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Abstract In this paper, we study the problem of meromorphic functions sharing a small func-
tion with its derivative and prove one theorem. The theorem improves the results of Lahiri-Sarkar
[J.Ineq.Pure Appl.Math.5(1)(2004) Art.20.], Zhang[J.Inequal.Pure Appl.Math.6(4)(2005) Art.116].

1 Introduction and results

Let f be a nonconstant meromorphic function defined in the whole complex plane C. It is as-
sumed that the reader is familiar with the notations of the Nevanlinna theory such as T (r, f), N(r, f)
and so on, that can be found, for instance in [1,2].

Let f and g be two nonconstant meromorphic functions. Let a be a finite complex number.
We say that f and g share the value a CM(counting multiplicities) if f − a and g − a have the
same zeros with the same multiplicities and we say that f and g share the value a IM(ignoring
multiplicities) if we do not consider the multiplicities. When f and g share 1 IM, Let z0 be
a 1-points of f of order p, a 1-points of g of order q, we denote by N11(r,

1
f−1) the counting

function of those 1-points of f and g where p = q = 1; and N (2
E (r, 1

f−1)the counting function
of those 1-points of f and g where p = q ≥ 2. NL(r,

1
f−1) is the counting function of those

1-points of both f and g where p > q. In the same way, we can define N11(r,
1

g−1), N
(2
E (r, 1

g−1)

and NL(r,
1

g−1). If f and g share 1 IM, it is easy to see that

N(r,
1

f − 1
) = N11(r,

1
f − 1

) +NL(r,
1

f − 1
) +NL(r,

1
g − 1

) +N
(2
E (r,

1
g − 1

)

= N(r,
1

g − 1
)

Let f be a nonconstant meromorphic function. Let a be a finite complex number, and k
be a positive integer, we denote by Nk)(r,

1
f−a)(orNk)(r,

1
f−a)) the counting function for zeros

of f − a with multiplicity ≤ k(ignoring multiplicities), and by N(k(r,
1

f−a)(orN (k(r,
1

f−a)) the
counting function for zeros of f − a with multiplicity at least k(ignoring multiplicities). Set

Nk(r,
1

f − a
) = N(r,

1
f − a

) +N (2(r,
1

f − a
) + . . .+N (k(r,

1
f − a

)

Θ(a, f) = 1− lim
r→∞

N(r, 1
f−a)

T (r, f)
, δ(a, f) = 1− lim

r→∞

N(r, 1
f−a)

T (r, f)
.

We further define

δk(a, f) = 1− lim
r→∞

Nk(r,
1

f−a)

T (r, f)

Clearly

0 ≤ δ(a, f) ≤ δk(a, f) ≤ δk−1(a, f) · · · ≤ δ2(a, f) ≤ δ1(a, f) = Θ(a, f)
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Definition 1.1. (see [3])Let k be a nonnegative integer or infinity. For a ∈ C we denote by
Ek(a, f) the set of all a-points of f , where an a-point of multiplicity m is counted m times if
m ≤ k and k + 1 times if m > k. If Ek(a, f) = Ek(a, g), we say that f, g share the value a with
weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k; clearly if f, g
share (a, k), then f, g share (a, p) for all integers p with 0 ≤ p ≤ k. Also, we note that f, g share
a value a IM or CM if and only if they share (a, 0) or (a,∞),respectively.

A meromorphic function a is said to be a small function of f where T (r, a) = S(r, f), that
is T (r, a) = o(T (r, f)) as r →∞, outside of a possible exceptional set of finite linear measure.
Similarly, we can define that f and g share a small function a IM or CM or with weight k.

R.Brück [4] first considered the uniqueness problems of an entire function sharing one value
with its derivative and proved the following result.
Theorem A. Let f be a non-constant entire function satisfying N(r, 1

f ′ ) = S(r, f). If f and f ′

share the value 1 CM, then f ′−1
f−1 ≡ c for some nonzero constant c.

Brück[4] further posed the following conjecture.
Conjecture 1.1 Let f be a non-constant entire function, ρ1(f) be the first iterated order of f . If
ρ1(f) is not a positive integer or infinite, f and f ′ share the value 1 CM, then f ′−1

f−1 ≡ c for some
nonzero constant c.

