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Abstract The object of the present paper is to study conharmonically flat generalized Sasakian-
space-forms and conharmonically locally ¢—symmetric generalized Sasakian-space-forms. In-
teresting relations between conharmonic curvature tensor, projective curvature tensor and con-
formal curvature tensor of a generalized Sasakian-space-form of dimension greater than three
have been established. Obtained results are supported by illustrative examples.

1 Introduction

Recently, P. Alegre, D. Blair and A. Carriazo [2] introduced and studied generalized Sasakian-
space-forms. These space-forms are defined as follows:

Given an almost contact metric manifold M (¢, £, 7, g), we say that M is generalized Sasakian-
space-form if there exist three functions fi, f>, f3 on M such that the curvature tensor R of M
is given by

RX,Y)Z = fi{g(Y,2)X —g(X,Z)Y}
+  {9(X,02)9Y — g(Y,0Z)pX +29(X, ¢Y ) Z}
+  HInXOn(2)Y —n(Y)n(2)X
+ 9(X, Z2)n(Y)e - g(Y, Z)n(X)¢}

for any vector fields X, Y, Z on M. In such a case we denote the manifold as M ( fi, f2, f3). These
kind of manifolds appear as a generalization of the well known Sasakian-space-forms, which
can be obtained as a particular case of generalized Sasakian-space-forms by taking f; = %3,
h=f= CZI . But, it is to be noted that generalized Sasakian-space-forms are not merely gen-
eralization of Sasakian-space-forms. It also contains a large class of almost contact manifolds.
For example, it is known that [3] any three-dimensional («, 3)—trans Sasakian manifold with
«, 8 depending on £ is a generalized Sasakian-space-form. However, we can find generalized
Sasakian-space-forms with non-constant functions and arbitrary dimensions. In [2], the authors
cited several examples of generalized Sasakian-space-forms in terms of warped product spaces.
In [9], U. K. Kim studied conformally flat generalized Sasakian-space-forms and locally sym-
metric generalized Sasakian-space-forms. In Riemannian geometry, one of the basic interests is
curvature property and to what extent this determines the manifold itself. Two important cur-
vature properties are flatness and symmetry. In the paper [5], we have studied projectively flat
generalized-Sasakian-space-forms. In [6], we also have studied locally ¢—symmetric general-
ized Sasakian-space-forms. In this connection, it should be mentioned that in [10], T. Takahashi
introduced the notion of locally ¢—symmetric manifolds in the context of Sasakian geometry. In
the present paper, we like to study conharmonically flat generalized Sasakian-space-forms and
conharmonically locally ¢p—symmetric generalized Sasakian-space-forms, because after confor-
mal and quasi-conformal curvature tensor, conharmonic curvature tensor is an important one
from the geometric point of view. Let M be a (2n + 1)—dimensional (n > 1) Riemannian
manifold of class C°°. The conharmonic curvature tensor C is considered as an invariant of the
conharmonic transformation defined by Y Ishii [8]. It satisfies all the symmetric properties of
the Riemannian curvature tensor. Conharmonic curvature tensor are also important from the
physical point of view. In [1], Abdussattar showed that sufficient condition for a space-time to
be conharmonic to a flat space-time is that the tensor C' vanishes identically. A conharmonically
flat space-time is either empty, in which case it is flat, or, is filled with a distribution represented
by energy momentum tensor 7" possessing the algebraic structure of an electromagnetic field,
and is conformal to flat space-time [8]. Also, he described the gravitational field due to a distri-
bution of pure radiation in presence of disordered radiation, by means of spherically symmetric
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conharmonically flat space time. The present paper is organized as follows:

In Section 2 we review some preliminary results. In Section 3, we study conharmoically flat
generalized Sasakian-space-forms and obtain that if a generalized Sasakian-space-form of di-
mension greater than three is conharmonically flat, then it is projectively flat, the converse holds
when f; = f3. Section 4 deals with conharmonically locally ¢—symmetric generalized Sasakian-
space-forms. Here we prove that a conharmonically locally ¢—symmetric generalized Sasakian-
space-form of dimension greater than three is conformally flat and the converse is also true if f;
and f3 are constants. In this section, we also show that if a generalized Sasakian space-form of
dimension greater than three is conharmonically locally ¢—symmetric, then its scalar curvature
is constant, the converse is valid if f, = 0. Both, Section 4 and Section 5 contains illustrative
examples to show the validity of the obtained results.

