(a)Φi(b)Φi(x)Φi(ab) +
n∑
i=1

Φi(b)Φi(a)Φi(x)Φi(ab)−
n∑
i=1

Φi(ab))Φi(x)Φi(ab) =

= −
n∑
i=1

Φi(ab)Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(a)Φl(b)

)
−

n∑
i=1

Φi(ab)Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(b)Φl(a)

)
+

+
n∑
i=1

Φi(a)Φi(b)Φi(x)Φi(ab) +
n∑
i=1

Φi(b)Φi(a)Φi(x)Φi(ab) =

= −
n∑
i=1

Φi(ab)Φi(x)(a
b)i −

n∑
i=1

Φi(ab)Φi(x)(ab)
i+

+
n∑
i=1

Φi(a)Φi(b)Φi(x)Φi(ab) +
n∑
i=1

Φi(b)Φi(a)Φi(x)Φi(ab) =

= −Φn(ab)Φn(x)(a
b)n −

n−1∑
i=1

Φi(ab)Φi(x)(a
b)i − Φn(ab)Φn(x)(ab)

n −
n∑
i=1

Φi(ab)Φi(x)(ab)
i+

+Φn(a)Φn(b)Φn(x)Φn(ab) +
n−1∑
i=1

Φi(a)Φi(b)Φi(x)Φi(ab) + Φn(b)Φn(a)Φn(x)Φn(ab)+

+
n−1∑
i=1

Φi(b)Φi(a)Φi(x)Φi(ab).

On comparing the right hand side of Φn(W ), we find that

0 = −Φn(ab)Φn(x)Φn(a
b)n − Φn(ab)Φn(x)(ab)

n + Φn(a)Φn(b)Φn(x)

(
Φn(ab)−

n∑
l=1

Φl(b)Φl(a)

)
+

+Φn(b)Φn(a)Φn(x)

(
Φn(ab)−

n∑
l=1

Φl(a)Φl(b)

)
−

n−1∑
i=1

Φi(ab)Φi(x)(a
b)i −

n−1∑
i=1

Φi(ab)Φi(x)(ab)
i+

+
n−1∑
i=1

Φi(a)Φi(b)Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(b)Φl(a)

)
+

n−1∑
i=1

Φi(b)Φi(a)Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(a)Φl(b)

)
=

= −Φn(ab)Φn(x)(a
b)n − Φn(ab)Φn(x)(ab)

n + Φn(a)Φn(b)(Φn(x)(ab)
n+

+Φn(b)Φn(a)Φn(x)(a
b)n −

n−1∑
i=1

Φi(ab)Φi(x)(a
b)i −

n−1∑
i=1

Φi(ab)Φi(x)(ab)
i+

+
n−1∑
i=1

Φi(a)Φi(b)Φi(x)(ab)
i +

n−1∑
i=1

Φi(b)Φi(a)Φi(x)(a
b)i =

= −(ab)
n

Φn(x)(a
b)n − (ab)nΦPn(x)(ab)

n −
n−1∑
i=1

(ab)
i
Φi(x)(a

b)i −
n−1∑
i=1

(ab)iΦi(x)(ab)
i =

=
(
(ab)

n
Φn(x)(a

b)n + (ab)nΦn(x)(ab)
n
)
−

n−1∑
i=1

(
(ab)iΦi(x)(ab)

i + (ab)
i
Φi(x)(a

b)i
)
.

By our hypothesis, we have (ab)nΦn(x)(anb + (ab)nΦn(x)(ab)n = 0, for all a, b, x ∈ R,
n ∈ IN .

As an immediate consequence of Lemma 2.1, Lemma 2.2 and Lemma 2.9, we get the fol-
lowing

Corollary 2.2. Let Θ = (Φi)i∈IN be a Jordan Higher Homomorphism of a ring R onto a 2-
torsion-free semiprime ring R′. Then (ab)nx′(cd)n = 0 for all a, b, c, d ∈ R, x′ ∈ R′ and n ∈ IN .
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Thus, immediately from Corollary 2.2 we get the following
Remark 2.2. Let Θ = (Φi)i∈IN be a Jordan Higher Homomorphism of a ring R onto a 2-
torsion-free prime ring R′. Then either Θ is a Higher Homomorphism or Θ is a Higher Anti-
Homomorphism.

Proposition 2.1. Let Θ = (Φi)i∈IN be a Jordan Higher Homomorphism of a ring R onto a 2-
torsion-free semiprime ring R′ such that [Φi(a),Φi(b)] = 0, for all a, b ∈ R, n ∈ IN , i < n. Then
there exist ideals Un and Vn of R, for all n ∈ IN , such that:

(i). Φn(ux) =
n∑

i=1
Φi(u)Φi(x), for all u ∈ Un, n ∈ IN , x ∈ R and

(ii). Φn(vx) =
n∑

i=1
Φi(x)Φi(v), for all v ∈ Vn, n ∈ IN , x ∈ R.

Proof. The proposition is true for n = 1, by Lemma 2.3. Thus, we can assume that there exist

ideals Um =
m⋂
i=1

Φ
−1
i (ann(V ′i−1)) and Vm =

m⋂
i=1

Φ
−1
i (ann(ann(V ′i−1))) for allm,n ∈ IN ,m < n,

where V ′i−1 is the ideal generated by the set {(ab)j | j = 1, · · · , i < n, a, b ∈ R} such that, for

all x ∈ R, Φn(ux) =
m∑
i=1

Φi(u)Φi(x), for all u ∈ Um and Φm(vx) =
m∑
i=1

Φi(v)Φi(x), for all

v ∈ Vm.
Let V ′n−1 be the ideal generated by the set {(ab)j | i = 1, · · · , n, a, b ∈ R}. Thus, by

Lemma 2.9 and since Φi is onto, for all i ∈ IN and hence by Lemma 2.1, we have (ab)n(ab)n =
(ab)n(ab)n = 0, for all a, b ∈ R, n ∈ IN . We claim that (ab)i(ab)j = 0, for all a, b ∈ R, i, j ∈ IN
and i 6= j to show that:

Case I: if i < j, then

(ab)i(ab)j =

(
Φi(ab)−

i∑
l=1

Φl(b)Φl(a)

)(
Φj(ab)−

j∑
t=1

Φt(a)Φt(b)

)
=

= −Φi(ab)
j∑

t=1
Φt(a)Φt(b) +

i∑
l=1

Φl(b)Φl(a)
j∑

t=1
Φt(a)Φt(b)(ab)i(ab)j =

= −(an)i
j∑

t=1
Φt(a)Φt(b).

(2.2)

On the other hand, since Θ is JHH, we find that

(ab)i(ab)j =

(
Φi(ab)−

i∑
l=1

Φl(b)Φl(a)

)(
−Φj(ba) +

j∑
t=1

Φt(b)Φt(a)

)
=

= Φi(ab)
j∑

t=1
Φt(b)Φt(a)−

i∑
l=1

Φl(b)Φl(a)
j∑

t=1
Φt(b)Φt(a)(ab)i(ab)j =

= −(an)i
j∑

t=1
Φt(b)Φt(a).

