On Generalization Ostrowski Type Inequalities for Functions of Two Variables with Bounded Variation

Hüseyin BUDAK and Mehmet Zeki SARIKAYA
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 26D15, 26B30; Secondary 26D10, 41A55.
Keywords and phrases: Bounded variation, Ostrowski type inequality, Riemann-Stieltjes integral.

Abstract

In this paper, we establish a generalization of the Ostrowski type integral inequalities for functions of two independent variables with bounded variation and we give some applications for general quadrature formulae.

1 Introduction

Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) whoose derivative $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded on (a, b), i.e. $\left\|f^{\prime}\right\|_{\infty}:=\sup _{t \in(a, b)}\left|f^{\prime}(t)\right|<\infty$. Then we have the inequality

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)\left\|f^{\prime}\right\|_{\infty} \tag{1.1}
\end{equation*}
$$

for all $x \in[a, b][18]$. The constant $\frac{1}{4}$ is the best possible. This inequality is well known in the literature as the Ostrowski inequality.

In [10], Dragomir proved following Ostrowski type inequalities related functions of bounded variation:

Theorem 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a mapping of bounded variation on $[a, b]$. Then

$$
\left|\int_{a}^{b} f(t) d t-(b-a) f(x)\right| \leq\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b}(f)
$$

holds for all $x \in[a, b]$. The constant $\frac{1}{2}$ is the best possible.
In a recent years, many authors studied the well-known Ostrowski inequality in one variable for variant types of functions such as, Lipschitzian, absolutely continuous and n-differentiable functions as well as the functions of bounded variation. However, a small attention and a few works have been considered for functions of two variables with bounded variation (see, [3], [6], [7], [16]). Among others, in particular, Dragomir and his group studied a very interesting inequalities for functions of one variable. For more information and recent developments on inequalities for mappings of bounded variation, please refer to([1], [2], [5], [8]-[14], [17], [19][24]).

2 Preliminaries and Lemmas

In 1910, Fréchet [15] has given the following characterization for the double Riemann-Stieltjes integral. Assume that $f(x, y)$ and $\alpha(x, y)$ are defined over the rectangle $Q=[a, b] \times[c, d]$; let R be the divided into rectangular subdivisions, or cells, by the net of straight lines $x=x_{i}, y=y_{i}$,

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b, \text { and } c=y_{0}<y_{1}<\ldots<y_{m}=d
$$

let ξ_{i}, η_{j} be any numbers satisfying $\xi_{i} \in\left[x_{i-1}, x_{i}\right], \eta_{j} \in\left[y_{j-1}, y_{j}\right],:(i=1,2, \ldots, n ; j=$ $1,2, \ldots, m)$; and for all i, j let

$$
\Delta_{11} \alpha\left(x_{i}, y_{j}\right)=\alpha\left(x_{i-1}, y_{j-1}\right)-\alpha\left(x_{i-1}, y_{j}\right)-\alpha\left(x_{i}, y_{j-1}\right)+\alpha\left(x_{i}, y_{j}\right)
$$

Then if the sum

$$
S=\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(\xi_{i}, \eta_{j}\right) \Delta_{11} \alpha\left(x_{i}, y_{j}\right)
$$

tends to a finite limit as the norm of the subdivisions approaches zero, the integral of f with respect to α is said to exist. We call this limit the restricted integral, and designate it by the symbol

$$
\begin{equation*}
\int_{a}^{b} \int_{c}^{d} f(x, y) d_{y} d_{x} \alpha(x, y) \tag{2.1}
\end{equation*}
$$

If in the above formulation S is replaced by the sum

$$
S^{*}=\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(\xi_{i j}, \eta_{i j}\right) \Delta_{11} \alpha\left(x_{i}, y_{j}\right)
$$

where $\xi_{i j}, \eta_{i j}$ are numbers satisfying $\xi_{i j} \in\left[x_{i-1}, x_{i}\right], \eta_{i j} \in\left[y_{j-1}, y_{j}\right]$, we call the limit, when it exist, the unrestricted integral, and designate it by the symbol

$$
\begin{equation*}
\int_{a}^{b} \int_{c}^{d} f(x, y) d_{y} d_{x} \alpha(x, y) \tag{2.2}
\end{equation*}
$$

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality (2.2). On the other hand, Clarkson ([7]) has shown that the existence of (2.1) does not imply the existence of (2.2).