2 Preliminaries

In an almost contact metric manifold we have [4]

@X =X +n(X)§, ¢£=0, 2.1)

n() =1, g(X.§) =n(X), n(¢X)=0, 2.2)
9(¢X,0Y) = g(X,Y) — n(X)n(Y), (2.3)
9(¢X,Y) = —g(X,0Y), g(6X,X)=0, (2.4)
(Vxn)(Y) = g(Vx&Y), 2.5)

where ¢ is a (1, 1) tensor, £ is a vector field, n is an 1—form and g is a Riemannian metric. The
metric ¢ induces an inner product on the tangent space of the manifold. Again, we know that [2]
in a generalized Sasakian-space-form
R(X,Y)Z = fi{g(Y,Z)X — g(X, Z)Y'}

+ 2{9(X,02)¢Y — g(Y,02)¢ X +29(X, ¢Y)dZ}

+ L{nX)n(2)Y —n(Y)n(2)X

+9(X, Z)n(Y)§ — g(Y, Z)n(X)¢} (2.6)
for any vector fields X, Y, Z on M, where R denotes the curvature tensor of M and fi, f>, f3 are

smooth functions on the manifold. The Ricci operator @, Ricci tensor S and the scalar curvature
r of the manifold of dimension (2n + 1) are respectively given by [9]

QX = 2nfi+3fr— )X — Bf2+ 2n—1)f3)n(X)E, 2.7
S(X,Y) = (2nfi+3fr— f2)9(X,Y) = Bf2+ 2n—1)f3)n(X)n(Y), (2.8)
r=2n2n+1)fi +6nf, —4nf;. (2.9)

For a (2n + 1)—dimensional (n > 1) almost contact metric manifold the conharmonic curvature
tensor C'is given by

CO(X.¥)Z = R(X.Y)Z ~ 5 !

——[S(Y.2)X - S(X, 2)Y

+9(Y, Z)QX — g(X, Z)QY]. (2.10)

3 Conharmonically flat generalized Sasakian-space-forms

Definition 3.1. A (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form M is called
conharmonically flat if it satisfies

C(X,Y)Z=0
for any vector fields X, Y, Z on the manifold.

Let us consider that M is conharmonically flat. Then, by Definition 3.1 and using (2.6), (2.8)
and (2.10), we get
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eV, 2)X — g(X, Z2)Y}

+ f{9(X,02)9Y — g(Y,0Z)pX +29(X, 8Y)pZ}
+ f3{n(X)n(2)Y —n(Y)n(Z2)X

+9(X, Z)n(Y)E — g(Y, Z)n(X)E}

- 2n2— 1 2nfi+35 = f)(9(Y, 2)X —g(X, 2)Y)

+

51 B2+ 2= D f3)(n(Y)n(Z2)X
—n(X)n(Z2)Y +n(X)€ —n(Y)E). (3.1)
Replacing Z by ¢Z, we obtain from above
f{g(Y,02)X — g(X,02)Y}
+ f{g(X, 0 2)¢Y — g(Y,¢*2)$X +29(X, 6Y)d*Z}
+ f{9(X, 0Z)n(Y)E - (Y, 0Z)n(X)E}

- 2n2_ [ @nfi+3 = f5)(9(Y,62)X — g(X,62)Y)

S B2 (20— D) (X)E —n(Y)e) (32)

+

In (3.2), putting X = Z = &, we get

57 B2+ 20 = 1) f3) (€ = n(Y)E) = 0. (3.3)

The above equation is true for any Y. If we choose Y other than £, then the above equation yields

3f2

h=1"2

It is known that [5] a (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form is pro-
jectively flat if and only f3 = 13_f22n Hence, we see that the manifold under consideration is
projectively flat.