Yang [5] proved that the conjecture is true if f is an entire function of finite order. Yu [6]
considered the problem of an entire or meromorphic function sharing one small function with its
derivative and proved the following two theorems.
Theorem B. Let f be a non-constant entire function and a ≡ a(z)(6≡ 0,∞) be a meromorphic
small function. If f − a and f (k) − a share 0 CM and δ(0, f) > 3

4 , then f ≡ f (k).
Theorem C. Let f be a non-constant non-entire meromorphic function and a ≡ a(z)(6≡ 0,∞)
be a meromorphic small function. If

(i) f and a have no common poles.

(ii) f − a and f (k) − a share 0 CM

(iii) 4δ(0, f) + 2(8 + k)Θ(∞, f) > 19 + 2k

then f ≡ f (k) where k is a positive integer.
In the same paper, Yu [6] posed the following open questions.

(i) Can a CM shared be replaced by an IM shared value?

(ii) Can the condition δ(0, f) > 3
4 of Theorem B be further relaxed?

(iii) Can the condition (iii) in Theorem C be further relaxed?

(iv) Can in general the condition (i) of Theorem C be dropped?

In 2004, Liu and Gu [7] improved Theorem B and obtained the following results.
Theorem D. Let f be a non-constant entire function and a ≡ a(z)(6≡ 0,∞) be a meromorphic
small function. If f − a and f (k) − a share 0 CM and δ(0, f) > 1

2 , then f ≡ f (k).
Lahiri and Sarkar [8] gave some affirmative answers to the first three questions imposing

some restrictions on the zeros and poles of a. They obtained the following results.
Theorem E. Let f be a non-constant meromorphic function, k be a positive integer, and a ≡
a(z)(6≡ 0,∞) be a meromorphic small function. If

(i) a has no zero(pole) which is also a zero(pole) of f or f (k) with the same multiplicity.

(ii) f − a and f (k) − a share (0, 2)

(iii) 2δ2+k(0, f) + (4 + k)Θ(∞, f) > 5 + k

then f ≡ f (k).
In 2005, Zhang [9] improved the above results and proved the following theorems.

Theorem F. Let f be a non-constant meromorphic function, k(≥ 1), l(≥ 0) be integers. Also
let a ≡ a(z)(6≡ 0,∞) be a meromorphic small function. Suppose that f − a and f (k) − a share
(0, l). If
l ≥ 2 and

(3 + k)Θ(∞, f) + 2δ2+k(0, f) > k + 4 (1.1)

or l = 1 and
(4 + k)Θ(∞, f) + 3δ2+k(0, f) > k + 6 (1.2)
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or l = 0 and
(6 + 2k)Θ(∞, f) + 5δ2+k(0, f) > 2k + 10 (1.3)

then f ≡ f (k).

It is natural to ask can the conditions (1.1) and (1.2) and (1.3) in Theorem F be further
relaxed? In the present paper, we shall answer the question and improve the above result by
repalcing the conditions (1.1) and (1.2) and (1.3) by three weaker ones,and thus provide a better
answer to the first question of Yu than that of Zhang.

The following theorem is the main result of the paper.

Theorem 1.2. Let f be a non-constant meromorphic function, k(≥ 1), l(≥ 0) be integers. Also
let a ≡ a(z)(6≡ 0,∞) be a meromorphic small function. Suppose that f − a and f (k) − a share
(0, l). If
l ≥ 2 and

(3 + k)Θ(∞, f) + δ2(0, f) + δ2+k(0, f) > k + 4 (1.4)

l = 1 and

(
7
2
+ k)Θ(∞, f) + 1

2
Θ(0, f) + δ2(0, f) + δ2+k(0, f) > k + 5 (1.5)

or l = 0 and

(6 + 2k)Θ(∞, f) + 2Θ(∞, f) + δ2(0, f) + δ1+k(0, f) + δ2+k(0, f) > 2k + 10 (1.6)

then f ≡ f (k).

