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Abstract. We consider a finite horizon optimal control problem of a clamped Thermoelas-
tic plate system via a point control mechanism with the objective of minimizing a functional
capturing the energy of the system and its final state. In our approach, we invoke the available
theory on the linear-quadratic and Bolza type optimal control problems of infinite dimensional
systems in the literature [1, 16, 9, 18, 22] and in particular the theory of singular estimate con-
trol systems and their generalizations [25, 29], developed especially to address a certain class of
coupled parabolic-hyperbolic PDEs with point and boundary control. The main concern of this
paper, is the formulation of this particular thermoelastic system into the abstract framework of
the theory and most importantly the verification of the singular estimate assumption. Once this
is achieved, existence and regularity of optimal solutions are deduced along with the feedback
characterization of the optimal control via a self-adjoint operator solving a Riccati equation.

1 Introduction

In this paper, we consider a well established clamped thermoelastic plate system subject to inte-
rior point control with the objective of minimizing a generic Bolza type energy functional. The
well-posedness and regularity properties of the system in the clamped and hinged cases were
treated in several earlier works [21, 26, 27, 28]. Other works have considered similar types
of Bolza control models of this system when subject to thermal boundary control [11, 10]. A
comprehensive optimal control synthesis for some hyperbolic-parabolic systems with point and
boundary control, has been made possible by advances in the theory of optimal control of the
linear quadratic problem for infinite dimensional systems subject to unbounded controls. Such
synthesis involves a complete characterization of the optimal solutions and a feedback descrip-
tion of the optimal control via special operators which solve Riccati equations. While earlier
works on infinite dimensional systems have been concerned with systems driven by analytic
semigroups and unbounded controls which are meant to address point or boundary control of
parabolic partial differential equations, [1, 16, 9, 14, 18], more recent works have been con-
cerned with a theoretical framework for hybrid systems involving coupled parabolic-hyperbolic
partial differential equations [19, 2, 3, 20, 22]. These systems cover a wide range of control
applications in structure-acoustics, thermoelasticity, fluid-structure interactions and composite
beams [5, 13, 15, 8, 12, 4, 24].

In this context, a special class of control systems driven by strongly continuous semigroups
have been observed whereby the kernel of the control-to-state map satisfies a singular estimate,
and for which the prototype are special systems of parabolic-hyperbolic coupled partial differ-
ential equations with point or boundary control [5, 22]. However, the singular estimate property
which generalizes the class of analytic systems does not hold mutatis mutandis for non-analytic
semigroups and its verification occasionally requires proving special trace and interior regularity
results for hyperbolic and parabolic partial differential equations [11, 12]. Of special interest in
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the literature of optimal control, has been Bolza type problems concerned with final time target
states or which incorporate final time weights into the objective functionals [17, 18, 23]. It is
notable that the Bolza type objective functional introduces possible singularities in the optimal
state and control [18, 23, 25].

Further extensions of the theoretical framework have been developed to address a larger class
of hybrid systems with a weaker degree of analyticity which is mathematically manifested as a
weaker singular estimate property [3, 25, 29]. Such extensions were aimed to address a larger
class of systems in thermoelasticity and fluid-structure interactions [3, 12, 24].

In this work, we apply the theoretical framework developed in [29] to a Bolza problem in-
volving this system of thermoelasticity with clamped boundary conditions and interior point
control. The application entails a formulation of the system into the abstract framework of semi-
group language, and the verification of the main assumptions of the theory; most importantly
the singular estimate property. Once the assumptions are verified, the main conclusions of the
framework can be specialized to the system and in particular, regularity properties of the opti-
mal solutions are deduced along with a feedback characterization of the optimal control via a
self-adjoint operator solving a Riccati equation.

2 The Model

We consider a clamped thermoelastic plate system with rotational inertia (ρ > 0) subject to
interior point control

wtt − ρ∆wtt + ∆2w + ∆θ = 0, Ω× [0, T ]
θt − ∆θ − ∆wt = δ(x− x0)u(t), Ω× [0, T ]

}
(2.1)

where w(x, t) is the transversal displacement and θ(x, t) is the temperature of the plate which
occupies the open domain Ω in R2 or R3, subject to the clamped boundary conditions

w =
∂

∂ν
w = 0, ∂Ω× [0, T ] (2.2)

and Neumann thermal boundary conditions

∂

∂ν
θ + θ = 0, ∂Ω× [0, T ]. (2.3)

Moreover, we impose the initial conditions

θ(x, 0) = θ0(x), in Ω (2.4)

w(x, 0) = w0(x), in Ω (2.5)

wt(x, 0) = w1(x), in Ω. (2.6)

The interior temperature point control is described by the forcing term δ(x − x0)u(t) where
x0 is an interior point in Ω and u(t) is the control function.