(2.3)

Now adding (2.2) and (2.3), we get

(ab)
i(ab)

j = (ab)
i

(
−

j∑
t=1

Φt(a)Φt(b) +
j∑

t=1

Φt(b)Φt(a)

)
= (ab)

i

j∑
t=1

[Φt(b),Φt(a)] = 0.

Since R′ is 2-torsion-free, we obtain (ab)i(ab)j = 0 for all a, b ∈ R and i, j ∈ IN , i < j.
Using the same arguments as above one can show that:

Case II: If i > j, then (ab)i(ab)j = 0, for all a, b ∈ R and i, j ∈ IN , i > j. Therefore, we
conclude that {(ab)i | i = 1, · · · , n, a, b ∈ R} ⊆ ann(V ′n−1) and {(ab)i | i = 1, · · · , n, a, b ∈
R} ⊆ ann(ann(V ′n−1)).

Now we set

Un =
n⋂

i=1
Φ
−1
i (ann(V ′n−1)) = Φ−1

n (ann(V ′n−1))
⋂ n−1⋂

i=1
Φ
−1
i (ann(V ′i−1)) and

Vn =
n⋂

i=1
Φ
−1
i (ann(ann(V ′n−1))) = Φ−1

n (ann(ann(V ′n−1)))
⋂ n−1⋂

i=1
Φ
−1
i (ann(ann(V ′i−1))).

Given u ∈ Un, for all y ∈ R, x ∈ R′, we have

(uy)nx′(uy)n = (uy)nx′ ((uy)n − (uy)
n) = (uy)nx′

(
n∑

i=1

Φi(y)Φi(u)−
n∑

i=1

Φi(u)Φi(y)

)
= 0.
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Hence, by semiprimness of R′ forces that (uy)n = 0. That is,

Φn(uy) =
n∑

i=1

Φi(u)Φi(y), for all u ∈ Un, y ∈ R.

Now to prove that Un is an ideal of R, it is enough to show that Φ−1
n (ann(V ′n−1)) is an ideal

of R.
Let u ∈ Un, x ∈ R. Since Φn(ux) =

n∑
i=1

Φi(u)Φi(x) and Φn(u) ∈ ann(V ′n−1), it remains to

show that Φm(u) ∈ ann(V ′n−1), for all u ∈ Un, m < n and hence

Φm(u)(ab)n = Φm(u) (−Φm(a)Φm(b)) . (2.4)

On the other hand,

Φm(u)(ab)n = Φm(u) (Φm(b)Φm(a)) . (2.5)

Thus, by adding (2.4) and (2.5) and our hypothesis we obtain Φm(u)(ab)n = 0. Similarly, we

can prove that Φn(vy) =
n∑

i=1
Φi(y)Φi(v), for all v ∈ Vn, y ∈ R and therefore Vn is an ideal of

R.

Lemma 2.10. Let Θ = (Φi)i∈IN be a Jordan Triple Higher Homomorphism of a ring R into a
ringR′. Then Sn(a, b, c)Φn(x)Tn(a, b, c)+Tn(a, b, c)Φn(x)Sn(a, b, c) = 0, for all a, b, c, x ∈ R,
n ∈ IN .

Proof. By Lemma 2.4, the statement is true for n = 1. Then, by induction, we assume that

Sm(a, b, c)Φm(x)Tm(a, b, c) + Tm(a, b, c)Φm(x)Sm(a, b, c) = 0,

for all a, b, c, x ∈ R, m ∈ IN and m < n.
Let W = Φn(abcxcba+ cbaxabc). Then, by the definition of JTHH, we have

W = Φn(a(bcxcb)a+ c(baxab)c) =
n∑

i=1
Φi(a)Φi(bcxcb)Φi(a) +

n∑
i=1

Φi(c)Φi(baxab)Φi(c) =

=
n∑

i=1
Φi(a)

(
i∑

l=1
Φl(b)Φi(cxc)Φl(b)

)
Φi(a) +

n∑
i=1

Φi(c)

(
i∑

l=1
Φl(b)Φi(axa)Φl(b)

)
Φi(c) =

=
n∑

i=1
Φi(a)Φi(b)Φi(cxc)Φi(b)Φi(a) +

n∑
i=1

Φi(c)Φi(b)Φi(axa)Φi(b)Φi(c) =

=
n∑

i=1
Φi(a)Φi(b)Φi(c)Φi(x)Φi(c)Φi(b)Φi(a) +

n∑
i=1

Φi(c)Φi(b)Φi(a)Φi(x)Φi(a)Φi(b)Φi(c) =

=
n∑

i=1

(
i∑

l=1
Φl(a)Φl(b)Φl(c)

)
Φi(x)

(
i∑

l=1
Φl(c)Φl(b)Φl(a)

)
+

+
n∑

i=1

(
i∑

l=1
Φl(c)Φl(b)Φl(a)

)
Φi(x)

(
i∑

l=1
Φl(a)Φl(b)Φl(c)

)
.

On the other hand, by Corollary 2.1, we have

W = Φn((abc)x(cba) + (cba)x(abc)) =
n∑

i=1
Φi(abc)Φi(x)Φi(cba) +

n∑
i=1

Φi(cba)Φi(x)Φi(abc) =

=
n∑

i=1
Φi(abc)Φi(x)

(
i∑

l=1
Φl(a)Φl(b)Φl(c) + Φl(c)Φl(b)Φl(a)−Φi(abc)

)
+

+
n∑

i=1

(
i∑

l=1
Φl(a)Φl(b)Φl(c) + Φl(c)Φl(b)Φl(a)−Φi(abc)

)
(Φi(x)Φi(abc) =

=
n∑

i=1
Φi(abc)Φi(x)

i∑
l=1

Φl(a)Φl(b)Φl(c) +
n∑

i=1
Φi(abc)Φi(x)

i∑
l=1

Φl(c)Φl(b)Φl(a)−

−
n∑

i=1
Φi(abc)Φi(x)Φi(abc) +

n∑
i=1

i∑
l=1

Φl(a)Φl(b)Φl(c)Φi(x)Φi(abc)+

+
n∑

i=1

i∑
l=1

Φl(c)Φl(b)Φl(a)Φi(x)Φi(abc)−
n∑

i=1
Φi(abc)Φi(x)Φi(abc).

On comparing the right hand side of W and by our hypothesis, we get the required result.