Conversely, suppose that the manifold M is projectively flat. It is well known that a projec-
tively flat Riemannian manifold is a manifold of constant curvature. Hence, M is of constant
curvature )\, (say). Therefore, we have

R(X,Y)Z = Ag(Y, 2)X — g(X, Z)Y). (3.4)

The above equation yields
S(X,Y) =2n)\g(X,Y). (3.5)

From (2.10), (3.4) and (3.5), we get

A1+ 2n)

X Y)Z =
cx.Y) 1—-2n

(9(Y,2)X — g(X, 2)Y). (3.6)
From (3.6), it follows that M is not conharmonically flat if X is non-zero. It is known that [5] a
projectively flat generalized Sasakian-space-form is flat if f; = f3. Now, if we consider f; = f3,
then the manifold is flat and hence by (3.4), A = 0. In such case (3.6) yields C(X,Y)Z = 0.
Thus, we are in a position to state the following:

Theorem 3.2. If a (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form is conhar-
monically flat, then it is projectively flat, the converse holds when f; = f5.

It is known that [5] a (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form is
projectively flat if and only if it is Ricci semisymmetric. So, we can state the following:

Corollary 3.3. If a (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form is conhar-
monically flat, then it is Ricci semisymmetric, the converse holds when f| = f5.
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Example 3.4.Let N(a,b) be a generalized complex space-form of dimension 4, then by [2],
M = R x; N, endowed with the almost contact metric structure (¢, &, 7, gy) is a generalized
Sasakian-space-form M (fi, f2, f3) of dimension 5 with

_f/2 b _f/2 f//
afz ) f2:Pa f3:af2 +7

fi=

where f is a function of ¢ € R and ' denotes dlfferentlatlon of f with respect to ¢. Let us choose
f as a constant. and a = —b. Then f3 = 1 22 and f; = f;. Therefore, by Theorem 3.1 M is
conharmonically flat.

4 Conharmonically locally ¢ —symmetric generalized Sasakian-space-forms

Definition 4.1. A (2n+ 1)—dimensional (n > 1) generalized Sasakian-space-form will be called
conharmonically locally ¢—symmetric if it satisfies ¢*(VyC)(X,Y)Z = 0, for all X,Y,Z
orthogonal to &.

In this connection it should be mentioned that the notion of locally ¢—symmetric manifolds
was introduced by T. Takahashi [10] in the context of Sasakian geometry.
From (2.6), (2.7), (2.8) and (2.10), we get by covariant differentiation

(VwOX,Y)Z = dfi (W){g(Y, 2)X = g(X, 2)Y}
+dL(W){9(X,02)¢Y — g(Y,0Z)pX +29(X, Y )dZ}
+ {9(X,0Z)(Vwo)Y + g(X, (Vwe)Z)pY
= 9(Y,0Z)(Vw o)X — g(Y, (Vw¢) Z)opX
+29(X, oY) (Vwo)Z +29(X, (Vwo)Y)9Z}
+dfs(W){n(X)n(2)Y —n(Y)n(2)X
+9(X, Z)n(Y)E — g(Y, Z)n(X)&}

+ H{Vwn) (X)n(2)Y +n(X)(Vwn)(Z2)Y
= (Vwn)(Y)n(Z2)X —n(Y)(Vwn)(Z2)X
+9(X, Z)(Vwn) (V)€ + (X, Z)n(Y)(Vwé)
—9(Y, 2)(Vwn)(X)E — g(Y, Z)n(X)(Vwé)}