It is well known that the uncontrolled dynamics for this model are driven by a c0 semigroup
on the state space

H = H2(Ω) ∩H1
0 (Ω)×H1

0 (Ω)× L2(Ω)

which is the natural energy space [18, 11].
We are particularly interested in a Bolza type optimal control of this system with the objective

of minimizing an energy functional

J(u,w,wt, θ) =

∫ T

0
‖u(t)‖2

U + ‖w(·, t)‖2
H2−2α(Ω) + ‖wt(·, t)‖

2
H1−α(Ω) + ‖θ(·, t)‖

2
H−α(Ω) dt

+ ‖w(·, T )‖2
H2−2α(Ω) + ‖wt(·, T )‖

2
H1−α(Ω), (2.7)
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over all controls u(t) ∈ L2([0, T ];U) where U = R, given initial data in the (w0, w1, θ0) ∈ H.
Here, the parameter α is a positive parameter to be specified.

We note that the system, does not fall in the regular singular estimate control class of systems
typically involving coupled parabolic hyperbolic components featuring the property

‖eAtBu‖H ≤
C

tγ
(2.8)

for γ < 1 satisfied by the semigroup eAt which generates the solution to the uncontrolled sys-
tem and a control operator B : U → [D(A?)]′. For such class of systems, a complete linear
quadratic theory including feedback characterization and associated Riccati equations were de-
veloped, along with an extension to Bolza type problems. However, this particular system does
not possess a sufficient degree of analyticity, and satisfies instead a weaker form of the above
property. This weaker form of the property is captured by the condition

‖ReAtBu‖W ≤
C

tγ
(2.9)

and
‖GeAtBu‖Z ≤

C

tγ
(2.10)

for γ < 1 where G and R are observation operators and R and W are Hilbert observation spaces.
This explains the inclusion of slightly weaker norms in the Bolza type energy functional. For
the non-Bolza type objective (quadratic functional without final time penalization), a theoretical
framework was developed in [2] to address such systems with weak singular estimate, under
some additional conditions.

3 A Theoretical Framework of Optimal Control for Coupled Systems of
PDEs

Our aim to apply the theoretical framework developed in [29] and formulated in the next theorem
to this system. In particular, given the abstract linear differential equation

yt = Ay +Bu (3.1)

y(s) = ys (3.2)

defined on a Hilbert space Y and an objective functional

J(u,w,wt, θ) =

∫ T

s

‖u(t)‖2
U + ‖Ry(t)‖2

W dt+ ‖Gy(T )‖2
Z (3.3)

under the assumptions

(i) The linear operator A generates a c0 semigroup on the space Y (State Space).

(ii) The control operator B is linear acting from Hilbert space U (Control Space) to [D(A∗)]′,
or equivalently A−1B is bounded U → Y .

(iii) The operators R and G are bounded linear operators acting from state space Y into Hilbert
spaces W and Z, also known as the observation spaces.

(iv) There exists γ1, γ2 ∈ [0, 1] such that

‖ReAtBu‖W ≤
C

tγ1
‖u‖U (3.4)
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and

‖GeAtBu‖Z ≤
C

tγ2
‖u‖U (3.5)

for all t ∈ [0, 1] and any u ∈ U .

(v) The operator GLT where LT f =
∫ T
s
eA(T−t)Bf(t) dt, is a closed operator acting from

control space L2([s, T ];U) to observation space Z.

