Negatively Indexed Pell Numbers as the Permanent of Tridiagonal Matrix

Meral Yaşar and Durmuş Bozkurt
Communicated by Faruk Uygul

MSC 2010 Classifications:
Keywords and phrases: Pell numbers, contraction method, Laplace expansion formula.

Abstract

In this paper, we obtain negatively indexed Pell numbers as the permanents of a tridiagonal matrix sequence. We prove an identity for this number sequence by using Laplace expansion formula.

1 Introduction

Pell numbers are defined as

$$
\begin{equation*}
P_{n}=2 P_{n-1}+P_{n-2}, n \geq 2 \tag{1.1}
\end{equation*}
$$

with the initial conditions $P_{0}=0, P_{1}=1$. The first few Pell numbers are $0,1,2,5,12,29,70,169,408,985$. The recurrence relation (1.1) can be used to extend the sequence backward, thus

$$
\begin{equation*}
P_{-n}=-2 P_{-n+1}+P_{-n+2} . \tag{1.2}
\end{equation*}
$$

In [1], some relationships between Pell and Perrin numbers and permanents of special Hessenberg matrices are obtained as the determinant of the Hadamard product of two matrices. Some Fibonacci-Hessenberg matrices are derived and using the elementary row operations of the matrices, the Pell and Perrin numbers are obtained in a different way in [2]. In [3], the authors consider the relationship between the generalized Fibonacci numbers and the permanent of a $(0,1)$-matrix. In [4], the authors develop the relationships between the second order linear recurrences and the permanent and determinants of the tridiagonal matrices.

In [5], an identity of Fibonacci numbers is proved via the determinant of tridiagonal matrix.

Let A be an $n \times n$ matrix, $A\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)$ be a $k \times k(1 \leq k<n)$ submatrix of A and $\AA\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)$ be the $(n-k) \times(n-k)$ submatrix of A obtained from A by deleting the rows $i_{1}, i_{2}, \ldots, i_{k}$ and the columns $j_{1}, j_{2}, \ldots, j_{k}$. We will call the submatrices $\AA\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)$ the corresponding submatrices. The permanent of the matrix A is

$$
\begin{array}{r}
\operatorname{per}(A)=\sum_{1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n} \operatorname{per}\left(A\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)\right) \tag{1.3}\\
\operatorname{per}\left(\AA\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)\right) .
\end{array}
$$

The expansion of the permanent in (1.3) is called the Laplace expansion by rows $i_{1}, i_{2}, \ldots, i_{k}$. [6]

Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix with row vectors $r_{1}, r_{2}, \ldots, r_{m}$. We call A contractible on column k, if column k contains exactly two nonzero elements. Suppose that A is contractible on column k with $a_{i k} \neq 0 \neq a_{j k}$ and $i \neq j$. Then the $(m-1) \times(n-1)$ matrix Aij: k obtained from A replacing row i by $a_{j k} r_{i}+a_{i k} r_{j}$ and deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on row k with $a_{k i} \neq 0 \neq a_{k j}$ and $i \neq j$, then
the matrix $A_{k: i j}=\left[A_{i j: k}^{T}\right]^{T}$ is called the contraction of A on row k relative to columns i and j [7].

In this paper, we obtain the permanents of n-square tridiagonal matrix depending on P_{-n} negatively indexed Pell numbers by using contraction method. The calculation of contraction will be on the first column. Then we give a proof of an identity for negatively indexed Pell numbers using Laplace expansion formula.

2 Main Result

Theorem 2.1. Let A_{n} be an $n \times n$ tridiagonal matrix as in the following:

$$
A_{n}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & & \cdots & 0 \\
0 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & 1 & 0 \\
0 & \cdots & 0 & 1 & -2 & 1 \\
0 & \cdots & & 0 & 1 & -2
\end{array}\right] .
$$

Then the following equality holds

$$
\begin{equation*}
\operatorname{per}\left(A_{n}\right)=P_{-n} . \tag{2.1}
\end{equation*}
$$

Proof. The contraction method can be applied the matrix A_{n} on the second column. Let A_{n}^{k} be the k th contraction of A_{n} for $1 \leq k \leq n-3$. For $k=1$ the first contraction of A_{n} is

$$
A_{n}^{1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & & & \\
0 & P_{-3} & P_{-2} & & & \\
& 1 & -2 & 1 & & \\
& & 1 & & \ddots & \\
& & & \ddots & \ddots & 1 \\
& & & & 1 & -2
\end{array}\right]
$$

For $k=2$ the second contraction can be found as in the following by using the conraction method according to the second column of A_{n}^{1} :

$$
A_{n}^{2}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & & & \\
0 & P_{-4} & P_{-3} & & & \\
& -1 & -2 & 1 & & \\
& & 1 & & \ddots & \\
& & & \ddots & \ddots & 1 \\
& & & & 1 & -2
\end{array}\right]
$$

Continuing like this, we have the $(n-2)^{\text {th }}$ contraction as

$$
A_{n}^{n-2}=\left[\begin{array}{cc}
1 & 0 \\
0 & P_{-n}
\end{array}\right] .
$$

then

$$
\operatorname{per}\left(A_{n}\right)=\operatorname{per}\left(A_{n}^{n-2}\right)=P_{-n} .
$$

So, this shows that equality (2.1) is true.

We prove the identity $P_{-n}=P_{-k} P_{-n+k-1}+P_{-k+1} P_{-n+k}$ of negatively indexed Pell numbers using the relation between the tridiagonal matrix A_{n} and Laplace expansion formula given in (1.3). Before proving this identity, we give the following theorem.