- %%[d(znfl +3h = f)W)g(Y, 2)X
+

— Bf+ @n— DA (Vwn)(YV)n(Z) + (V) (Vwn)(2)X
—d(3f2+ (2n— 1) f)n(Y)n(2)X
—d(2nfi +3f = f)(W)g(X, Z2)Y

)n
(
+ @f2+ 2n = D) (V) (X)n(Z) + n(X)(Vwn)(2))
+d(3f2+ (2n—1) ) (W)n(X)n(2)Y]

— sl 36— ) (V)(9(Y 2)X ~ g(X, 2)Y)

—dBfa+ (2n—1)f)(W)(n(X)E —n(Y)E
+ (V) (X)€ — (Vwn)(Y)E
+n(X)Vwé —n(Y)VwE)], 4.1)

where V denotes covariant differentiation on M with respect to Levi-Civita connection. Taking
X, Y, Z orthogonal to £, we get from (4.1)



88 Avijit Sarkar, Matilal Sen and Ali Akbar

(VwOI(X.Y)Z = df (W){g(Y, 2)X = 9(X, 2)Y}
+dh(W){g(X,62)8Y — g(Y,$2)dX +29(X, Y )2}
+ 2{9(X,02)(Vw )Y + g(X, (Vw¢)Z)oY
—9(Y,0Z)(Vw) X —g(Y, (Vw¢) Z)pX
+29(X, ¢Y)(Vw ) Z +29(X, (Vw §)Y )92}

S d2nfi+3L— [3)(W)(9(Y. 2)X - (X, Z)Y). 4.2)

From (4.2), using (2.1) and considering X, Y, Z orthogonal to £, we get
PH(VwC) (X, Y)Z = —dfi(W){g(Y, 2)X — g(X,Z)Y}
—dL(W{g(X,902)0Y — g(Y,Z)pX + 29(X, ¢Y )0 Z}
— f{9(X,02)(Vw )Y + 9(X, (Vw¢)Z)¢Y
—9(Y,02)(Vwo) X — g(Y, (Vw o) Z)pX
+29(X,0Y)(Vw o) Z +29(X, (Vw)Y)oZ}

+

2712_ 1d(2nf1 +3f, — f3)(W) (g(Y, Z)X — g(X, Z)Y) 4.3)

Suppose that the manifold is conharmonically locally ¢—symmetric. Then from (4.3) we obtain
dfi(W){g(Y, 2)g(X, W) — g(X, Z)g(Y, W)}
+ dL(W){g(X, 62)g(oY, W) — g(Y,0Z)g(¢X, W) + 29(X, ¢Y )g(¢Z, W)}
+ 2{9(X,02)9(Vw )Y, W) + (X, (Vw¢)Z)g(¢Y, W)
—9(Y,02)g(Vw o)X, W) — g(Y, (Vw¢) Z)g(¢ X, W)
+29(X, 0Y)g(Vw ) Z, W) + 29(X, (Vw)Y)g(oZ, W)}

= 5,721 +3f2 = )W) (9(Y, 2)9(X, W) = g(X, Z)9(Y, W)

=0. 4.4)
Putting X = W = ¢;, where {e;} is an orthonormal basis of the tangent space at each point of
the manifold, and taking summation over i,7 = 1,2,.....,2n + 1, we get

2ndfy(W)g(Y, Z)

+3df,(W)g(Y, 2)

=+ f2{g(¢Z7 (velgﬁ)y) + g((v€i¢)Z7 ¢Y)
- Z 9(Y,02)g((Ve,9)ei, €:)
+29(¢Y,(Ve,0)Z) +29((Ve, 9)Y, 0Z)

4dn
2n —1

d(2nfi +3f2 = f3)(W)g(Y, 2). (4.5)
Putting Z = ¢Y, we have from the above equation

F{9(8%Y, (Ve,0Y)) + 9((Ve, 0)9Y. 0Y)

=29V, )g((Vesd)es, i)

+29(0Y, (Ve,0)0Y) +29((Ve,0)Y, ¢%Y)

=0. 4.6)

The above equation is true for any arbitrary Y orthogonal to £. Considering Y other than &, we
get from (4.6)

£, =0. 4.7)
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It is known that [9] a generalized Sasakian-space-form is conformally flat if and only if f, = 0.
Thus, the manifold under consideration is conformally flat.