3.1 Preliminaries and Main Theorems

The solution to the problem (3.1), can be expressed using the variation of parameters formula as

y(t) = eA(t−s)ys +

∫ t

s

eA(t−τ)Bu(τ) dτ

which is well defined in C([s, T ]; [D(A?)]′) due to the well known properties of the control to
state map Ls defined by

Lsf =

∫ t

s

AeA(t−τ)A−1Bf(τ) dτ (3.6)

acting boundedly Lp([s, T ];U)→ C([s, T ]; [D(A?)]′). In addition, the map RLs acts boundedly
from Lp([s, T ];U)→ Lp([s, T ];W ) which is straightforward to show using the singular estimate
property (3.4) and Young’s inequality.

Under these assumptions, we invoke the following results established in [29]. The first Theo-
rem delineates existence and regularity of optimal state and control trajectories, while the second
theorem is concerned with the feedback characterization of the optimal control and the properties
of the gain operator which satisfies a Riccati equation.

Theorem 3.1. For any initial state ys ∈ Y there exists a unique optimal control u0(t, s, ys) ∈
L2([s, T ];U) and a unique optimal trajectory Ry0(t, s, ys) ∈ L2([s, T ];W ) such that

J(u0, y0, s, ys) = minu∈L2([s,T ],U)J(u, y(u), s, ys).

Moreover, the optimal solutions satisfy

(i) The optimal control u0(t) is continuous on [s, T ) with values in U , but has a singularity of
order γ = max{γ1, γ2} at the terminal time. In particular, we have

‖u0(t, s, ys)‖U ≤
C

(T − t)γ
, s ≤ t < T. (3.7)

(ii) The optimal state y0(·, s; ys) ∈ C([s, T ]; [D(A?)]′) for every ys ∈ Y .

(iii) The observed optimal output Ry0(t) is continuous on [s, T ] when γ1 ≤ γ2 and γ1 + γ2 < 1,
but has a singularity of order γ1 + γ − 1 otherwise. In particular, we have

‖Ry0(t, s, ys)‖W ≤
C

(T − t)γ1+γ−1+ε , s ≤ t < T, ε > 0. (3.8)

(iv) When 4γ1 + 2γ2 < 4, the function Ry0(·, s, Bu) corresponding to the feedback dynamics
satisfies

‖Ry0(t, s;Bu)‖W ≤
CT−s‖u‖U

(T − t)γ2(t− s)γ1
, s < t < T, (3.9)

for any u ∈ U where the constant CT−s blows up when T → s.
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(v) The observed optimal state at final time T , Gy0(T, s; ys) satisfies

‖Gy0(T, s; ys)‖Z ≤ CT ‖ys‖Y

for any ys ∈ Y where the constant CT is independent of s.

The second theorem is concerned with the feedback characterization of the optimal control
via an operator solving a Riccati equation, and its properties.

Theorem 3.2. Let γ = max{γ1, γ2}. Then, under the assumptions above, we have

(i) [Optimal cost and value function]
With J(u0, y0, s, ys) ≡ minu∈L2([s,T ],U) J(u, y(u), s, ys) we have that there exists a self–
adjoint positive operator P (t) ∈ L(Y ) with t ∈ [0, T ) such that 〈P (s)x, x〉Y = J(u0, y0, s, x).

(ii) [Singular behavior of the feedback operator ]

(a) P (t) is continuous on [s, T ] and P (t) ∈ L(Y,C([s, T ];Y )).
(b) The feedback operator B∗P (t) ∈ L(Y,C([s, T ), U)) exhibits the singularity

‖B∗P (t)x‖U ≤
C‖x‖Y
(T − t)γ

, s ≤ t < T. (3.10)

and

‖B∗eA
∗(z−t)P (z)x‖U ≤

C‖x‖Y
(T − t)γ

, ∀t ≤ z < T. (3.11)

(iii) [The optimal synthesis] The optimal control u0 is given by the feedback formula

u0(t, s; ys) = −B∗P (t)y0(t, s; ys), s ≤ t < T. (3.12)

(iv) [Riccati Equation ] If in addition 4γ1+2γ2 < 4, the operator P (t) satisfies the differential
Riccati equation with t < T, x, y ∈ D(A)

〈Ptx, y〉Y +〈P (t)x,Ay〉Y +〈P (t)Ax, y〉Y +〈Rx,Ry〉Z = 〈B∗P (t)x,B∗P (t)y〉U . (3.13)

lim
t→T

P (t)x = G∗Gx ∀x ∈ Y. (3.14)

(v) [Uniqueness of RE] The solution of the Riccati equation above is unique in the class of
positive and self–adjoint operators P (t) satisfying (3.10) with γ < 1

2 .