In [6], Clarkson and Adams gave the following definitions of bounded variation for functions of two variables:

2.1 Definitions

The function $f(x, y)$ is assumed to be defined in rectangle $R(a \leq x \leq b, c \leq y \leq d)$. By the term net we shall, unless otherwise specified mean a set of parallels to the axes:

$$
\begin{aligned}
x & =x_{i}(i=0,1,2, \ldots, m), a=x_{0}<x_{1}<\ldots<x_{m}=b \\
y & =y_{j}(j=0,1,2, \ldots, n), c=y_{0}<y_{1}<\ldots<y_{n}=d
\end{aligned}
$$

Each of the smaller rectangles into which R is devided by a net will be called a cell. We employ the notation

$$
\begin{aligned}
& \Delta_{11} f\left(x_{i}, y_{j}\right)= f\left(x_{i+1}, y_{j+1}\right)-f\left(x_{i+1}, y_{j}\right)-f\left(x_{i}, y_{j+1}\right)+f\left(x_{i}, y_{j}\right) \\
& \Delta f\left(x_{i}, y_{j}\right)=f\left(x_{i+1}, y_{j+1}\right)-f\left(x_{i}, y_{j}\right) .
\end{aligned}
$$

The total variation function, $\phi(\bar{x})[\psi(\bar{y})]$, is defined as the total variation of $f(\bar{x}, y)[f(x, \bar{y})]$ considered as a function of $y[x]$ alone in interval $(c, d)[(a, b)]$, or as $+\infty$ if $f(\bar{x}, y)[f(x, \bar{y})]$ is of unbounded variation.

Definition 2.1. (Vitali-Lebesque-Fréchet-de la Vallée Poussin). The function $f(x, y)$ is said tobe of bounded variation if the sum

$$
\sum_{i=0, j=0}^{m-1, n-1}\left|\Delta_{11} f\left(x_{i}, y_{j}\right)\right|
$$

is bounded for all nets.
Definition 2.2. (Fréchet). The function $f(x, y)$ is said tobe of bounded variation if the sum

$$
\sum_{i=0, j=0}^{m-1, n-1} \epsilon_{i} \overline{\epsilon_{j}}\left|\Delta_{11} f\left(x_{i}, y_{j}\right)\right|
$$

is bounded for all nets and all possible choices of $\epsilon_{i}= \pm 1$ and $\overline{\epsilon_{j}}= \pm 1$.
Definition 2.3. (Hardy-Krause). The function $f(x, y)$ is said tobe of bounded variation if it satisfies the condition of Definition 2.1 and if in addition $f(\bar{x}, y)$ is of bounded variation in y (i.e. $\phi(\bar{x})$ is finite) for at least one \bar{x} and $f(x, \bar{y})$ is of bounded variation in y (i.e. $\psi(\bar{y})$ is finite) for at least one \bar{y}.

Definition 2.4. (Arzelà). Let $\left(x_{i}, y_{i}\right)(i=0,1,2, \ldots, m)$ be any set of points satisfiying the conditions

$$
\begin{aligned}
a & =x_{0}<x_{1}<\ldots<x_{m}=b \\
c & =y_{0}<y_{1}<\ldots<y_{m}=d
\end{aligned}
$$

Then $f(x, y)$ is said tobe of bounded variation if the sum

$$
\sum_{i=1}^{m}\left|\Delta f\left(x_{i}, y_{i}\right)\right|
$$

is bounded for all such sets of points.
Therefore, one can define the consept of total variation of a function of two variables, as follows:

