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Abstract. In this paper some families of derivative-free methods, with optimal and non-
optimal order of convergence, for solving nonlinear equations are suggested. In the proposed
methods, several linear combinations of divided differences are used in order to get a good esti-
mation of the derivative of the given function at the different steps of the iteration. The efficiency
indices of the members of this family are equal to 1.587. The convergence and error analysis are
given. Numerical comparisons are made with other existing methods to show the performance
of the presented methods.

1. Introduction

In this paper we are going to develop efficient methods to find approximations of the root r of
nonlinear equations f (x) = 0, without evaluate its derivatives. A number of ways are considered
by many researchers to improve the local order convergence of Newton’s method by the expense
of additional evaluations of the functions, derivatives and changes in the points of iterations see
[1-9]. There are several different methods in the literature for the computation of the root of the
nonlinear equation. The most famous of these methods is the classical Newton’s method (NM):

xn+1 = xn −
f (xn)
f ′(xn)

.

which is a well-known basic method and possesses quadratic order of convergence in the neigh-
borhood of simple root r. This method is not applicable when the derivative of any function is
not defined in any interval. Therefore the Newton’s method was modified by Steffensen, who
replaced the first derivative f ′(xn) by the forward difference approximation

f ′(xn) =
f (xn+β f (xn))− f (xn)

β f (xn) = P0(xn). (1)

and obtained the famous Steffensen’s method [10]:

xn+1 = xn −
β f (xn)2

f (xn + β f (xn)) − f (xn)
,

where the parameter β to be freely chosen in R − {0} and used to generate a class of Steffensen’s
methods provided that the denominator is not equal to zero. Newton and Steffensen’s methods
are of second order converges, both require two functional evaluations per step, but in contrast
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to Newton’s method, Steffensen’s method is free from any derivative of the function, because
sometimes the applications of the iterative methods which depend upon derivatives are restricted
in engineering.
A family of Steffensen like methods was derived in [10-13] free from derivatives, which uses
three functional evaluations per step and has cubic convergence. Recently, Cordero et al. [14]
proposed a derivative free iterative method by replacing the forward-difference approximation in
Ostrowski’s method [15] by the central-difference approximation. However, it is still a method of
third order and requires four functional evaluations per iteration. Therefore, these methods have
efficiency index 31/4 ≈ 1.1316 which is less than 21/2 ≈ 1.4142 of the Newton and Steffensen
[16]. However, it is still a method of second order and requires three function evaluation per
iteration. We consider the definition of efficiency index as p1/wwhere p is the order of the method
and w is the number of function evaluations per iteration required by the method [15]. However,
the purpose of this paper is to establish new derivative-free methods with optimal order, i.e., we
aim to increase the convergence rate from three to four without any additional evaluations of the
function.
The following sections of the paper are organized as follows: In Section 2, we describe our fam-
ily of methods. In Section 3, we show the order of convergence of these methods. In Section 4,
different numerical test confirm the theoretical results and allow us to compare this family with
other known methods mentioned in this section.

2. Description of the methods
To construct a novel class of two-step methods with optimal fourth-order, we first consider the
following two-step third-order iteration. For a given x0, compute approximate solution xn+1 by
following the iterative schemes:

yn = xn −
f (xn)
f ′(xn) , (2)

xn+1 = xn −
f (yn)
f ′(xn) . (3)

Now we can modify the methods in (2) and (3) by removing the derivatives in the following
two-step method.
HM1: For a given x0, compute approximate solution xn+1 by the iterative scheme

yn = xn −
β f (xn)2

f (w)− f (xn) ,

w = xn + β f (xn)
, xn+1 = xn −

f (xn)
P0(xn)

.

where P0(xn) is defined by equation (1). Let us remark that, in terms of computational cost, this
method requires only three functional evaluations per step and it has convergence of order three.
So, it has efficiency indices 31/3 ≈ 1.442, which is higher than 21/2 ≈ 1.4142 of the Newton
and Steffensen’s methods [16]. Therefore, these methods do not produce an optimal order of
convergence. However, the purpose of this paper is to establish new derivative-free methods
with optimal order, i.e., we aim to increase the convergence rate to four without the need to
compute any additional function evaluations. So, we shall use weight functions W1 , W2 and W3
which are expressed as:

W1 =

{
4

1+( f [xn,yn] f [wn,yn])/P0(xn)2 − 1
}

(4)

W2 =
f [wn,xn]2

f [xn,yn] f [wn,yn]

{
1 +

f (yn) f [wn,xn]2( f [wn,xn]− f [xn,yn])
f (xn)( f [xn,yn] f [wn,yn])2

}
(5)