4 Application of the Theory to System (2.1)

To demonstrate the applicability of Theorem 1 and Theorem 2 to the system (2.1) under boundary
conditions (2.2) and control (2.3) with the objective of minimizing the cost functional (2.7), we
must first formulate the system into the abstract framework of section 3 and verify the conditions
of these theorems.

4.1 Abstract Formulation

Following [18, 11], we first rewrite the system (2.1) in the abstract linear form

yt = Ay +Bu (4.1)
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on the state space H
H = H2(Ω) ∩H1

0 (Ω)×H1
0 (Ω)× L2(Ω)

which is the natural energy space for the system (2.1).
Following [18, 11], we introduce the self adjoint operator A on L2(Ω) defined by

Ah = ∆
2h (4.2)

with domain
D(A) = {h ∈ H4(Ω) : h|∂Ω =

∂

∂ν
h|∂Ω = 0}. (4.3)

The fractional power A1/2 of this operator has a domain which can be identified with the space
H2(Ω)×H1

0 (Ω). We also introduce the self-adjoint operator AN on L2(Ω)

ANh = −∆h (4.4)

with domain
D(AN ) = {h ∈ H2(Ω) :

∂

∂ν
h+ h = 0 on ∂Ω}. (4.5)

The operator −AN is well known to generate an analytic semigroup e−AN t on the space L2(Ω).
We also follow [11] in introducing the operatorM on L2(Ω) given by

M = (I + ρAN ) (4.6)

with the well defined bounded inverseM−1.
Accordingly, we shall use the following equivalent norm on H

‖(w, z, θ)‖H = ‖w‖D(A1/2) + ‖z‖D(M1/2) + ‖θ‖L2(Ω).

This definition of AN allows us to incorporate the boundary condition (2.3) into the heat
equation in the form

θt = −ANwt −ANθ (4.7)

and then extend the action of the operator AN to act from L2(Ω) to [D(AN )]′.
Hence, the system (2.1) above can be expressed as the abstract differential equation

yt = Ay +Bu

where

y(t) =

 w

wt

θ

 (4.8)

and

A =

 0 I 0
−M−1A 0 M−1AN

0 −AN −AN

 (4.9)

On the other hand, the control operator B is the operator

B =

 0
0

δ(x− x0)

 (4.10)
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The operator A is well known to be maximal dissipative onH which implies that A generates
a c0 semigroup by the Lumer-Philips Theorem. The operator A is indeed dissipative, since the
inner product 〈Ay, y〉H ≤ 0 for all y ∈ H which is straightforward to compute. That A is
maximal, follows from the fact that the equation Ay? = y has a solution y? ∈ H for any given
right side y ∈ H.

Indeed, given y = (f, g, h) ∈ H, we seek (w, z, θ) ∈ H satisfying

z = f ∈ D(A1/2)

−M−1Aw +M−1ANθ = g

−ANz −ANθ = h

Therefore,

w = −A−1Mg −A−1(h+ANf) ∈ D(A3/4)

θ = −A−1
N (h+ANf) ∈ D(AN )

from which we conclude that the domain of A is

D(A) = D(A3/4)×D(A1/2)×D(AD). (4.11)

while the bounded inverse A−1 of A on H is identified as

A−1 =

 −A−1AN −A−1M −A−1

I 0 0
−I 0 −A−1

N

 . (4.12)

Hence, A generates a c0 semigroup on the state space H.
We claim that the control operator B acts from R → [D(A?)]′ or equivalently A−1B is a

bounded operator R→ H. Indeed, we have

A−1Bu =

 −A−1δ(x− x0)u(t)

0
−A−1

N δ(x− x0)u(t)

 (4.13)

and equivalently we must show δ(x − x0)u(t) ∈ [D(A1/2)]′ and [D(AN )]′. Since D(A1/2) is
identified with H2(Ω) ∩ H1

0 (Ω) and D(AN ) ⊂ H2(Ω), while H2(Ω) ⊂ C(Ω) for n ≤ 3, we
conclude [C(Ω)]′ ⊂ [D(A1/2)]′ and [C(Ω)]′ ⊂ [D(AN )]′ which establishes the claim [18].