Theorem 2.1. Let Θ = (Φi)i∈IN be a Jordan Triple Higher Homomorphism of a ring R onto a
2-torsion-free prime ring R′. Then Φi = ±Ψi, for all i ∈ IN , where Ψi ∈ Ψ = (Ψi)i∈IN , which
Ψ is either a Higher Homomorphism or a Higher Anti-Homomorphism of R onto R′.
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Proof. We proceed by induction on n ∈ IN . By Lemma 2.5, the statment of the Theorem is true
for n = 1. Now suppose that Φm = ±Ψm for m < n, m,n ∈ IN . Then we have two cases:

Case I: If Φm = ±Ψm, for all m < n, where Ψi ∈ Ψ such that Ψ is a HH. Since Φi is onto for
all i ∈ IN and R′ is prime, then by Lemma 2.10, either Sn(a, b, c) = 0 or Tn(a, b, c) = 0, for all

a, b, c ∈ R, n ∈ IN . If Tn(a, b, c) = 0, then Φn(abc) =
n∑

i=1
Φi(c)Φi(b)Φi(a) and hence

Φn(abxab) = Φn((ab)x(ab)) =
n∑

i=1

Φi(ab)Φi(x)Φi(ab). (2.6)

On the other hand,

Φn(abxab) = Φn(a(bxa)b) =
n∑

i=1

Φi(b)Φi(bxa)Φi(a) =
n∑

i=1

Φi(b)
i∑

l=1

Φl(a)Φl(x)Φl(b)Φi(a).

That is,

Φn(abxab) =
n∑

i=1

i∑
l=1

Φl(b)Φl(a)Φl(x)
i∑

l=1

Φl(b)Φl(a). (2.7)

Combining (2.6) and (2.7), we get

0 =
n∑

i=1

(
Φi(ab)−

i∑
l=1

Φl(b)Φl(a)

)
Φi(x)

(
Φi(ab) +

i∑
l=1

Φl(b)Φl(a)

)
+

+
n∑

i=1

(
Φi(ab) +

i∑
l=1

Φl(b)Φl(a)

)
Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(b)Φl(a)

)
=

=

(
Φn(ab)−

n∑
l=1

Φl(b)Φl(a)

)
Φn(x)

(
Φn(ab) +

n∑
l=1

ΦbΦl(a)

)
+

+

(
Φn(ab) +

n∑
l=1

Φl(b)Φl(a)

)
Φn(x)

(
Φn(ab)−

n∑
l=1

ΦbΦl(a)

)
+

+
n−1∑
i=1

(
Φi(ab)−

n∑
l=1

Φl(b)Φl(a)

)
Φi(x)

(
Φi(ab) +

n∑
l=1

ΦbΦl(a)

)
+

+
n−1∑
i=1

(
Φi(ab) +

n∑
l=1

Φl(b)Φl(a)

)
Φi(x)

(
Φi(ab)−

n∑
l=1

ΦbΦl(a)

)
.

(2.8)

Since Φm = ±Ψm, for all m < n and Ψm ∈ Ψ, where Ψm ∈ Ψ is a HH, then the last two lines
of equation (2.8) can be reduced to

n−1∑
i=1

(Φi(ab)∓Φi(ba))Φi(x) (Φi(ab)±Φi(ba))+
n−1∑
i=1

(Φi(ab)±Φi(ba))Φi(x) (Φi(ab)∓Φi(ba)) =

= 2
n−1∑
i=1

φi(ab)Φi(x)Φi(ab)−Φi(ba)Φi(x)Φi(ba). (2.9)

Since Tn(a, b, c) = 0 and Φm = ±Ψm, for all m < n, where Ψm ∈ Ψ such that Ψm ∈ Ψ is a
HH. Thus,
n−1∑
i=1

Φi(ab)Φi(x)Φi(ab) =
n−1∑
i=1

Φi(a)
i∑

l=1
Φl(b)Φl(x)Φl(a)Φl(b) =

n−1∑
i

Φi(a)Φi(axb)Φi(b) =

=
n−1∑
i

Φi(a)
i∑

l=1
Φl(a)Φl(x)Φl(b)Φi(b) =

n−1∑
i

i∑
l=1

Φl(a)Φl(a)Φl(x)Φl(b)Φi(b) =

=
n−1∑
i=1

Φi(xaa)Φi(b)Φi(b) =
n−1∑
i

i∑
l=1

Φl(x)Φl(a)Φl(a)Φl(b)Φi(b) =

=
n−1∑
i=1

Φi(x)Φi(a)
i∑

l=1
Φl(a)Φl(b)Φl(b) =

l∑
i=1

Φi(x)Φi(a)Φi(bba) =

=
n−1∑
i=1

Φi(x)Φi(a)
i∑

l=1
Φl(b)Φl(b)Φl(a) =

n−1∑
i=1

i∑
l=1

Φl(x)Φl(a)Φl(b)Φl(b)Φl(a) =

=
n−1∑
i=1

Φi(bax)Φi(b)Φi(a) =
n−1∑
i=1

i∑
l=1

Φl(b)Φl(a)Φl(x)Φl(b)Φl(a) =

=
n−1∑
i=1

i∑
l=1

Φl(b)Φl(a)Φl(x)
i∑

l=1
Φl(b)Φl(a) =

n−1∑
i=1

Φi(ba)Φi(x)Φi(ba).
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Then equation (2.9) is equal to zero and therefore equation (2.8) becomes(
Φn(ab) +

n∑
l=1

Φl(b)Φl(a)

)
Φn(x)

(
Φn(ab)−

n∑
l=1

Φl(b)Φl(a)

)
+

+

(
Φn(ab)−

n∑
l=1

Φl(b)Φl(a)

)
Φn(x)

(
Φn(ab) +

n∑
l=1

Φl(b)Φl(a)

)
= 0.

Since Φi is onto, for all i ∈ IN andR′ is prime, then either Φn(ab) =
n∑
l=1

Φi(b)Φi(a) or Φn(ab) =

−
n∑
l=1

Φi(b)Φi(a). Thus Θ is a HAH or a negative of a HAH and this is a contradiction. Hence,

Sn(a, b, c) = 0, for all a, b, c ∈ R, n ∈ IN and this lead us to

Φn(abxab) =
n∑

i=1
Φi(a)Φi(bxa)Φi(b) =

n∑
i=1

Φi(a)
i∑

l=1
Φl(b)Φl(x)Φl(a)Φl(b) =

=
n∑

i=1
Φi(a)Φi(b)Φi(x)Φi(a)Φi(b) =

=
n∑

i=1

(
i∑

l=1
Φl(a)Φl(b)

)
Φi(x)

(
i∑

l=1
Φl(a)Φl(b)

)
.

(2.10)

On the other hand,

Φn(abxab) =
n∑

i=1

Φi(ab)Φi(x)Φi(ab). (2.11)

Now, comparing (2.10) and(2.11), we get

0 =
n∑

i=1

(
Φi(ab)−

i∑
l=1

Φl(a)Φl(b)

)
Φi(x)

(
Φi(ab) +

i∑
l=1

Φl(a)Φl(b)

)
+

+
n∑

i=1

(
Φi(ab) +

i∑
l=1

Φl(a)Φl(b)

)
Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(a)Φl(b)

)
=

=

(
Φn(ab)−

i∑
l=1

Φl(a)Φl(b)

)
Φn(x)

(
Φn(ab) +

i∑
l=1

Φl(a)Φl(b)

)
+

+

(
Φn(ab) +

i∑
l=1

Φl(a)Φl(b)

)
Φn(x)

(
Φn(ab)−

i∑
l=1

Φl(a)Φl(b)

)
+

+
n−1∑
i=1

(
Φi(ab)−

i∑
l=1

Φl(a)Φl(b)

)
Φi(x)

(
Φi(ab) +

i∑
l=1

Φl(a)Φl(b)

)
+

+
n−1∑
i=1

(
Φi(ab) +

i∑
l=1

Φl(a)Φl(b)

)
Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(a)Φl(b)

)
.