Let f be of bounded variation on $Q=[a, b] \times[c, d]$, and let $\sum(P)$ denote the sum $\sum_{i=1}^{n} \sum_{j=1}^{m}\left|\Delta_{11} f\left(x_{i}, y_{j}\right)\right|$ corresponding to the partition P of Q. The number

$$
\bigvee_{Q}(f):=\bigvee_{c}^{d} \bigvee_{a}^{b}(f):=\sup \left\{\sum(P): P \in P(Q)\right\}
$$

is called the total variation of f on Q. Here $P([a, b])$ denotes the family of partitions of $[a, b]$.
In [16], authors proved following Lemmas related double Riemann-Stieltjes integral:
Lemma 2.5. (Integrating by parts) If $f \in R S(\alpha)$ on Q, then $\alpha \in R S(f)$ on Q, and we have

$$
\begin{align*}
& \int_{c}^{d} \int_{a}^{b} f(t, s) d_{t} d_{s} \alpha(t, s)+\int_{c}^{d} \int_{a}^{b} \alpha(t, s) d_{t} d_{s} f(t, s) \tag{2.3}\\
= & f(b, d) \alpha(b, d)-f(b, c) \alpha(b, c)-f(a, d) \alpha(a, d)+f(a, c) \alpha(a, c) .
\end{align*}
$$

Lemma 2.6. Assume that $g \in R S(\alpha)$ on Q and α is of bounded variation on Q, then

$$
\begin{equation*}
\left|\int_{c}^{d} \int_{a}^{b} g(x, y) d_{x} d_{y} \alpha(x, y)\right| \leq \sup _{(x, y) \in Q}|g(x, y)| \bigvee_{Q}(\alpha) \tag{2.4}
\end{equation*}
$$

In [16], Jawarneh and Noorani obtained following Ostrowski type inequality for functions of two variables with bounded variation:

Theorem 2.7. Let $f: Q \rightarrow \rightarrow \mathbb{R}$ be a mapping of bounded variation on Q. Then for all $(x, y) \in$ Q, we have inequality

$$
\begin{align*}
& \left|(b-a)(d-c) f(x, y)-\int_{c}^{d} \int_{a}^{b} f(t, s) d t d s\right| \tag{2.5}\\
\leq & {\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]\left[\frac{1}{2}(d-c)+\left|y-\frac{c+d}{2}\right|\right] \bigvee_{Q}(f) }
\end{align*}
$$

where $\bigvee_{Q}(f)$ denotes the total (double) variation of f on Q.
The aim of this paper is to establish a generalization of the Ostrowski type integral inequalities for functions of two independent variables with bounded variation and we give some applications for general quadrature formulae.

3 Main Results

We first prove the following theorem:

Theorem 3.1. Let $f: Q \rightarrow \mathbb{R}$ be a mapping of bounded variation on Q. Then for all $(x, y) \in Q$, we have inequality

$$
\begin{aligned}
& \quad \left\lvert\,(b-a)(d-c)\left[(1-\lambda)(1-\eta) f(x, y)+\frac{(1-\lambda) \eta}{2}[f(a, y)+f(b, y)]\right.\right. \\
& \left.\quad+\frac{\lambda(1-\eta)}{2}[f(x, c)+f(x, d)]+\frac{\lambda \eta}{4}[f(a, c)+f(a, d)+f(b, c)+f(b, d)]\right]-\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \mid \\
& \leq \max \left\{\lambda \frac{b-a}{2},\left(x-\frac{(2-\lambda) a+\lambda b}{2}\right),\left(\frac{(2-\lambda) b+\lambda a}{2}-x\right)\right\} \\
& \quad \times \max \left\{\eta \frac{d-c}{2},\left(y-\frac{(2-\eta) c+\eta d}{2}\right),\left(\frac{(2-\eta) d+\eta c}{2}-y\right)\right\} \bigvee_{a}^{b} \bigvee_{c}^{d}(f)
\end{aligned}
$$

for any $\lambda, \eta \in[0,1]$ and $a+\lambda \frac{b-a}{2} \leq x \leq b-\lambda \frac{b-a}{2}, c+\eta \frac{d-c}{2} \leq y \leq d-\eta \frac{d-c}{2}$, where $\bigvee_{a}^{b} \bigvee_{c}^{d}(f)$ denotes he total variation of f on Q.