4.2 The Singular Estimate Property

The crucial condition that must be verified is the generalized singular estimate condition (3.4)
and (3.5), (Assumption 4). We first define the space Hα for α > 0 by

Hα = D(Aα)

or equivalently
Hα = H2+α(Ω) ∩H1

0 (Ω)×H1+α
0 (Ω)×D(AαN ).

In particular, we designate the observation operator R = I on observation space W ≡ H−α
defined as the dual space of Hα with respect to the pivot space H and choose α > (n − 2)/2.
Equivalently

H−α = H2−α(Ω)×H1−α(Ω)×D(A−αN ).
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We also designate the second observation operator G whose action is defined by G(w, z, θ) =
(w, z) on observation space

Z ≡ D(A1/2−α/2)×D(M1/2−α/2).

with the norm ‖(f1, f2)‖Z equivalent to ‖f1‖H2−2α(Ω) + ‖f2‖H1−α(Ω).
Hence, to establish the singular estimate assumption, we prove the following theorem

Theorem 4.1. The kernel of the state to control map satisfies the singular estimate

‖eAtBu‖H−α ≤
C

t1/2+ε ‖u(t)‖L2(∂Ω) (4.14)

for α > (n− 2)/2.

Proof. We prove instead the equivalent estimate

‖B?eA
?ty‖L2(∂Ω) ≤

C

t3/4+ε ‖y‖Hα (4.15)

Computing the adjoint of A with respect to the space H we have

A? =

 0 −I 0
M−1A 0 −M−1AN

0 AN −AN

 (4.16)

Hence, eA
?ty represents the solution (w, z, θ) to the following system of PDEs

wt = −z (4.17)

zt − ρ∆zt = ∆
2w + ∆θ (4.18)

θt = ∆θ − ∆z (4.19)

given initial data y = (w0, z0, θ0) which is an equivalent system to (2.1).
Computing the adjoint of the kernel B?eA

?ty we conclude

B?eA
?ty =

 0
0

θ(x0, t)

 (4.20)

Hence, it is enough to estimate the L∞ norm of θ(·, t). In particular, estimating using Sobolev
embedding inequalities for 2 dimensions and using the variation of parameters formula which
allows us to express the solution θ via the semigroup eAN t we have

‖θ(·, t)‖L∞(Ω) ≤ C‖θ‖Hn/2+ε(Ω)

≤ C‖An/4+ε
N θ‖L2(Ω)

≤ ‖An/4+ε
N e−AN tθ0‖L2(Ω) +

∥∥∥∥∫ t

0
A
n/4+ε
N e−AN (t−s)ANwt(·, s) ds

∥∥∥∥
L2(Ω)

= I1 + I2
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We estimate each of the two terms separately. The term I1 is the source of the singular
estimate. To estimate I1, we use the analyticity of the semigroup e−AN t to get

I1 = ‖An/4+ε
N e−AN tθ0‖L2(Ω)

≤ C

t1/2+ε ‖A
(n−2)/4
N θ0‖L2(Ω)

≤ C

t1/2+ε ‖A
α
Nθ0‖L2(Ω)

≤ C

t1/2+ε ‖y0‖Hα

To estimate I2, we again appeal to the analyticity of the semigroup e−AN t and write∫ t

0
‖An/4+ε

N e−AN (t−s)ANwt(·, s)‖L2(Ω) ds ≤
∫ t

0

C

(t− s)1−ε ‖A
n/4+2ε
N wt(·, s)‖L2(Ω) ds

≤ Ct‖An/4+2ε
N wt‖L∞([0,T ];L2(Ω))

≤ CT‖wt‖L∞([0,T ];Hn/2+ε)

≤ C ‖y0‖Hα

≤ CT
(t− s)1/2+ε ‖y0‖Hα

where α = (n−2)/2+ε or α > 0 for n = 2 and α > 1/2 for n = 3. Here, we used the regularity
of the solution map D(Aα)→ C([0, T ];D(Aα)). This establishes the desired estimate.

2

A corollary of this theorem that

‖GeA(t−s)Bf‖Z ≤ ‖eA(t−s)Bf‖H−α ≤
C

(t− s)1/2+ε |f |

and

‖ReA(t−s)Bf‖H−α = ‖eA(t−s)Bf‖H−α ≤
C

(t− s)1/2+ε |f |.