(2.12)

Since Φm = ±Ψm, for all m < n, where Ψm = Ψ and Ψ is a HH, then the last term of equation
(2.12) are equal to zero. Therefore equation (2.12) becomes(

Φn(ab)−
n∑
l=1

Φl(a)Φl(b)

)
Φn(x)

(
Φn(ab) +

n∑
l=1

Φl(a)Φl(b)

)
+

+

(
Φn(ab) +

n∑
l=1

Φl(a)Φl(b)

)
Φn(x)

(
Φn(ab)−

n∑
l=1

Φl(a)Φl(b)

)
= 0.

Since Φi is onto, for all i ∈ IN and R′ is prime, then by Lemma 2.2, we get either Φn(ab) =
n∑
l=1

Φl(a)Φl(b) or Φn(ab) = −
n∑
l=1

Φl(a)Φl(b), for all a, b ∈ R and n ∈ IN . That is, Θ is a HH or

a negative of a HH.

Using similar arguments as used Case I we can prove that:

Case II: If Φm = ±Ψm, for all m < n, where Ψm ∈ Ψ and Ψ is a HAH, then Θ = (Φi)i∈IN is
also a HAH.

3 Generalized Jordan Higher Homomorphism

Let IN be the set of all natural numbers and let F = (fi)i∈IN be a family of additive mappings of
a ring R into ring R′. Then F is said to be:



414 A. K. Faraj, A. H. Majeed, C. Haetinger∗ and Nadeem-ur Rehman

• a Generalized Higher Homomorphism (GHH, for short), if there exists a higher homomor-

phism Θ = (Φi)i∈IN such that fn(ab) =
n∑

i=1
fi(a)Φi(b), for all a, b ∈ R and Θ is called the

relating higher homomorphism (RHH, for short);

• a Generalized Jordan Higher Homomorphism (GJHH, for short), if there exists a Jordan

higher homomorphism Θ = (Φi)i∈IN such that fn(ab+ ba) =
n∑

i=1
fi(a)Φi(b)+ fi(b)Φi(a),

for all a, b ∈ R and Θ is called the relating Jordan higher homomorphism (RJHH, for short).

If R′ is 2-torsion-free, then the definition of GJHH is equivalent to the following condition:

fn(a2) =
n∑

i=1
fi(a)Φi(b), for all a, b ∈ R;

• a Generalized Jordan Triple Homomorphism (GJTHH, for short), if there exists a Jordan

triple higher homomorphism Θ = (Φi)i∈IN such that fn(aba) =
n∑

i=1
fi(a)Φi(b)Φi(a), for

all a, b ∈ R and Θ is called the relating Jordan triple higher homomorphism (RJTHH, for
short);

• a Generalized Higher Anti-Homomorphism (GAH, for short), if there exists a higher anti-

homomorphism Θ = (Φi)i∈IN such that fn(ab) =
n∑

i=1
fi(b)Φi(a), for all a, b ∈ R and Θ is

called the relating higher anti-homomorphism (RHAH, for short).

Remark 3.1. It is clear that every Generalized Higher Homomorphism is a Generalized Jordan
Higher Homomorphism, but the converse need not be true in general. Following example shows
that:

Example 3.1. Let S be any ring with involution ∗, set R = S ⊕ S and a ∈ S such that a ∈ Z(S)
and s1as2 = 0, for all s1, s2 ∈ S. Let F = (fi)i∈IN be a family of mappings of R into R defined
by

fn(s, t) =

{
(−(2− nas, (n− 1)t∗) , n = 1, 2, for all (s, t) ∈ R;

0, n ≥ 3.

Then there exists a JHH which is defined in Example 2.1. It becomes clear that F is a GJHH,
but not a GHH.

Lemma 3.1. Let F = (fi)i∈IN be a Generalized Jordan Higher Homomorphism of a ring R into
a 2-torsion-free ring R′. Then:

(i) F is a Generalized Jordan Triple Higher Homomorphisms of R into R′;

(ii) fn(abc+ cba) =
n∑

i=1
fi(a)Φi(b)Φi(c) + fi(c)Φi(b)Φi(a), for all a, b ∈ R, n ∈ IN and

Φi ∈ Θ = (Φi)i∈IN , where Θ is the Related Jordan Higher Homomorphism.

Proof. (i). We have

fn(ab+ ba) =
n∑

i=1

fi(a)Φi(b) + fi(b)Φi(a). (3.1)

Replacing a by ab+ ba in (3.1), we get

fn(a(ab+ ba) + (ab+ ba)a) =
n∑

i=1
fi(a)Φi(ab+ ba) + fi(ab+ ba)Φi(a) =

=
n∑

i=1
fi(a)

(
i∑

l=1
Φl(a)Φl(b) + Φl(b)Φl(a)

)
+

n∑
i=1

(
i∑

l=1
fl(a)Φl(b) + fl(a)Φl(a)

)
Φi(a) =

=
n∑

i=1
fi(a)Φi(a)Φi(b) +

n∑
i=1

fi(a)Φi(b)Φi(a) +
n∑

i=1
fi(a)Φi(b)Φi(a) +

n∑
i=1

fi(b)Φi(a)Φi(b).

(3.2)

On the other hand,

fn(a(ab+ ba) + (ab+ ba)a) =
n∑

i=1

fi(a
2)Φi(b) + fi(b)Φi(a

2) + 2fn(aba). (3.3)
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Compare (3.2) and (3.3), to get fn(aba) =
n∑

i=1
fi(a)Φi(b)Φi(a), for all a, b ∈ R, n ∈ IN . There-

fore F is a GJTHH.

(ii). Replacing a by a+ b in (i)., we get

fn((a+ c)b(a+ c)) =
n∑

i=1
fi(a+ c)Φi(b)Φi(a+ c) =

=
n∑

i=1
fi(a)Φi(b)Φi(a) + fi(a)Φi(b)Φi(c) + fi(c)Φi(b)Φi(a) + fi(c)Φi(b)Φi(c).

(3.4)

On the other hand,

fn((a+ c)b(a+ c)) = fn(aba) + fn(abc+ cba) + fn(cba). (3.5)

By comparing (3.4) and (3.5), we get fn(abc+ cba) =
n∑

i=1
fi(a)Φi(b)Φi(c) + fi(c)Φi(b)Φi(a),

for all a, b, c ∈ R, n ∈ IN .

