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Abstract The object of the present paper is to study conharmonically flat generalized Sasakian-
space-forms and conharmonically locally φ−symmetric generalized Sasakian-space-forms. In-
teresting relations between conharmonic curvature tensor, projective curvature tensor and con-
formal curvature tensor of a generalized Sasakian-space-form of dimension greater than three
have been established. Obtained results are supported by illustrative examples.

1 Introduction

Recently, P. Alegre, D. Blair and A. Carriazo [2] introduced and studied generalized Sasakian-
space-forms. These space-forms are defined as follows:
Given an almost contact metric manifold M(φ, ξ, η, g), we say that M is generalized Sasakian-
space-form if there exist three functions f1, f2, f3 on M such that the curvature tensor R of M
is given by

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X
+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}

for any vector fieldsX,Y, Z onM. In such a case we denote the manifold asM(f1, f2, f3). These
kind of manifolds appear as a generalization of the well known Sasakian-space-forms, which
can be obtained as a particular case of generalized Sasakian-space-forms by taking f1 = c+3

4 ,

f2 = f3 = c−1
4 . But, it is to be noted that generalized Sasakian-space-forms are not merely gen-

eralization of Sasakian-space-forms. It also contains a large class of almost contact manifolds.
For example, it is known that [3] any three-dimensional (α, β)−trans Sasakian manifold with
α, β depending on ξ is a generalized Sasakian-space-form. However, we can find generalized
Sasakian-space-forms with non-constant functions and arbitrary dimensions. In [2], the authors
cited several examples of generalized Sasakian-space-forms in terms of warped product spaces.
In [9], U. K. Kim studied conformally flat generalized Sasakian-space-forms and locally sym-
metric generalized Sasakian-space-forms. In Riemannian geometry, one of the basic interests is
curvature property and to what extent this determines the manifold itself. Two important cur-
vature properties are flatness and symmetry. In the paper [5], we have studied projectively flat
generalized-Sasakian-space-forms. In [6], we also have studied locally φ−symmetric general-
ized Sasakian-space-forms. In this connection, it should be mentioned that in [10], T. Takahashi
introduced the notion of locally φ−symmetric manifolds in the context of Sasakian geometry. In
the present paper, we like to study conharmonically flat generalized Sasakian-space-forms and
conharmonically locally φ−symmetric generalized Sasakian-space-forms, because after confor-
mal and quasi-conformal curvature tensor, conharmonic curvature tensor is an important one
from the geometric point of view. Let M be a (2n + 1)−dimensional (n > 1) Riemannian
manifold of class C∞. The conharmonic curvature tensor C is considered as an invariant of the
conharmonic transformation defined by Y Ishii [8]. It satisfies all the symmetric properties of
the Riemannian curvature tensor. Conharmonic curvature tensor are also important from the
physical point of view. In [1], Abdussattar showed that sufficient condition for a space-time to
be conharmonic to a flat space-time is that the tensor C vanishes identically. A conharmonically
flat space-time is either empty, in which case it is flat, or, is filled with a distribution represented
by energy momentum tensor T possessing the algebraic structure of an electromagnetic field,
and is conformal to flat space-time [8]. Also, he described the gravitational field due to a distri-
bution of pure radiation in presence of disordered radiation, by means of spherically symmetric
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conharmonically flat space time. The present paper is organized as follows:
In Section 2 we review some preliminary results. In Section 3, we study conharmoically flat
generalized Sasakian-space-forms and obtain that if a generalized Sasakian-space-form of di-
mension greater than three is conharmonically flat, then it is projectively flat, the converse holds
when f1 = f3. Section 4 deals with conharmonically locally φ−symmetric generalized Sasakian-
space-forms. Here we prove that a conharmonically locally φ−symmetric generalized Sasakian-
space-form of dimension greater than three is conformally flat and the converse is also true if f1
and f3 are constants. In this section, we also show that if a generalized Sasakian space-form of
dimension greater than three is conharmonically locally φ−symmetric, then its scalar curvature
is constant, the converse is valid if f2 = 0. Both, Section 4 and Section 5 contains illustrative
examples to show the validity of the obtained results.