From Theorem 1.2 we have the following corollary.

Corollary 1.3. Let f be a non-constant meromorphic function, k(≥ 1), l(≥ 0) be integers. Also
let a ≡ a(z)(6≡ 0,∞) be a meromorphic small function. Suppose that f − a and f (k) − a share
(0, l). If
l ≥ 2 and δ2+k(0, f) > 1

2
or l = 1 and δ2+k(0, f) > 3

5
or l = 0 and δ2+k(0, f) > 4

5 −
1
5 [2Θ(∞, f) + δ2(0, f) + δ1+k(0, f)− 4δ2+k(0, f)]

then f ≡ f (k).

2 Lemmas

Lemma 2.1. (see [10]) Let f be a nonconstant meromorphic function, k, p be two positve inte-
gers, then

Np(r
1
f (k)

) ≤ Np+k(r
1
f
) + kN(r, f) + S(r, f)

Clearly N(r 1
f (k) ) = N1(r

1
f (k) )

Lemma 2.2. Let

H = (
F ′′

F ′
− 2F ′

F − 1
)− (

G′′

G′
− 2G′

G− 1
) (2.1)

where F and G are two nonconstant meromorphic functions. If F and G share 1 IM and H 6≡ 0,
then

N11(r,
1

F − 1
) ≤ N(r,H) + S(r, F ) + S(r,G)

Proof. If z0 is a common simple 1-point of F and G, substituting their Taylor series at z0 into
(2.1), we see that z0 is a zero of H . Thus, we get

N11(r,
1

F − 1
) ≤ N(r,

1
H
) ≤ T (r,H) +O(1) ≤ N(r,H) + S(r, F ) + S(r,G)
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3 Proof of the Theorem 1.2

Proof. Let F = f
a and G = f (k)

a . Then F and G share (1, l), except the zeros and poles of a(z).
Let H be defined by (2.1)
Case 1. Let H 6≡ 0.

By our assumptions, H have poles only at zeros of F ′ andG′ and poles of F andG, and those
1-points of F and G whose multiplicities are distinct from the multiplicities of corresponding 1-
points of G and F respectively. Thus, we deduce from (2.1)that

N(r,H) ≤N (2(r,
1
F
) +N (2(r,

1
G
) +N(r, F ) +N0(r,

1
F ′

)

+N0(r,
1
G′

) +NL(r,
1

F − 1
) +NL(r,

1
G− 1

) (3.1)

here N0(r,
1
F ′ ) is the counting function which only counts those points such that F ′ = 0 but

F (F − 1) 6= 0.
Because F and G share 1 IM, it is easy to see that

N(r,
1

F − 1
) = N11(r,

1
F − 1

) +NL(r,
1

F − 1
) +NL(r,

1
G− 1

) +N
(2
E (r,

1
G− 1

)

= N(r,
1

G− 1
) (3.2)

By the second fundamental theorem, we see that

T (r, F ) + T (r,G) ≤N(r, F ) +N(r,G) +N(r,
1
F
) +N(r,

1
G
)

+N(r,
1

F − 1
) +N(r,

1
G− 1

)−N0(r,
1
F ′

)

−N0(r,
1
G′

) + S(r, F ) + S(r,G) (3.3)

Using Lemma 2.2 and (3.1) and (3.2) and (3.3) we get

T (r, F ) + T (r,G) ≤N2(r,
1
F
) +N2(r,

1
G
) + 3N(r, F )

+N11(r,
1

F − 1
) + 2N (2

E (r,
1

G− 1
) + 3NL(r,

1
F − 1

)

+ 3NL(r,
1

G− 1
) + S(r, F ) + S(r,G) (3.4)

We discuss the following three subcases.
Subcase 1.1 l ≥ 2. Obviously

N11(r,
1

F − 1
) + 2N (2

E (r,
1

G− 1
) + 3NL(r,

1
F − 1

) + 3NL(r,
1

G− 1
)

≤ N(r,
1

G− 1
) + S(r, F )

≤ T (r,G) + S(r, F ) + S(r,G) (3.5)