Remark 3.2. Let F = (fi)i∈IN be a Generalized Jordan Higher Homomorphism of a ring R into
a ring R′ and Θ = (Φi)i∈IN be the Related Jordan Higher Homomorphism. We shall write, for
all a, b ∈ R, n ∈ IN :

• (ab∗)n = fn(ab)−
n∑

i=1
fi(a)Φi(b);

• (a∗b)
n = fn(ab)−

n∑
i=1

fi(b)Φi(a).

Note that if (ab∗)n = 0 (resp. (a∗b)
n = 0), then F is a Generalized Higher Homomorphism

(resp. a Generalized Higher Anti-Homomorphism).

Lemma 3.2. Let F = (fi)i∈IN be a Generalized Jordan Higher Homomorphism of a ring R into
a ring R′. Then

(ab∗)nΦn(x)(ab)
n + (a∗b)

n
Φn(x)(a

b)n,

for all a, b, x ∈ R,n ∈ IN , where Φi ∈ Θ = (Φi)i∈IN such that Θ is the Related Jordan Higher
Homomorphism.

Proof. We proceed by induction on n ∈ IN . If n = 1, let W = abxba + baxab. Since F is a
GJHH, then

f1(W ) = f1(a(bxb)a+ b(axa)b) = f1(a)Φ1(bxb)Φ1(a) + f1(b)Φ1(axa)Φ1(b) =

= f1(a)Φ1(b)Φ1(x)Φ1(b)Φ1(a) + f1(b)Φ1(a)Φ1(x)Φ1(a)Φ1(b).
(3.6)

On the other hand, by Lemma 3.1 (ii)., we have

f1(W ) = f1((ab)x(ba) + (ba)x(ab)) = f1(ab)Φ1(x)Φ1(ba) + f1(ba)Φ1(x)Φ1(x)Φ1(ab). (3.7)

Since f1(ab+ba) = f1(a)Φ1(a)Φ1(b)+f1(b)Φ1(a) and Φ1(ab+ba) = Φ1(a)Φ1(b)+Φ1(b)Φ1(a),
then (3.7) can reduces to

f1(W ) = f1(ab)Φ1(x) (Φ1(a)Φ1(b) + Φ1(b)Φ1(a))+

+(−f1(ab) + f1(a)Φ1(b) + f1(b)Φ1(a))Φ1(x)Φ1(ab) =

= −f1(ab)Φ1(x) (Φ1(ab)−Φ1(a)Φ1(b))− f1(ab)Φ1(x) (Φ1(ab)−Φ1(b)Φ1(a))+

+f1(a)Φ1(b)Φ1(x)Φ1(ab) + f1(b)Φ1(a)Φ1(x)Φ1(ab).

(3.8)

Comparing (3.6) and (3.8), we get

0 = −f1(ab)(ab)− f1(ab)Φ1(x)(ab) + f1(a)Φ1(b)Φ1(x)Φ1(ab) + f1(b)Φ1(a)Φ1(x)Φ1(ab)−
−f1(a)Φ1(b)Φ1(x)Φ1(b)Φ1(a)− f1(b)Φ1(a)Φ1(x)Φ1(a)Φ1(b) =

= −f1(ab)Φ1(x)(ab)− f1(ab)Φ1(x)(ab) + f1(a)Φ1(b)Φ1(x)(ab) + f1(b)Φ1(a)Φ1(x)(ab) =

= − (f1(ab)− f1(a)Φ1(b))− (f1(ab)− f1(a)Φ1(b))Φ1(x)Φ1(a).
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Thus we have (ab∗)Φ1(x)(ab) + (a∗b)Φ1(x)(ab) = 0, for all a, b, x ∈ R. Then we can assume
that (ab∗)mΦm(x)(ab)m + (a∗b)

mΦm(x)(ab)m = 0, for all a, b, x ∈ R, m,n ∈ IN , m < n. Since
every GJHH of 2-torsion-free ring is a GJTHH, then

fn(W ) = fn(a(bxb)a+ b(axa)b) =
n∑

i=1
fi(a)Φi(bxb)Φi(a) + fi(b)Φi(axa)Φi(b) =

=
n∑

i=1
fi(a)

(
i∑

l=1
fl(b)Φl(x)Φl(b)

)
Φi(a) +

n∑
i=1

fi(b)

(
i∑

l=1
Φl(a)Φl(x)Φl(a)

)
Φi(b) =

=
n∑

i=1
fi(a)Φi(b)Φi(x)Φi(b)Φi(a) +

n∑
i=1

fi(b)Φi(a)Φi(x)Φi(a)Φi(b) =

=
n∑

i=1
fi(a)Φi(b)Φi(x)

i∑
l=1

Φl(b)Φl(a) +
n∑

i=1
fi(b)Φi(a)Φi(x)

i∑
l=1

Φl(a)Φl(b) =

= fn(a)Φn(b)Φn(x)
i∑

l=1
Φl(b)Φl(a) +

n−1∑
i=1

fi(a)Φi(b)Φi(x)
i∑

l=1
Φl(b)Φl(a)+

+fn(b)Φn(a)Φn(x)
i∑

l=1
Φl(a)Φl(b) +

n−1∑
i=1

fi(b)Φi(a)Φi(x)
i∑

l=1
Φl(a)Φl(b).

(3.9)

On the other hand, by Lemma 3.1 (ii)., we have

fn(W ) = fn((ab)x(ba) + (ba)x(ab)) =
n∑

i=1

fi(ab)Φi(x)Φi(ba) + fi(ba)Φi(x)Φi(ab).

Since F is a GJHH and Θ is the RJHH, then

fn(W ) =
n∑

i=1
fi(ab)Φi(x)

(
i∑

l=1
Φl(a)Φl(b) + Φl(b)Φl(a)−Φi(ab)

)
+

+
n∑

i=1

(
i∑

l=1
fl(a)Φl(b) + fl(b)Φl(a)− fi(ab)

)
Φi(x)Φi(ab) =

=
n∑

i=1
fi(ab)Φi(x)

i∑
l=1

Φl(a)Φl(b) +
n∑

i=1
fi(ab)Φi(x)

i∑
l=1

Φl(b)Φl(a)−

−
n∑

i=1
fi(ab)Φi(x)Φi(ab) +

n∑
i=1

i∑
l=1

fl(a)Φl(b)Φi(x)Φi(ab)+

+
n∑

i=1

i∑
l=1

fl(b)Φl(a)Φi(x)Φi(ab)−
n∑

i=1
fi(ab)Φi(x)Φi(ab) =

= −
n∑

i=1
fi(ab)Φi(x)(ab)i −

n∑
i=1

fi(ab)Φi(x)(ab)i+

+
n∑

i=1
fi(a)Φi(b)Φi(x)Φi(ab) +

n∑
i=1

fi(b)Φi(a)Φi(x)Φi(ab) =

= −fnΦn(x)(ab)n −
n−1∑
i=1

fi(ab)Φi(x)(ab)i − fnΦn(x)(ab)n −
n−1∑
i=1

fi(ab)Φi(x)(ab)i+

+fn(a)fn(b)Φn(x)Φn(ab) +
n−1∑
i=1

fi(a)Φi(b)Φi(x)Φi(ab)+

+fn(b)fn(a)Φn(x)Φn(ab) +
n−1∑
i=1

fi(b)Φi(a)Φi(x)Φi(ab).