2 Preliminaries

In an almost contact metric manifold we have [4]

φ2X = −X + η(X)ξ, φξ = 0, (2.1)

η(ξ) = 1, g(X, ξ) = η(X), η(φX) = 0, (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

g(φX, Y ) = −g(X,φY ), g(φX,X) = 0, (2.4)

(∇Xη)(Y ) = g(∇Xξ, Y ), (2.5)

where φ is a (1, 1) tensor, ξ is a vector field, η is an 1−form and g is a Riemannian metric. The
metric g induces an inner product on the tangent space of the manifold. Again, we know that [2]
in a generalized Sasakian-space-form

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X
+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ} (2.6)

for any vector fields X,Y, Z on M, where R denotes the curvature tensor of M and f1, f2, f3 are
smooth functions on the manifold. The Ricci operator Q, Ricci tensor S and the scalar curvature
r of the manifold of dimension (2n+ 1) are respectively given by [9]

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ, (2.7)

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (3f2 + (2n− 1)f3)η(X)η(Y ), (2.8)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3. (2.9)

For a (2n+ 1)−dimensional (n > 1) almost contact metric manifold the conharmonic curvature
tensor C is given by

C(X,Y )Z = R(X,Y )Z − 1
2n− 1

[S(Y, Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ]. (2.10)

3 Conharmonically flat generalized Sasakian-space-forms

Definition 3.1. A (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form M is called
conharmonically flat if it satisfies

C(X,Y )Z = 0

for any vector fields X,Y, Z on the manifold.

Let us consider thatM is conharmonically flat. Then, by Definition 3.1 and using (2.6), (2.8)
and (2.10), we get
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f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X
+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}

=
2

2n− 1
(2nf1 + 3f2 − f3)(g(Y,Z)X − g(X,Z)Y )

+
1

2n− 1
(3f2 + (2n− 1)f3)(η(Y )η(Z)X

− η(X)η(Z)Y + η(X)ξ − η(Y )ξ). (3.1)

Replacing Z by φZ, we obtain from above

f1{g(Y, φZ)X − g(X,φZ)Y }

+ f2{g(X,φ2Z)φY − g(Y, φ2Z)φX + 2g(X,φY )φ2Z}
+ f3{g(X,φZ)η(Y )ξ − g(Y, φZ)η(X)ξ}

=
2

2n− 1
(2nf1 + 3f2 − f3)(g(Y, φZ)X − g(X,φZ)Y )

+
1

2n− 1
(3f2 + (2n− 1)f3)(η(X)ξ − η(Y )ξ). (3.2)

In (3.2), putting X = Z = ξ, we get

1
2n− 1

(3f2 + (2n− 1)f3)(ξ − η(Y )ξ) = 0. (3.3)

The above equation is true for any Y. If we choose Y other than ξ, then the above equation yields

f3 =
3f2

1− 2n
.

It is known that [5] a (2n + 1)−dimensional (n > 1) generalized Sasakian-space-form is pro-
jectively flat if and only f3 = 3f2

1−2n . Hence, we see that the manifold under consideration is
projectively flat.

Conversely, suppose that the manifold M is projectively flat. It is well known that a projec-
tively flat Riemannian manifold is a manifold of constant curvature. Hence, M is of constant
curvature λ, (say). Therefore, we have

R(X,Y )Z = λ(g(Y,Z)X − g(X,Z)Y ). (3.4)

The above equation yields
S(X,Y ) = 2nλg(X,Y ). (3.5)

From (2.10), (3.4) and (3.5), we get

C(X,Y )Z =
λ(1 + 2n)

1− 2n
(g(Y,Z)X − g(X,Z)Y ). (3.6)

From (3.6), it follows that M is not conharmonically flat if λ is non-zero. It is known that [5] a
projectively flat generalized Sasakian-space-form is flat if f1 = f3. Now, if we consider f1 = f3,
then the manifold is flat and hence by (3.4), λ = 0. In such case (3.6) yields C(X,Y )Z = 0.
Thus, we are in a position to state the following:

Theorem 3.2. If a (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form is conhar-
monically flat, then it is projectively flat, the converse holds when f1 = f3.

It is known that [5] a (2n + 1)−dimensional (n > 1) generalized Sasakian-space-form is
projectively flat if and only if it is Ricci semisymmetric. So, we can state the following:

Corollary 3.3. If a (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form is conhar-
monically flat, then it is Ricci semisymmetric, the converse holds when f1 = f3.
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Example 3.4. Let N(a, b) be a generalized complex space-form of dimension 4, then by [2],
M = R ×f N, endowed with the almost contact metric structure (φ, ξ, η, gf ) is a generalized
Sasakian-space-form M(f1, f2, f3) of dimension 5 with

f1 =
a− f ′2

f2 , f2 =
b

f2 , f3 =
a− f ′2

f2 +
f ′′

f

where f is a function of t ∈ R and f ′ denotes differentiation of f with respect to t. Let us choose
f as a constant. and a = −b. Then f3 = 3f2

1−2.2 and f1 = f3. Therefore, by Theorem 3.1 M is
conharmonically flat.

4 Conharmonically locally φ−symmetric generalized Sasakian-space-forms

Definition 4.1. A (2n+1)−dimensional (n > 1) generalized Sasakian-space-form will be called
conharmonically locally φ−symmetric if it satisfies φ2(∇WC)(X,Y )Z = 0, for all X,Y, Z
orthogonal to ξ.