Conversely, let the manifold is conformally flat. Therefore, f, = 0. Then (4.3) yields

2
2n —1
From the above equation it follows that if f; and f3 are constants, then it is conharmonically
locally ¢p—symmetric. The above discussion helps us to state the following:

P (VwC)(X,Y)Z = —dfi (W) +

d2nfi = )W) (g(Y, 2)X — g(X, 2)Y). (4.8)

Theorem 4.2. If a (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form is conhar-
monically locally ¢—symmetric, then it is conformally flat. The converse is true when f and f3
are constants.

Again suppose that the manifold is conharmonically locally ¢—symmetric. Then by (4.7)
and (4.4), it follows that

dfi(W)(g(Y, 2)g9(X, W) — g(X, Z)g(Y,W))

5140 = )W) (Y, 2)9(X, W) = g(X, Z)g(Y, W)) = 0. (4.9)

From the above equation

A (W) — 52 d(2nfi — fs)(W) =0,

The above equation gives

(2nf; — f3) = constant.

2
h=3,1

The above equation yields
2n+1)fi-2f =k, (4.10)
where k is constant. From (2.9), and (4.7) we have
r=2n2n+1)fi —4nfs
=2n((2n+1)f1 — 2f3). (4.11)

In view of (4.10) and (4.11), it follows that » = a constant. Hence, we see that if A/ is conhar-
monically locally ¢p—symmetric, then r is a constant.

Conversely, if r is a constant, then by (2.9), ((2n + 1) f; + 3f, — 2f3) is a constant. Which
implies

d((2n+1)fi +3f2 = 2f3)(W) = 0. (4.12)
If we consider f, = 0, then the above equation yields
2
d(f)(W) = 35— 2nfi = 5)(W). (4.13)
In view of (4.13), (4.3) takes the form
P (ViwC)(X,Y)Z =0. (4.14)

From (4.14), it follows that the manifold is conharmonically locally ¢—symmetric. Now, we are
in a position to state the following:

Theorem 4.3. If a (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form is conhar-
monically locally ¢—symmetric then its scalar curvature is constant, the converse holds when

f2=0.

Example 4.4. Let us now give an example of a generalized Sasakian-space-form which is con-
harmonically locally ¢—symmetric.

In [2], it is shown that R x s C™ is a generalized Sasakian-space-form with

”2 72 "

_u” Ly

f f f

where f = f(¢),t € R and f’ denotes derivative of f with respect to ¢. If we choose m = 4,
and f(t) = e, then M is a 5—dimensional conformally flat generalized Sasakian-space-form,
because f, = 0. We also see that f; and f3 are constants. Therefore, by Theorem 4.1 M is
conharmonically locally ¢—symmetric. Again from (2.9), and the values of fi, f>, f3, it follows
that the scalar curvature of the manifold is constant.

fi= =0, f3=
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Example 4.5. For a Sasakian-space-form of dimension greater than three and of constant ¢p—sectional
curvature 1, f; = 1, fo = f3 = 0. So, it is conharmonically locally ¢—symmetric and its scalar
curvature is constant.

Remark 4.6. The notion of quarter-symmetric metric connection was introduced by S. Golab
[7]. The torsion tensor of the quarter-symmetric metric connection is given by

T(X,Y)=nY)X —n(X)Y.

If X, Y are orthogonal to £, then the torsion tensor vanishes and the quarter-symmetric metric
connection reduces to Levi-Civita connection. Therefore, all the results of Section 4 are of the
same form with respect to quarter-symmetric metric connection and Levi-Civita connection.
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