(3.10)

From (3.9) and (3.10), we have

0 = −fn(an)Φn(x)(a
b)n − fn(ab)Φn(x)(ab)

n + fn(a)Φn(b)Φn(x)

(
Φn(ab)−

n∑
l=1

Φl(b)Φl(a)

)
+

+fn(b)Φn(a)Φn(x)

(
Φn(ab)−

n∑
l=1

Φl(a)Φl(b)

)
−

n−1∑
i=1

fi(ab)Φi(x)(a
b)i −

n−1∑
i=1

fi(ab)Φi(x)(ab)
i+

+
n−1∑
i=1

fi(a)Φi(b)Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(b)Φl(a)

)
+

n−1∑
i=1

fi(b)Φi(a)Φi(x)

(
Φi(ab)−

i∑
l=1

Φl(a)Φl(b)

)
=

= −fn(ab)Φn(x)(a
b)n − fn(ab)Φn(x)(ab)

n + fn(a)Φn(b)Φn(x)(ab)
n + fn(b)Φn(a)Φn(x)(a

b)n−

−
n−1∑
i=1

fi(ab)Φi(x)(a
b)i −

n−1∑
i=1

fi(ab)Φi(x)(ab)
i +

n−1∑
i=1

fi(a)Φi(b)Φi(x)(ab)
i +

n−1∑
i=1

fi(b)Φi(a)Φi(x)(a
b)i =

= −(a∗
b)

n
Φn(x)(a

b)n − (ab∗)nΦx(ab)
n −

n−1∑
i=1

(ab∗)iΦi(x)(ab)
i −

n−1∑
i=1

(a∗
b)

i
Φi(x)(ab).

Therefore, by our assumption, we find that (ab∗)nΦn(x)(ab)n+(a∗b)
nΦn(x)(ab)n, for all a, b, x ∈

R, n ∈ IN .

Remark 3.3. Let F = (fi)i∈IN be a Generalized Jordan Triple Higher Homomorphism of a ring
R into a ring R′ and Θ = (Φi)i∈IN be the Relating Jordan Triple Higher Homomorphism. Then,
for all a, b, c ∈ R, n ∈ IN , we define:
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• S∗n(a, b, c) = fn(abc)−
n∑

i=1
fi(a)Φi(b)Φi(c);

• T ∗n(a, b, c) = fn(abc)−
n∑

i=1
fi(c)Φi(b)Φi(a).

Lemma 3.3. Let F = (fi)i∈N be a Generalized Jordan Triple Higher Homomorphisms of a ring
R into a ring R′ and Θ = (Φi)i∈IN be the Relating Jordan Triple Higher Homomorphism. Then

S∗n(a, b, c)Φn(x)Tn(a, b, c) + T ∗n(a, b, c)Φn(x)Sn(a, b, c) = 0, for all a, b, c, x ∈ R, n ∈ IN.

Proof. By Lemma 2.6, the statment of the Lemma is true for n = 1. Then, by induction, we as-
sume that S∗m(a, b, c)Φn(x)Tm(a, b, c) + T ∗m(a, b, c)Φm(x)Sm(a, b, c) = 0, for all a, b, c, x ∈ R,
m,n ∈ IN , m < n. Let

W = fn(abcxcba+ cbaxabc) =
n∑

i=1
fi(a)Φi(bcxcb)Φi(a) +

n∑
i=1

fi(c)Φi(baxab)Φi(c) =

=
n∑

i=1
fi(a)

i∑
l=1

Φl(b)Φl(cxc)Φl(b)Φi(a) +
n∑

i=1
fi(c)

i∑
l=1

Φl(b)Φl(axa)Φl(b)Φi(c) =

=
n∑

i=1
fi(a)

i∑
l=1

Φl(b)

(
l∑

t=1
Φt(c)Φt(x)Φt(c)

)
Φl(b)Φi(a) =

=
n∑

i=1
fi(c)

i∑
l=1

Φl(b)

(
l∑

t=1
Φt(a)Φt(x)Φt(a)

)
Φl(b)Φi(c) =

=
n∑

i=1
fi(a)Φi(b)Φi(c)Φi(x)Φi(c)Φi(b)Φi(a) +

n∑
i=1

fi(c)Φi(b)Φi(a)Φi(x)Φi(a)Φi(b)Φi(c) =

=
n∑

i=1

(
i∑

l=1
fl(a)Φl(b)Φl(c)

)
Φi(x)

(
i∑

l=1
Φl(c)Φl(b)Φl(a)

)
+

+
n∑

i=1

(
i∑

l=1
fl(c)Φl(b)Φl(a)

)
Φi(x)

(
i∑

l=1
Φl(a)Φl(b)Φl(c)

)
=

=

(
n∑
l=1

fl(a)Φl(b)Φl(c)

)
Φn(x)

(
n∑
l=1

Φl(c)Φl(b)Φl(a)

)
+

+
n−1∑
i=1

(
i∑

l=1
fl(a)Φl(b)Φl(c)

)
Φi(x)

(
i∑

l=1
Φl(c)Φl(b)Φl(a)

)
+

+

(
n∑
l=1

fl(c)Φl(b)Φl(a)

)
Φn(x)

(
n∑
l=1

Φl(a)Φl(b)Φl(c)

)
+

+
n−1∑
i=1

(
i∑

l=1
fl(c)Φl(b)Φl(a)

)
Φi(x)

(
i∑

l=1
Φl(a)Φl(b)Φl(c)

)
.

On the other hand by Lemma 3.1 (ii)., we get

W = fn((abc)x(cba) + (cba)x(abc)) =
n∑

i=1

fi(abc)Φi(x)Φi(cba) + fi(cba)Φi(x)Φi(abc).