In this connection it should be mentioned that the notion of locally φ−symmetric manifolds
was introduced by T. Takahashi [10] in the context of Sasakian geometry.

From (2.6), (2.7), (2.8) and (2.10), we get by covariant differentiation

(∇WC)(X,Y )Z = df1(W ){g(Y,Z)X − g(X,Z)Y }
+ df2(W ){g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f2{g(X,φZ)(∇Wφ)Y + g(X, (∇Wφ)Z)φY

− g(Y, φZ)(∇Wφ)X − g(Y, (∇Wφ)Z)φX

+ 2g(X,φY )(∇Wφ)Z + 2g(X, (∇Wφ)Y )φZ}
+ df3(W ){η(X)η(Z)Y − η(Y )η(Z)X
+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}
+ f3{(∇W η)(X)η(Z)Y + η(X)(∇W η)(Z)Y

− (∇W η)(Y )η(Z)X − η(Y )(∇W η)(Z)X

+ g(X,Z)(∇W η)(Y )ξ + g(X,Z)η(Y )(∇W ξ)

− g(Y, Z)(∇W η)(X)ξ − g(Y,Z)η(X)(∇W ξ)}

− 1
2n− 1

[d(2nf1 + 3f2 − f3)(W )g(Y,Z)X

− (3f2 + (2n− 1)f3)((∇W η)(Y )η(Z) + η(Y )(∇W η)(Z))X

− d(3f2 + (2n− 1)f3)η(Y )η(Z)X

− d(2nf1 + 3f2 − f3)(W )g(X,Z)Y

+ (3f2 + (2n− 1)f3)((∇W η)(X)η(Z) + η(X)(∇W η)(Z))

+ d(3f2 + (2n− 1)f3)(W )η(X)η(Z)Y ]

− 1
2n− 1

[d(2nf1 + 3f2 − f3)(W )(g(Y,Z)X − g(X,Z)Y )

− d(3f2 + (2n− 1)f3)(W )(η(X)ξ − η(Y )ξ
+ (∇W η)(X)ξ − (∇W η)(Y )ξ

+ η(X)∇W ξ − η(Y )∇W ξ)], (4.1)

where ∇ denotes covariant differentiation on M with respect to Levi-Civita connection. Taking
X,Y, Z orthogonal to ξ, we get from (4.1)
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(∇WC)(X,Y )Z = df1(W ){g(Y,Z)X − g(X,Z)Y }
+ df2(W ){g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f2{g(X,φZ)(∇Wφ)Y + g(X, (∇Wφ)Z)φY

− g(Y, φZ)(∇Wφ)X − g(Y, (∇Wφ)Z)φX

+ 2g(X,φY )(∇Wφ)Z + 2g(X, (∇Wφ)Y )φZ}

− 2
2n− 1

d(2nf1 + 3f2 − f3)(W )(g(Y,Z)X − g(X,Z)Y ). (4.2)

From (4.2), using (2.1) and considering X,Y, Z orthogonal to ξ, we get

φ2(∇WC)(X,Y )Z =− df1(W ){g(Y,Z)X − g(X,Z)Y }
− df2(W ){g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
− f2{g(X,φZ)(∇Wφ)Y + g(X, (∇Wφ)Z)φY

− g(Y, φZ)(∇Wφ)X − g(Y, (∇Wφ)Z)φX

+ 2g(X,φY )(∇Wφ)Z + 2g(X, (∇Wφ)Y )φZ}

+
2

2n− 1
d(2nf1 + 3f2 − f3)(W )(g(Y,Z)X − g(X,Z)Y ). (4.3)

Suppose that the manifold is conharmonically locally φ−symmetric. Then from (4.3) we obtain

df1(W ){g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}
+ df2(W ){g(X,φZ)g(φY,W )− g(Y, φZ)g(φX,W ) + 2g(X,φY )g(φZ,W )}
+ f2{g(X,φZ)g((∇Wφ)Y,W ) + g(X, (∇Wφ)Z)g(φY,W )

− g(Y, φZ)g((∇Wφ)X,W )− g(Y, (∇Wφ)Z)g(φX,W )

+ 2g(X,φY )g((∇Wφ)Z,W ) + 2g(X, (∇Wφ)Y )g(φZ,W )}

− 2
2n− 1

d(2nf1 + 3f2 − f3)(W )(g(Y,Z)g(X,W )− g(X,Z)g(Y,W ))

= 0. (4.4)

Putting X = W = ei, where {ei} is an orthonormal basis of the tangent space at each point of
the manifold, and taking summation over i, i = 1, 2, ...., 2n+ 1, we get

2ndf1(W )g(Y, Z)

+ 3df2(W )g(Y,Z)

+ f2{g(φZ, (∇eiφ)Y ) + g((∇eiφ)Z, φY )

−
∑
i

g(Y, φZ)g((∇eiφ)ei, ei)