Proof. Applying Lemma 2.5, we have

$$
\begin{align*}
& \int_{a}^{x} \int_{c}^{y}\left(t-\left(a+\lambda \frac{b-a}{2}\right)\right)\left(s-\left(c+\eta \frac{d-c}{2}\right)\right) d_{s} d_{t} f(t, s) \tag{3.2}\\
= & \left(x-a-\lambda \frac{b-a}{2}\right)\left(y-c-\eta \frac{d-c}{2}\right) f(x, y) \\
& +\left(x-a-\lambda \frac{b-a}{2}\right)\left(\eta \frac{d-c}{2}\right) f(x, c) \\
& +\left(\lambda \frac{b-a}{2}\right)\left(y-c-\eta \frac{d-c}{2}\right) f(a, y) \\
& +\left(\lambda \frac{b-a}{2}\right)\left(\eta \frac{d-c}{2}\right) f(a, c)-\int_{a}^{x} \int_{c}^{y} f(t, s) d s d t
\end{align*}
$$

and similarly

$$
\begin{align*}
& \int_{a}^{x} \int_{y}^{d}\left(t-\left(a+\lambda \frac{b-a}{2}\right)\right)\left(s-\left(d-\eta \frac{d-c}{2}\right)\right) d_{s} d_{t} f(t, s) \tag{3.3}\\
= & \left(x-a-\lambda \frac{b-a}{2}\right)\left(\eta \frac{d-c}{2}\right) f(x, d) \\
& +\left(x-a-\lambda \frac{b-a}{2}\right)\left(d-y-\eta \frac{d-c}{2}\right) f(x, y) \\
& +\left(\lambda \frac{b-a}{2}\right)\left(\eta \frac{d-c}{2}\right) f(a, d) \\
& +\left(\lambda \frac{b-a}{2}\right)\left(d-y-\eta \frac{d-c}{2}\right) f(a, y)-\int_{a}^{x} \int_{y}^{d} f(t, s) d s d t
\end{align*}
$$

$$
\begin{align*}
& \int_{x}^{b} \int_{c}^{y}\left(t-\left(b-\lambda \frac{b-a}{2}\right)\right)\left(s-\left(c+\eta \frac{d-c}{2}\right)\right) d_{s} d_{t} f(t, s) \tag{3.4}\\
& =\left(\lambda \frac{b-a}{2}\right)\left(y-c-\eta \frac{d-c}{2}\right) f(b, y) \\
& +\left(\lambda \frac{b-a}{2}\right)\left(\eta \frac{d-c}{2}\right) f(a, c) \\
& +\left(b-x-\lambda \frac{b-a}{2}\right)\left(y-c-\eta \frac{d-c}{2}\right) f(x, y) \\
& +\left(b-x-\lambda \frac{b-a}{2}\right)\left(\eta \frac{d-c}{2}\right) f(x, c)-\int_{x}^{b} \int_{c}^{y} f(t, s) d s d t \\
& \int_{x}^{b} \int_{y}^{d}\left(t-\left(b-\lambda \frac{b-a}{2}\right)\right)\left(s-\left(d-\eta \frac{d-c}{2}\right)\right) d_{s} d_{t} f(t, s) \tag{3.5}\\
& =\left(\lambda \frac{b-a}{2}\right)\left(\eta \frac{d-c}{2}\right) f(b, d) \\
& +\left(\lambda \frac{b-a}{2}\right)\left(d-y-\eta \frac{d-c}{2}\right) f(b, y) \\
& +\left(b-x-\lambda \frac{b-a}{2}\right)\left(\eta \frac{d-c}{2}\right) f(x, d) \\
& +\left(b-x-\lambda \frac{b-a}{2}\right)\left(d-y-\eta \frac{d-c}{2}\right) f(x, y)-\int_{x}^{b} \int_{y}^{d} f(t, s) d s d t
\end{align*}
$$