Since

fn(abc+ cba) =
n∑

i=1
fi(a)Φi(b)Φi(c) + fi(c)Φi(b)Φi(a) and

Φn(abc + cba) =
n∑

i=1
Φi(a)Φi(b)Φi(c) + Φi(c)Φi(b)Φi(a), for all a, b, c ∈ R and n ∈ IN ,

then
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W =
n∑

i=1
fi(abc)Φi(x)

(
i∑

l=1
Φl(a)Φl(b)Φl(c)

)
+

n∑
i=1

fi(abc)Φi(x)

(
i∑

l=1
Φl(c)Φl(b)Φl(a)

)
−

−
n∑

i=1
fi(abc)Φi(x)Φi(abc) +

n∑
i=1

(
i∑

l=1
fl(a)Φl(b)Φl(c)

)
Φi(x)Φi(abc)+

+
n∑

i=1

(
i∑

l=1
fl(c)Φl(b)Φl(a)

)
Φi(x)Φi(abc)−

n∑
i=1

fi(abc)Φi(x)Φi(abc) =

= fn(abc)Φn(x)
i∑

l=1
Φl(a)Φl(b)Φl(c) +

n−1∑
i=1

fi(abc)Φi(x)
i∑

l=1
Φl(a)Φl(b)Φl(c)+

+fn(abc)Φn(x)
i∑

l=1
Φl(c)Φl(b)Φl(a) +

n−1∑
i=1

fi(abc)Φi(x)
i∑

l=1
Φl(c)Φl(b)Φl(a)−

−fn(abc)Φn(x)Φn(abc)−
n−1∑
i=1

fi(abc)Φi(x)Φi(abc) +
n∑
l=1

fl(a)Φl(b)Φl(c)Φl(x)Φn(abc)+

+
n−1∑
i=1

i∑
l=1

fl(a)Φl(b)Φl(c)Φi(x)Φi(abc) +
n∑
l=1

fl(c)Φl(b)Φl(a)Φn(x)Φn(abc)+

+
n−1∑
i=1

i∑
l=1

fl(c)Φl(b)Φl(a)Φi(x)Φi(abc)− fn(abc)Φn(x)Φn(abc)−
n−1∑
i=1

fi(abc)Φi(x)Φi(abc).

Now, comparing the right hand side of W, we obtain

0 =

(
fn(abc)−

n∑
l=1

fl(c)Φl(b)Φl(a)

)
Φn(x)

n∑
l=1

Φl(a)Φl(b)Φl(c)+

+

(
fn(abc)−

n∑
l=1

fl(a)Φl(b)Φl(c)

)
Φn(x)

n∑
l=1

Φl(c)Φl(b)Φl(a)−

−
(
fn(abc)−

n∑
l=1

fl(a)Φl(b)Φl(c)

)
Φn(x)Φn(abc)−

−
(
fn(abc)−

n∑
l=1

fl(c)Φl(b)Φl(a)

)
Φn(x)Φn(abc)+

+
n−1∑
i=1

(
fi(abc)−

i∑
l=1

fl(c)Φl(b)Φl(a)

)
Φi(x)

(
i∑

l=1
Φl(a)Φl(b)Φl(c)

)
+

+
n−1∑
i=1

(
fi(abc)−

i∑
l=1

fl(a)Φl(b)Φl(c)

)
Φi(x)

(
i∑

l=1
Φl(c)Φl(b)Φl(a)

)
−

−
n−1∑
i=1

(
fi(abc)−

i∑
l=1

fl(a)Φl(b)Φl(c)

)
Φi(x)Φi(abc)−

−
n−1∑
i=1

(
fi(abc)−

i∑
l=1

fl(c)Φl(b)Φl(a)

)
Φi(x)Φi(abc) =

= S∗n(a, b, c)Φn(x)Tn(a, b, c) + T ∗n(a, b, c)Φn(x)Sn(a, b, c)+

+
n−1∑
i=1

S∗i (a, b, c)Φi(x)Ti(a, b, c) + T ∗i (a, b, c)Φi(x)Si(a, b, c), for all a, b, c, x ∈ R and n ∈ IN .

Then, by our assumption, we get S∗n(a, b, c)Φn(x)Tn(a, b, c) + T ∗n(a, b, c)Φn(x)Sn(a, b, c) = 0,
for all a, b, c, x ∈ R, n ∈ IN .

Theorem 3.1. Let F = (fi)i∈IN be a Generalized Jordan Triple Higher Homomorphism of a
ring R into a 2-torsion-free prime ring R′ and Θ = (Φi)i∈IN be the Relating Jordan Triple
Higher Homomorphism. Then fi = ±Ψi, for all i ∈ IN , where Ψi ∈ Ψ = (Ψi)i∈IN and Ψ is a
Generalized Higher Homomorphism or a Generalized Higher Anti-Homomorphism.

Proof. We proceed by induction on n ∈ IN . By Lemma 2.7, the statment of the Theorem is true
for n = 1. Then we can assume that fm = ±Ψm, for all m,n ∈ IN , m < n. Now, we have two
cases:
Case I: If fm = ±Ψm, for allm,n ∈ IN , m < n and Ψm ∈ Ψ such that Ψ is a GHH. By Theorem
2.1, either

(i). Φi = ±δi, for all i ∈ IN and δi ∈ δ = (δi)i∈IN such that δ is a HH, or

(ii). Φi = ±δi, for all i ∈ IN and δi ∈ δ = (δi)i∈IN such that δ is a HAH.

If we have (i)., then Φn(abc) =
n∑

i=1
Φi(a)Φi(b)Φi(c) and this means Sn(a, b, c) = 0. Since

R′ is prime and Θ is onto, then by Lemma 3.3, we have either Tn(a, b, c) = 0 or S∗n(a, b, c) = 0,
for all a, b, c ∈ R, n ∈ IN . If Tn(a, b, c) = 0, for all a, b, c ∈ R, n ∈ IN , then as in the proof of
Theorem 2.1, we have Φi = ±δi, for all i ∈ IN and δ is a HAH and this will be a contradiction
with assumption (i). Therefore S∗n(a, b, c) = 0, for all a, b, c ∈ R, n ∈ IN , that is, fn(abc) =
n∑

i=1
fi(a)Φi(b)Φi(c).
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Let W = fn(abxab). Since F is a GJTHH and Φi ± δi, for all i ∈ IN and δi ∈ δ = (δi)i∈IN
such that δ is a HH,

W =
n∑

i=1
fi(ab)Φi(x)Φi(ab) = ±

n∑
i=1

fi(abc)Φi(x)
i∑

l=1
Φl(a)Φl(b) =

= ±fn(ab)Φn(x)
i∑

l=1
Φl(a)Φl(b)±

n−1∑
i=1

fi(ab)Φi(x)
i∑

l=1
Φl(a)Φl(b).

On the other hand, since S∗n(a, b, c) = 0, for all a, b, c ∈ R, n ∈ IN , then

W = fn(a(bxa)b) =
n∑

i=1
fi(a)Φi(bxa)Φi(b) = ±

n∑
i=1

fi(a)

(
i∑

l=1
Φl(b)Φl(xa)

)
Φi(b) =

= ±
n∑

i=1
fi(a)Φi(b)Φi(xa)Φi(b) = ±

n∑
i=1

fi(a)Φi(b)

(
i∑

l=1
Φl(x)Φl(a)

)
Φi(b) =

= ±
n∑

i=1

i∑
l=1

fl(a)Φl(b)Φi(x)
i∑

l=1
Φl(a)Φl(b) =

= ±
n∑
l=1

fl(a)Φl(b)Φl(x)
i∑

l=1
Φl(a)Φl(b)±

n−1∑
i=1

i∑
l=1

fl(a)Φl(b)Φl(x)
i∑

l=1
Φl(a)Φl(b).