Theorem 2.2. The matrix A_{n} has only k submatrices which are $k \times k$ and for $r=$ $1,2, \ldots, k$ the permanent of these submatrices can be obtained as in the following

$$
\begin{equation*}
\operatorname{per}(A([\alpha],[\beta]))=P_{-(k-r+1)} \tag{2.2}
\end{equation*}
$$

where $\alpha=[1,2, \ldots, k]$ and $\beta=[1, \ldots, k-r+1, k-r+3, \ldots, k+1]$.
Proof. We will prove the equality (2.2) using the induction method on k. For $k=1$ then

$$
\operatorname{per}(A([1],[1]))=P_{-1}
$$

Now, we assume that the equality (2.2) holds for $k=t(t \geq 2)$. Then we will show that the equality (2.2)holds for $k=t+1$. So, we devide the $(t+1) \times(t+1)$ submatrix $A([1, \ldots, t+1],[1, \ldots, t-r+2, t-r+4, \ldots, t+2])$ into four block matrices as

$$
A([1, \ldots, t+1],[1, \ldots, t-r+2, t-r+4, \ldots, t+2])=\left[\begin{array}{cc}
P & R \\
N & M
\end{array}\right]
$$

where P is $(t-r+2) \times(t-r+2)$ submatrix of A_{n}, R is $(t-r+2) \times(r-1)$ zero matrix, N is $(r-1) \times(t-r+2)$ matris as in the following

$$
N=\left[\begin{array}{cccc}
0 & \cdots & 0 & 1 \\
0 & \cdots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 0
\end{array}\right]
$$

and M is $(r-1) \times(r-1)$ lower triangular matrix as

$$
M=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-2 & 1 & 0 & & \vdots \\
1 & -2 & 1 & \cdots & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & -2 & 1
\end{array}\right]
$$

Using the following fact

$$
\operatorname{per}\left(\left[\begin{array}{cc}
P & R \\
N & M
\end{array}\right]\right)=\operatorname{per}(A) \operatorname{per}\left(M-N P^{-1} R\right)
$$

the permanent of the submatrix $A\left(\left[\alpha_{1}\right],\left[\beta_{1}\right]\right)$ obtained as

$$
\begin{aligned}
\operatorname{per}\left(A\left(\left[\alpha_{1}\right],\left[\beta_{1}\right]\right)\right) & =\operatorname{per}(A([1, \ldots, t-r+2],[1, \ldots, t-r+2])) \\
& =P_{-(t-r+2)}
\end{aligned}
$$

where $\alpha_{1}=[1, \ldots, t+1]$ and $\beta_{1}=[1, \ldots, t-r+2, t-r+4, \ldots, t+2]$.
The permanents of the corresponding submatrices are obtained as
$\operatorname{per}(\AA([\alpha],[\beta]))=\operatorname{per}(A[k+1, k+2, \ldots, n],[k-r+2, k+2, k+3, \ldots n])$.
But for the reason the first column of $A[k+1, k+2, \ldots, n],[k-r+2, k+2, k+$ $3, \ldots n]$ is $\left[\begin{array}{cccc}0 & 0 & \cdots & 0\end{array}\right]^{T}$ for $r=3,4, \ldots k$, all the permanents of the corresponding submatrices are zero except for $r=1$ and $r=2$.

For $r=1$ the permanent of the corresponding submatrix is

$$
\operatorname{per}(\AA([1, \ldots, k],[1, \ldots, k]))=P_{-(n-k+1)}
$$

and $r=2$ the permanent of the corresponding submatrix is

$$
\operatorname{per}(\AA([1, \ldots, k],[1, \ldots, k-1, k+1]))=P_{-(n-k)} .
$$

Theorem 2.3. For $1 \leq k \leq n$, the sequence given in (1.2) satisfies the following identity

$$
\begin{equation*}
P_{-n}=P_{-k} P_{-n+k-1}+P_{-k+1} P_{-n+k} \tag{2.3}
\end{equation*}
$$

Proof. We obtain the permanent of the matrix A_{n} using the first k rows. We know from Theorem 2 that only the permanents of the corresponding submatrices for $r=1$ and $r=2$ are nonzero. So the permanent of the matrix A_{n} is obtained as

$$
\operatorname{per}\left(A_{n}\right)=P_{-k} P_{-n+k-1}+P_{-k+1} P_{-n+k}
$$

If we combine the equality (2.1), the proof is completed.

References

[1] F. Yilmaz, D. Bozkurt, Hessenberg matrices and the Pell and Perrin numbers, Journal of Number Theory 131 (2011) 1390-1396.
[2] H.-C. Li, On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers, Appl. Math. Comput. (2012), doi:10.1016/j.amc.2012.01.062.
[3] G. Y. Lee, "A note on Generalized Fibonacci numbers." The Fibonacci Quart., 33 (3) (1995): 273-278.
[4] E. Kılıc, D. Tascı,On the Second Order Linear Recurrences by Tridiagonal Matrix, Ars.Comb. 91 (2009) 11-18.
[5] J. Feng, Fibonacci Identities via the Determinant of Tridiagonal Matrix, Appl.Math. Compt. 217 (2011), 5978-5981.
[6] Brualdi, A.R. and Ryser, J.H.,. Combinatorial Matrix Theory, Cambridge University Press., Cambridge, 1991.
[7] Brualdi, A.R. and Gibson, P.M., "Convex Polyhedra of Doubly Stochastic Matrices I: Applications of the Permanent Function", Journal of Combinatorial Theory, 22(A), 194-230, 1977.

Author information

Meral Yaşar, Department of Mathematics, Nigde University, Turkey.
E-mail: myasar@nigde.edu.tr
Durmuş Bozkurt, Department of Mathematics, Selcuk University, Turkey.
E-mail: dbozkurt@selcuk.edu.tr

Received: May 22, 2015.
Accepted: October 21, 2015