Summing (3.2)-(3.5), we have

$$
\begin{align*}
& \int_{a}^{b} \int_{c}^{d} P(x, t ; y, s) d_{s} d_{t} f(t, s) \tag{3.6}\\
= & (b-a)(d-c)\left[(1-\lambda)(1-\eta) f(x, y)+\frac{(1-\lambda) \eta}{2}[f(a, y)+f(b, y)]\right. \\
& \left.+\frac{\lambda(1-\eta)}{2}[f(x, c)+f(x, d)]+\frac{\lambda \eta}{4}[f(a, c)+f(a, d)+f(b, c)+f(b, d)]\right]-\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t
\end{align*}
$$

where

$$
P(x, t ; y, s)= \begin{cases}\left(t-\left(a+\lambda \frac{b-a}{2}\right)\right)\left(s-\left(c+\eta \frac{d-c}{2}\right)\right) & ,(t, s) \in[a, x] \times[c, y] \\ \left(t-\left(a+\lambda \frac{b-a}{2}\right)\right)\left(s-\left(d-\eta \frac{d-c}{2}\right)\right) & ,(t, s) \in[a, x] \times(y, d] \\ \left(t-\left(b-\lambda \frac{b-a}{2}\right)\right)\left(s-\left(c+\eta \frac{d-c}{2}\right)\right) & ,(t, s) \in(x, b] \times[c, y] \\ \left(t-\left(b-\lambda \frac{b-a}{2}\right)\right)\left(s-\left(d-\eta \frac{d-c}{2}\right)\right) & ,(t, s) \in(x, b] \times(y, d]\end{cases}
$$

for any $\lambda, \eta \in[0,1]$ and $a+\lambda \frac{b-a}{2} \leq x \leq b-\lambda \frac{b-a}{2}, c+\eta \frac{d-c}{2} \leq y \leq d-\eta \frac{d-c}{2}$.

Now, taking the modulus in (3.6), we have

$$
\begin{aligned}
& \left|\int_{a}^{b} \int_{c}^{d} P(x, t ; y, s) d_{s} d_{t} f(t, s)\right| \\
= & \left\lvert\,(b-a)(d-c)\left[(1-\lambda)(1-\eta) f(x, y)+\frac{(1-\lambda) \eta}{2}[f(a, y)+f(b, y)]\right.\right. \\
& \left.+\frac{\lambda(1-\eta)}{2}[f(x, c)+f(x, d)]+\frac{\lambda \eta}{4}[f(a, c)+f(a, d)+f(b, c)+f(b, d)]\right]-\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \mid
\end{aligned}
$$

On the other hand, using Lemma 2.6 it follows that

$$
\begin{aligned}
& \left|\int_{a}^{b} \int_{c}^{d} P(x, t ; y, s) d_{s} d_{t} f(t, s)\right| \\
& \leq \sup _{(t, s) \in Q}|P(x, y ; t, s)| \bigvee_{a}^{b} \bigvee_{c}^{d}(f) \\
& =\max \left\{\sup _{(t, s) \in[a, x] \times[c, y]}|P(x, y ; t, s)|, \sup _{(t, s) \in[a, x] \times(y, d]}|P(x, y ; t, s)|,\right. \\
& \left.\sup _{(t, s) \in(x, b] \times[c, y]}|P(x, y ; t, s)|, \sup _{(t, s) \in(x, b] \times(y, d]}|P(x, y ; t, s)|\right\} \bigvee_{a}^{b} \bigvee_{c}^{d}(f) \\
& =\max \left\{\max \left\{\lambda \frac{b-a}{2},\left(x-\frac{(2-\lambda) a+\lambda b}{2}\right)\right\} \max \left\{\eta \frac{d-c}{2},\left(y-\frac{(2-\eta) c+\eta d}{2}\right)\right\},\right. \\
& \max \left\{\lambda \frac{b-a}{2},\left(x-\frac{(2-\lambda) a+\lambda b}{2}\right)\right\} \max \left\{\eta \frac{d-c}{2},\left(\frac{(2-\eta) d+\eta c}{2}-y\right)\right\} \\
& \max \left\{\lambda \frac{b-a}{2},\left(\frac{(2-\lambda) b+\lambda a}{2}-x\right)\right\} \max \left\{\eta \frac{d-c}{2},\left(y-\frac{(2-\eta) c+\eta d}{2}\right)\right\}, \\
& \left.\max \left\{\lambda \frac{b-a}{2},\left(\frac{(2-\lambda) b+\lambda a}{2}-x\right)\right\} \max \left\{\eta \frac{d-c}{2},\left(\frac{(2-\eta) d+\eta c}{2}-y\right)\right\}\right\} \bigvee_{a}^{b} \bigvee_{c}^{d}(f) \\
& \leq \max \left\{\lambda \frac{b-a}{2},\left(x-\frac{(2-\lambda) a+\lambda b}{2}\right),\left(\frac{(2-\lambda) b+\lambda a}{2}-x\right)\right\} \\
& \times \max \left\{\eta \frac{d-c}{2},\left(y-\frac{(2-\eta) c+\eta d}{2}\right),\left(\frac{(2-\eta) d+\eta c}{2}-y\right)\right\} \bigvee_{a}^{b} \bigvee_{c}^{d}(f)
\end{aligned}
$$