W3 =
f (xn) f [xn,yn] f [wn,yn] f [wn,xn]2

f (xn) f [xn,yn]2 f [wn,yn]2− f (yn)( f [wn,xn]− f [xn,yn]) f [wn,xn]3 (6)

where f [xi, x j] = ( f (xi) − f (x j))/(xi − x j), ∀i, j ∈ N, i , j. Taking into account these weight
functions, we can suggest the following new two-step optimal methods, which will denote by
Hafiz Methods (HM2-HM5).
HM2: For a given x0, compute approximate solution xn+1 by the iterative schemes
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yn = xn −
β f (xn)2

f (w) − f (xn)
, w = xn + β f (xn), xn+1 = yn +

f (yn)
P0(xn)

W1.

HM3: For a given x0, compute approximate solution xn+1 by the iterative schemes

yn = xn −
β f (xn)2

f (w) − f (xn)
, w = xn + β f (xn), xn+1 = yn −

f (yn)
P0(xn)

W2

HM4: For a given x0, compute approximate solution xn+1 by the iterative schemes

yn = xn −
β f (xn)2

f (w) − f (xn)
, w = xn + β f (xn), xn+1 = yn −

f (yn)
P0(xn)

W3

these methods (HM2-HM4) have convergence of order four and require only three functional
evaluations per step. So, they have efficiency indices 41/3 ≈ 1.5874, that is, the order of conver-
gence of these methods become four which is the optimal order conjectured by Kung and Traub
[18].

3. Convergence analysis

Let us now discuss the convergence analysis of the above algorithms.

Theorem 3.1: Let r be a simple zero of sufficient differentiable function f :⊆ R → R for an
open interval I. If x0is sufficiently close to r, then the two-step method defined by HM2 has
third-order of convergence.

The Proof. Consider
yn = xn −

β f (xn)2

f (w)− f (xn) , w = xn + β f (xn) (7)

xn+1 = yn −
f (yn)

P0(xn)

{
4

1+ f [xn,yn] f [wn,yn]/P0(xn)2 − 1
}

(8)
Let rbe a simple zero of f . Since f is sufficiently differentiable, by expanding f (xn) about r we
get

f (xn) = c1en + c2e2
n + c3e3

n + c4e4
n + · · · (9)

Again by using Taylor’s expansion we can get
wn = en + (c1 + en(c2 + en(c3 + enc4)))β + · · · (10)

f (wn) = (1 + c1β) c1en + (3β c1c2 + β2c2
1c2 + c2) e2

n + · · · (11)

where ck =
f (k)(r)

k! , k = 1, 2, 3, . . . and en = xn − r.
Now by substituting (9) and (11) in (7), we have

yn = r + (1 + β c1) c2
c1

e2
n + · · ·

By using Taylor’s theorem, we have
f (yn) = (1 + β c1) c2e2

n + (β 2 c3
1c3 − 2 c2

2 + 3β c2
1c3 + 2 c1c3 − β

2c2
1c2

2 − 2β c1c2
2) 1

c1
e3

n + · · · (12)

f [wn, xn] = P0(xn) = c1 + (2 + β c1) c2 en + (3 c3 + 3β c1c3 + β2c2
1c3 + β c2

2) e2
n + · · ·

f [wn, yn] = c1 + (1 + β c1) c2 en + (2 β c1c2
2 + c1c3 + 2β c2

1c3 + β2c3
1c3 + c2

2)
1
c1

e2
n + · · ·
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f [xn, yn] = c1 + c2 en + (c1 c3 + c2
2 + β c1c2

2)
e2

n

c1
+ · · ·

f
[
xn, yn

]
f
[
wn, yn

]
P0(xn)2 = 1 − c2 (2 + β c1)

en

c1
+ [(7 + c1β(6 + c1β))c2

2 − βc1 c3 (2 + c1β)2]
e2

n

c2
1

+ · · ·

4
f [xn,yn] f [wn,yn]/P0(xn)2+1 = 2 + (β c1 + 2) c2 en

c1
+ [ β2c3

1c3+

β c2
1(4c3 −

1
2β c2

2) + c1(5 c3 − 4β c2
2) − 5 c2

2] e2
n

c2
1

+ · · ·
(13)

f (yn)
P0(xn) = (1 + β c1) c2

c1
e2

n + [ c1c3(1 + β c1)(2 + β c1) − c2
2(4 + β c1(5 + 2β c1 )] e3

n

c2
1

+ · · · (14)
Now by substituting (12), (13) and (14) in (8), we have

en+1 = [ c2
2(8 + β c1(8 + β c1)) − 2c1c3(1 + β c1)](1 + β c1)

c2

2c3
1

e4
n + O(e5

n)

from which it follows that (HM2) has convergence of fourth-order.