4.3 Closability of GLsT

To show that the operator GLsT f ≡
∫ T
s
GeA(T−t)Bf(t) dt is closable from L2([s, T ];R) →

Z, we compute the action of the operator GLsT f . Note that LsT is the solution map to (2.1)
evaluated at the final time T due to zero initial conditions and control f(t), while G is the
projection onto the first two components. Hence, we express the solution (w,wt) to the system
(2.1) arising from zero initial conditions using the variation of parameters formula as(

w(·, T )
wt(·, T )

)
=

∫ T

s

eAk(T−t)

(
0

M−1ANθ(u)

)
dt

where Ak is the closed operator (
0 I

−M−1A 0

)
,



A Bolza Optimal Control Problem 309

which generates the c0 semigroup eAkt, and has a bounded inverse A−1
k . The operator Ak can be

shown to be closed on the space Z = D(A1/2−α/2)×D(M1/2−α/2).
To show closability of GLsT from L2([s, T ];R) → Z, it suffices to show that there ex-

ists a closed operator K on Z with a bounded inverse K−1 such that K−1GLsT is bounded
L2([s, T ];R)→ Z. We claim that A−1

k GLsT is bounded. Indeed, we have

A−1
k GLsTu =

∫ T

s

eAk(T−t)

(
−A−1ANθ(u)

0

)
dt

and thus we estimate the norm of A−1
k GLsT to obtain

‖A−1
k GLsTu‖D(A1/2−α/2)×D(M1/2−α/2) ≤ C‖A−1ANθ(u)‖D(A1/2−α/2)

≤ C‖(w,wt, θ)‖L2([s,T ];H−α)

≤ C‖u‖L2([s,T ];R)

where we used the continuity of the control to state map (3.6) fromL2([s, T ];R)→ L2([s, T ];W )
in the last step [29]. This establishes the closability of GLsT on Z.

5 Application of the Theoretical Framework

Now, that we have demonstrated the validity of the conditions for our system, we apply theorems
3.1 and 3.2 to the control problem (2.1), with the objective functional (2.7), in dimension 2 and
3. This yields the following theorem

Theorem 5.1. Let α > (n−2)/2. Given initial data (θ0, w0, w1) ∈ H, there exists a unique opti-
mal control u0(t) ∈ L2([0, T ];R) and corresponding optimal solutions (θ0, w0, w0

t ) ∈ L2([0, T ];H)
of the system (2.1) which minimizes the cost functional J and such that the following properties
hold

(i) The optimal control is continuous on [0, T ) with a singularity of order γ = 1/2 + ε at time
T and in particular

|u(t)| ≤ C

t1/2+ε ‖y0‖H

(ii) The optimal solutions (θ0, w0, w0
t ) ∈ C([0, T );H−α) with a singularity of order ε at time

the final time T

‖θ(t)‖H−2α(Ω) + ‖w(t)‖H2−α(Ω) + ‖wt(t)‖H1−α(Ω) ≤
C

tε
‖(θ0, w0, w1)‖H

(iii) There exists a positive self adjoint operator P (t) on H such that

u0(t) = −B?P (t)y0(t) = −p3(t)|x=x0

where P (t)(w0, w0
t , θ

0) = (p1(t), p2(t), p3(t)).

(iv) The operator B?P (t) satisfies the estimate

|B?P (t)f | ≤ C

(T − t)1/2+ε ‖f‖H (5.1)
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(v) The operator P (t) solves the Riccati equation

〈Ptf, g〉H+ 〈P (t)f,Ag〉H+ 〈P (t)Af, g〉H+ 〈A−αf,A−αg〉H = (P (t)f)3|x0 · (P (t)g)3|x0 ,

for all f, g ∈ D(A) and

lim
t→T

P (t)(f1, f2, f3) = (f1, f2, 0) ∀(f1, f2, f3) ∈ H. (5.2)

(vi) The minimum value of the cost functional (2.7) is given by

J =

∫
Ω

∆p1(0)∆w0 dx+

∫
Ω

∇p2(0)∇w0 dx+

∫
Ω

p2(0)w0 dx+

∫
Ω

p3(0)θ0 dx. (5.3)
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