By comparing the right hand side of W , we get

0 =

(
fn(ab)±

n∑
l=1

fl(a)Φl(b)

)
Φn(x)

n∑
l=1

Φl(a)Φl(b)+
n−1∑
i=1

(
fi(ab)±

i∑
l=1

fl(a)Φl(b)

)
Φi(x)

i∑
l=1

Φl(a)Φl(b).

Note that the assumption of Case I reduces the last equation to(
fn(ab)±

n∑
l=1

fl(a)Φl(b)

)
Φn(x)

n∑
l=1

Φl(a)Φl(b) = 0,

and this implies that
(
fn(ab)±

n∑
l=1

fl(a)Φl(b)

)
R′ = 0, for all a, b ∈ R, n ∈ IN . Since R′ is

prime, then fn(ab) = ±
n∑
l=1

fl(a)Φl(b) and this means fi = ±Ψi, for all i ∈ IN , Ψi ∈ Ψ =

(Ψi)i∈IN , where Ψ is a GHH.

Now, if have case (ii)., then Φn(abc) =
n∑

i=1
Φi(c)Φi(b)Φi(a), for all a, b, c ∈ R, n ∈ IN . Since

R′ is prime and Θ is onto, then by Lemma 3.3, we have either Sn(a, b, c) = 0 or T ∗n(a, b, c) = 0,
for all a, b, c ∈ R, n ∈ IN . If Sn(a, b, c) = 0, then as in the proof of Theorem 2.1, we get
Φi = ±Ψi, i ∈ IN , Ψi ∈ Ψ = (Ψi)i∈IN , where Ψ is a HH and this is a contradiction. Thus,

T ∗n(a, b, c) = 0 and this gives us fn(abc) =
n∑

i=1
fi(c)Φi(b)Φi(a), for all a, b, c ∈ R, n ∈ IN .

Let W = fn(abxab). Then

W =
n∑

i=1
fi(ab)Φi(x)Φi(ab) = ±

n∑
i=1

fi(ab)Φi(x)
i∑

l=1
Φl(b)Φl(a) =

= fn(ab)Φn(x)
n∑
l=1

Φl(b)Φl(a)±
n−1∑
i=1

fi(ab)Φi(x)
i∑

l=1
Φl(b)Φl(a).

On the other hand,

W = fn(a(bxa)b) =
n∑

i=1
fi(b)Φi(bxa)Φi(a) = ±

n∑
i=1

fi(b)

(
i∑

l=1
Φl(xa)Φl(b)

)
Φi(a) =

= ±
n∑

i=1
fi(b)Φi(xa)Φi(b)Φi(a) = ±

n∑
i=1

fi(b)

(
i∑

l=1
Φl(a)Φl(x)

)
Φi(b)Φi(a) =

=
n∑

i=1

i∑
l=1

fl(b)Φl(a)Φi(x)
i∑

l=1
Φl(b)Φl(a) =

n∑
l=1

flab)Φl(a)Φn(x)
n∑
l=1

Φl(b)Φl(a) =

=
n−1∑
i=1

i∑
l=1

fl(b)Φl(a)Φi(x)
i∑

l=1
Φl(b)Φl(a).

Comparing both right hand sides of W, we get

0 =

(
fn(ab)±

n∑
l=1

fl(b)Φl(a)

)
Φn(x)

n∑
l=1

Φl(b)Φl(a)+

+
n−1∑
i=1

(
fi(ab)±

i∑
l=1

fl(b)Φl(a)

)
Φi(x)

i∑
l=1

Φl(b)Φl(a).
(3.11)
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By the assumption of cases (i). and (ii). and since T ∗n(a, b, c) = 0, then the last line of
equation (3.11) becomes zero. Hence,(

fn(ab)±
n∑
l=1

fl(b)Φl(a)

)
Φn(x)

n∑
l=1

Φl(b)Φl(a) = 0.

Since R′ is prime, then fn(ab) = ±
n∑
l=1

fl(b)Φl(a), but this is a contradiction (this means we

have only case (i).).

Case II: If fm = ±Ψm, for all m,n ∈ IN , m < n and Ψm ∈ Ψ = (Ψi)i∈IN such that Ψ is a
GHAH, then by Theorem 2.1 we have either

(i′) Φi = ±δi, for all i ∈ IN , δi ∈ δ = (δi)i∈IN such that δ is a HH, or

(ii′) Φi = ±δi, for all i ∈ IN , δi ∈ δ = (δi)i∈IN such that δ is a HAH.

If we have case (i′)., then Φn(abc) =
n∑

i=1
Φi(a)Φi(b)Φi(c), for all a, b, c ∈ R, n ∈ IN . Since Θ

is onto and R′ is prime, then by Lemma 3.3 we have either Tn(a, b, c) = 0 or S∗n(a, b, c) = 0,
for all a, b, c ∈ R, n ∈ IN . If Tn(a, b, c) = 0, then as in the proof of Case I, we get Φi = ±δi,
for all i ∈ IN and δi ∈ δ = (δi)i∈IN such that δ is a HAH and this is a contradiction. Hence
S∗n(a, b, c) = 0. Again, as in the proof of case I above, we arrive at equation (3.11) and hence
by assumption of case II and (i′) and since S∗n(a, b, c) = 0. Thus, equation (3.11) becomes(
fn(ab)±

n∑
l=1

fl(a)Φl(b)

)
Φn(x)

n∑
l=1

Φl(a)Φl(b) = 0, for all a, b, x ∈ R, n ∈ IN , but this is a

contradiction with assumption of case II.

Hence, we have case (ii′)., which give us Φn(abc) =
n∑

i=1
Φi(c)Φi(b)Φi(a). Thus, by Lemma

3.3, we have either Sn(a, b, c) = 0 or T ∗n(a, b, c) = 0, for all a, b, c ∈ R, n ∈ IN . As in the proof
of Case I (ii)., if Sn(a, b, c) = 0, then Φi = ±Ψi, for all i ∈ IN , Ψi ∈ Ψ = (Ψi)i∈IN such that Ψ

is a HH, but this is a contradiction with assumption (ii′). Therefore, T ∗n(a, b, c) = 0. As in the
proof of case I (ii.), we have

0 =

(
fn(ab)±

n∑
l=1

fl(b)Φl(a)

)
Φn(x)

n∑
l=1

Φl(b)Φl(a)+
n−1∑
i=1

(
fi(ab)±

i∑
l=1

fl(b)Φl(a)

)
Φi(x)

i∑
l=1

Φl(b)Φl(a),

for all a, b, x ∈ R, n ∈ IN . By the assumption case II, the last term of the equation above becomes

zero. Since R′ is prime, then fn(ab) = ±
n∑
l=1

fl(b)Φl(a), for all a, b, c ∈ R, n ∈ IN and this means

fi = ±Ψi for all i ∈ IN , Ψi ∈ Ψ = (Ψi)i∈IN such that Ψ is a HAH.
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