Theorem 3.2: Let r be a simple zero of sufficient differentiable function f :⊆ R → R for an
open interval I. If x0is sufficiently close to r, then the two-step method defined by (HM3) has
fourth-order convergence.
The Proof. Consider

yn = xn −
β f (xn)2

f (w)− f (xn) , w = xn + β f (xn) (15)
xn+1 = yn −

f (yn)
P0(xn) W2 (16)

Now by substituting from (5), (12), (13) and (14) in (16), we have
en+1 = [(1 + (β − 2)c1)c2

2 + c3c2
1)](1 + β c1)2 c2

c4
1
e4

n + O(e5
n) (17)

from which it follows that (HM3) has four-order convergence.
In similar way, we observe that the method HM4 has also fourth order of convergence, but HM1
has three order of convergence as follows

(HM4) en+1 = (2 + β c1) (1 + β c1) c2
2

c2
1

e3
n + O(e4

n) (18)

(HM4) en+1 = −[ c1c3 + (β c1 − 1) c2
2](1 + β c1)2 c2

c3
1

e4
n + O(e5

n) (19)

4. Numerical examples

For comparisons, we will use the fourth-order Ren’s method (RM) [18] defined by:

yn = xn −
f (xn)2

f (xn + f (xn)) − f (xn)
,

xn+1 = yn −
f (yn)

f
[
xn, yn

]
+ f
[
wn, yn

]
− f [xn,wn] − (xn − yn)(wn − yn)

.

and Cordero method (CM) [20]

yn = xn −
f (xn)2

f (xn + f (xn)) − f (xn)
,

xn+1 = xn −
f (yn)

a f (yn)−b f (wn)
yn−wn

+
c f (xn)−d f (yn)

xn−yn

,

a = c = 1, b + d = 1.
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We consider here some numerical examples to demonstrate the performance of the new mod-
ified two-step iterative methods, namely algorithms (HM2) - (HM4). We compare the Ren’s
method (RM), Cordero method (CM) with (HM2) - (HM4). The computational order of conver-
gence (COC) [21], can be approximated using the formula

COC ≈
ln | (xn+1 − xn)/(xn − xn−1)|

ln | (xn − xn−1)/(xn−1 − xn−2)|
.

Our examples are tested with precision ε = 10−250 as tolerance and β = 1. All the computa-
tions are performed using Maple 15 with 300 significant digits, but only two digits are displayed
for (COC). Results are summarized in Tables 1 and 2 as it shown, the new algorithms are com-
parable with all methods and in most cases it gives better or equal results.

5. Conclusions
The present study suggests a family of new derivative-free iterative methods for solving non-

linear equations. The efficiency indices of the members of this family are equal to 1.587. In
addition, these methods are particularly suited to those problems in which derivatives require
lengthy. In the sequel, numerical examples have used in order to show the efficiency and accu-
racy of the novel methods from our suggested derivative-free class. Finally, it should be noted
that, like all other iterative methods, the new methods from the class (HM2)-(HM4) have their
own domains of validity and in certain circumstances should not be used.

Table 1: Test functions and their roots.

Functions Roots
f1(x) = sin2 x − x2 + 1, 1.40449164821534
f2(x) = x2 − ex − 3x + 2, 0.25753028543986
f3(x) = cos x − x, 0.73908513321516
f4(x) = x − 3 log x, 1.85718386020784
f5(x) = e−x + cos x, 1.74613953040801
f6(x) = x − sin(cos x) + 1 0.1660390510510
f7(x) = 1

x − |x|, 1
f8(x) = sin x − x/100, 0
f9(x) = ex − 1.5 − tan−1 x, 0.85945269083105
f10(x) =

√
x − cos x 1.29799774328037

Table 2. Comparison of some derivative-free methods for the number of iterations

Iterations f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

x0 1.3 1.0 1.7 0.5 3.0 1.6 -0.5 0.7 0.1 1.6
RM 5 5 19 8 5 18 5 8 6 6
CM 4 5 5 6 5 6 5 5 5 5
HM2 5 5 5 6 5 6 4 6 5 5
HM3 4 5 5 7 5 6 5 5 5 5
HM4 5 5 5 8 5 6 5 5 5 5
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Table 3. Comparison of the computational order of convergence (COC) for various methods.