Combing (3.4) and (3.5), we get

T (r, F ) ≤ N2(r,
1
F
) +N2(r,

1
G
) + 3N(r, F ) + S(r, F ) (3.6)

that is
T (r, f) ≤ N2(r,

1
f
) +N2(r,

1
f (k)

) + 3N(r, f) + S(r, f)

By Lemma 2.1 for p = 2, we get

T (r, f) ≤ (k + 3)N(r, f) +N2(r,
1
f
) +N2+k(r,

1
f
) + S(r, f)

So
(3 + k)Θ(∞, f) + δ2(0, f) + δ2+k(0, f) ≤ k + 4
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which contradicts with (1.4).
Subcase 1.2 l = 1. It is easy to see that

N11(r,
1

F − 1
) + 2N (2

E (r,
1

G− 1
) + 2NL(r,

1
F − 1

) + 3NL(r,
1

G− 1
)

≤ N(r,
1

G− 1
) + S(r, F )

≤ T (r,G) + S(r, F ) + S(r,G) (3.7)

NL(r,
1

F − 1
) ≤ 1

2
N(r,

F

F ′
) ≤ 1

2
N(r,

F ′

F
) + +S(r, F )

≤ 1
2
(N(r,

1
F
) +N(r, F )) + S(r, F ) (3.8)

Combing (3.4) and (3.7) and (3.8), we get

T (r, F ) ≤ N2(r,
1
F
) +N2(r,

1
G
) +

7
2
N(r, F ) +

1
2
N(r,

1
F
) + S(r, F ) (3.9)

that is
T (r, f) ≤ N2(r,

1
f
) +N2(r,

1
f (k)

) +
7
2
N(r, f) +

1
2
N(r,

1
f
) + S(r, f)

By Lemma 2.1 for p = 2, we get

T (r, f) ≤ (k +
7
2
)N(r, f) +N2(r,

1
f
) +N2+k(r,

1
f
) +

1
2
N(r,

1
f
) + S(r, f)

So
(k +

7
2
)Θ(∞, f) + δ2(0, f) + δ2+k(0, f) +

1
2

Θ(0, f) ≤ k + 5

which contradicts with (1.5).
Subcase 1.3 l = 0. It is easy to see that

N11(r,
1

F − 1
) + 2N (2

E (r,
1

G− 1
) +NL(r,

1
F − 1

) + 2NL(r,
1

G− 1
)

≤ N(r,
1

G− 1
) + S(r, F )

≤ T (r,G) + S(r, F ) + S(r,G) (3.10)

NL(r,
1

F − 1
) ≤ N(r,

1
F − 1

)−N(r,
1

F − 1
)

≤ N(r,
F

F ′
) ≤ N(r,

F ′

F
) + S(r, f)

≤ N(r,
1
F
) +N(r, F ) + S(r, F ) (3.11)

Similarly, we have

NL(r,
1

G− 1
≤ N(r,

1
G
) +N(r,G) + S(r, F )

≤ N1(r,
1
G
) +N(r, F ) + S(r,G) (3.12)

Combing (3.4) and (3.10)− (3.12), we get

T (r, F ) ≤ N2(r,
1
F
) +N2(r,

1
G
) + 6N(r, F ) + 2N(r,

1
F
) +N1(r,

1
G
) + S(r, F ) (3.13)

that is

T (r, f) ≤ N2(r,
1
f
) +N2(r,

1
f (k)

) + 6N(r, f) + 2N(r,
1
f
) +N1(r,

1
f (k)

) + S(r, f)
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By Lemma 2.1 for p = 2 and for p = 1 respectively, we get

T (r, f) ≤ (2k + 6)N(r, f) +N2(r,
1
f
) +N2+k(r,

1
f
) + 2N(r,

1
f
) +N1+k(r,

1
f
) + S(r, f)

So
(2k + 6)Θ(∞, f) + δ2(0, f) + δ2+k(0, f) + 2Θ(0, f) + δ1+k(0, f) ≤ 2k + 10

which contradicts with (1.6).
Case 2. Let H ≡ 0.
By using the argument of as in [9], we can obtain f ≡ f (k), we here omit the detail.
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