+ 2g(φY, (∇eiφ)Z) + 2g((∇eiφ)Y, φZ)

− 4n
2n− 1

d(2nf1 + 3f2 − f3)(W )g(Y,Z). (4.5)

Putting Z = φY, we have from the above equation

f2{g(φ2Y, (∇eiφY )) + g((∇eiφ)φY, φY )

−
∑
i

g(Y, φ2Y )g((∇eiφ)ei, ei)

+ 2g(φY, (∇eiφ)φY ) + 2g((∇eiφ)Y, φ
2Y )

= 0. (4.6)

The above equation is true for any arbitrary Y orthogonal to ξ. Considering Y other than ξ, we
get from (4.6)

f2 = 0. (4.7)



Generalized Sasakian-Space-Forms............ 89

It is known that [9] a generalized Sasakian-space-form is conformally flat if and only if f2 = 0.
Thus, the manifold under consideration is conformally flat.

Conversely, let the manifold is conformally flat. Therefore, f2 = 0. Then (4.3) yields

φ2(∇WC)(X,Y )Z = −df1(W ) +
2

2n− 1
d(2nf1 − f3)(W )(g(Y, Z)X − g(X,Z)Y ). (4.8)

From the above equation it follows that if f1 and f3 are constants, then it is conharmonically
locally φ−symmetric. The above discussion helps us to state the following:

Theorem 4.2. If a (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form is conhar-
monically locally φ−symmetric, then it is conformally flat. The converse is true when f1 and f3
are constants.

Again suppose that the manifold is conharmonically locally φ−symmetric. Then by (4.7)
and (4.4), it follows that

df1(W )(g(Y,Z)g(X,W )− g(X,Z)g(Y,W ))

− 2
2n− 1

d(2nf1 − f3)(W )(g(Y,Z)g(X,W )− g(X,Z)g(Y,W )) = 0. (4.9)

From the above equation

df1(W )− 2
2n− 1

d(2nf1 − f3)(W ) = 0.

The above equation gives

f1 −
2

2n− 1
(2nf1 − f3) = constant.

The above equation yields
(2n+ 1)f1 − 2f3 = k, (4.10)

where k is constant. From (2.9), and (4.7) we have

r = 2n(2n+ 1)f1 − 4nf3

= 2n((2n+ 1)f1 − 2f3). (4.11)

In view of (4.10) and (4.11), it follows that r = a constant. Hence, we see that if M is conhar-
monically locally φ−symmetric, then r is a constant.

Conversely, if r is a constant, then by (2.9), ((2n+ 1)f1 + 3f2 − 2f3) is a constant. Which
implies

d((2n+ 1)f1 + 3f2 − 2f3)(W ) = 0. (4.12)

If we consider f2 = 0, then the above equation yields

d(f1)(W ) =
2

2n− 1
(2nf1 − f3)(W ). (4.13)

In view of (4.13), (4.3) takes the form

φ2(∇WC)(X,Y )Z = 0. (4.14)

From (4.14), it follows that the manifold is conharmonically locally φ−symmetric. Now, we are
in a position to state the following:

Theorem 4.3. If a (2n+ 1)−dimensional (n > 1) generalized Sasakian-space-form is conhar-
monically locally φ−symmetric then its scalar curvature is constant, the converse holds when
f2 = 0.

Example 4.4. Let us now give an example of a generalized Sasakian-space-form which is con-
harmonically locally φ−symmetric.

In [2], it is shown that R×f Cm is a generalized Sasakian-space-form with

f1 = −
(f ′2

f2 , f2 = 0, f3 = −
(f ′2

f2 +
f ′′

f
,

where f = f(t), t ∈ R and f ′ denotes derivative of f with respect to t. If we choose m = 4,
and f(t) = et, then M is a 5−dimensional conformally flat generalized Sasakian-space-form,
because f2 = 0. We also see that f1 and f3 are constants. Therefore, by Theorem 4.1 M is
conharmonically locally φ−symmetric. Again from (2.9), and the values of f1, f2, f3, it follows
that the scalar curvature of the manifold is constant.
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Example 4.5. For a Sasakian-space-form of dimension greater than three and of constant φ−sectional
curvature 1, f1 = 1, f2 = f3 = 0. So, it is conharmonically locally φ−symmetric and its scalar
curvature is constant.

Remark 4.6. The notion of quarter-symmetric metric connection was introduced by S. Golab
[7]. The torsion tensor of the quarter-symmetric metric connection is given by

T (X,Y ) = η(Y )X − η(X)Y.

IfX,Y are orthogonal to ξ, then the torsion tensor vanishes and the quarter-symmetric metric
connection reduces to Levi-Civita connection. Therefore, all the results of Section 4 are of the
same form with respect to quarter-symmetric metric connection and Levi-Civita connection.
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