Iterations f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

x0 1.3 1.0 1.7 0.5 3.0 1.6 -0.5 0.7 0.1 1.6
RM 4 3.99 4 4 4 4 4 5 3.99 3.99
CM 4 3.99 3.99 3.99 4 3.99 3.99 5 4 4
HM2 4 3.99 3.99 3.99 4 3.99 5.99 5 4 4
HM3 4 3.99 3.99 4 4 3.99 3.99 5 4 4
HM4 4 3.99 4 3.99 4 3.99 4 5 4 4

References:

[1] M. Petkovi and L. Petkovi, "Families of Optimal Multipoint Methods for Solving Nonlinear
Equations: A Survey," Applicable Analysis and Discrete Mathematics , vol. 4 pp.1–22, 2010.

[2] M. Frontini and E. Sormani, "Modified Newtons method with third-order convergence and
multiple roots," Journal of computational and applied mathematics, vol.156, pp. 345-354, 2003.

[3] B. Ignatova, N. Kyurkchiev and A. Iliev, "Multipoint algorithms arising from optimal in the
sense of Kung – Traub iterative procedures for numerical solution of nonlinear equations," Gen-
eral Mathematics Notes, vol. 6 pp. 45–79, 2011.

[4] H.H.H. Homeier ,"On Newton-type methods with cubic convergence," Journal of computa-
tional and applied mathematics, vol.176, pp. 425-432,2005.

[5] N. Kyurkchiev, A. Iliev, "A Note on the "Constructing" of Nonstationary Methods for Solv-
ing Nonlinear Equations with Raised Speed of Convergence", Serdica Journal Computing, 3, pp.
47–74, 2009.

[6] F. Soleymani, "Novel computational iterative methods with optimal order for nonlinear equa-
tions," Hindawi Publishing Corporation Advances in Numerical Analysis, vol. 2011, Article ID
270903,10 pages doi: 10.1155/2011/270903.

[7] S.Weerakoom and T.G.I.Fernando, "A variant of Newton’s method with accelerated third or-
der convergence," Applied Mathematics Letters, vol. 13 pp. 87-93, 2000.

[8] M. S. M. Bahgat, M.A. HAFIZ, Solving nonsmooth Equations Using derivative-free meth-
ods, Bulletin of Society for Mathematical Services and Standards, Vol. 1 No. 3, pp. 47-56, 2012.

[9] A. Iliev and N. Kyurkchiev, "Nontrivial Methods in Numerical Analysis: Selected Topics in
Numerical Analysis," LAP LAMBERT Academic Publishing, Saarbrücken, 2010.

[10] D. Kincaid, W. Cheney, Numerical Analysis, second ed., Brooks/Cole, Pacific Grove, CA.
1996.

[11] Q. Zheng, J. Wang, P. Zhao and L. Zhang "A Steffensen-like method and its higher-order
variants," Applied Mathematics and Computation vol. 214 pp.10-16, 2009.



Solving Nonlinear Equations Using Steffensen-Type Methods · · · 119

[12] X. Feng, Y. He, "High order iterative methods without derivatives for solving nonlinear
equations," Applied Mathematics and Computation 186 pp. 1617–1623, 2007.

[13] F. Soleymani, "Optimized steffensen-type methods with eighth-order convergence and high
efficiency index," International Journal of Mathematics and Mathematical Sciences, Article in
Press pp.1-14, 2012.

[14] A. Cordero, J.L. Hueso, E. Martnez, and J.R. Torregrosa, "Steffensen type methods for
solving nonlinear equations," Journal of computational and applied mathematics, vol. 236 pp.
3058–3064, 2012.

[15] A. M. Ostrowski, "Solution of Equations and Systems of Equations," Academic Press, New
York-London, 1966.

[16] J. M. Ortega and W.G. Rheinboldt, "Iterative solutions of nonlinear equations in several
variables," New York Press, London, 1970.

[17] H.T. Kung and J.F. Traub, "Optimal order of one-point and multipoint iteration," Journal of
the ACM, vol. 21, pp. 643-651, 1974.

[18] H. Ren, Q. Wub and W. Bi, "A class of two-step Steffensen type methods with fourth-order
convergence," Applied Mathematics and Computation, vol. 209, pp. 206–210, 2009.

[19] A. Cordero and J. R. Torregrosa, "A class of Steffensen type methods with optimal order of
convergence, "Applied Mathematics and Computation, vol. 217, pp. 7653–7659, 2011.

[20] S. Weerakoon and T.G.I. Fernando, "A variant of Newton’s method with accelerated third-
order convergence," Applied Mathematics Letters, vol. 13, pp. 87–93, 2000.

Author information
M.A. Hafiz, Department of Mathematics, Faculty of Science and Arts. Najran University, Saudi Arabia.
E-mail: admin@mhafiz.net

Received: November 8, 2012.

Accepted: December 28, 2012.