This completes the proof of Theorem.
Remark 3.2. Under the assumptions of Theorem 3.1 with $\lambda=0$ and $\eta=0$, the inequality (3.1) reduces inequality (2.5).

Remark 3.3. If we take $\lambda=1$ and $\eta=1$ in Theorem 3.1, we have the trapezoid inequality

$$
\begin{equation*}
\left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t, s) d s d t\right| \leq \frac{1}{4} \bigvee_{a}^{b} \bigvee_{c}^{d}(f) \tag{3.7}
\end{equation*}
$$

which proved by Jawarneh and Noorani in [16]. The constant $\frac{1}{4}$ is the best possible.

Proof. For proof of the sharpness of the constant, assume that (3.7) holds with a constant $A>$ 0 ,that is,

$$
\begin{equation*}
\left|\frac{f(b, d)+f(a, d)+f(b, c)+f(a, c)}{4}-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t, s) d s d t\right| \leq A \bigvee_{a}^{b} \bigvee_{c}^{d}(f) \tag{3.8}
\end{equation*}
$$

If we choose $f: Q \rightarrow \mathbb{R}$ with

$$
f(x, y)= \begin{cases}1 \text { if } & x=a, b \text { and } y=c, d \\ 0 \text { if } & (x, y) \in(a, b) \times(c, d)\end{cases}
$$

then f is of bounded variation on Q, and

$$
\frac{f(b, d)+f(a, d)+f(b, c)+f(a, c)}{4}=1, \int_{a}^{b} \int_{c}^{d} f(t, s) d s d t=0, \text { and } \bigvee_{Q}(f)=4
$$

giving in (3.8), $1 \leq 4 A$, thus $A \geq \frac{1}{4}$.
Corollary 3.4. Under the assumptions of Theorem 3.1 with $\lambda=\frac{1}{3}$ and $\eta=\frac{1}{3}$, we have the inequality

$$
\begin{aligned}
& \quad \left\lvert\,(b-a)(d-c)\left[\frac{4}{9} f(x, y)+\frac{f(a, y)+f(b, y)+f(x, c)+f(x, d)}{9}\right.\right. \\
& \left.\quad++\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{36}\right]-\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \mid \\
& \leq \max \left\{\frac{b-a}{6},\left(x-\frac{5 a+b}{6}\right),\left(\frac{5 b+a}{6}-x\right)\right\} \\
& \quad \times \max \left\{\frac{d-c}{6},\left(y-\frac{5 c+d}{6}\right),\left(\frac{5 d+c}{6}-y\right)\right\} \bigvee_{a}^{b} \bigvee_{c}^{d}(f)
\end{aligned}
$$

for $\frac{5 a+b}{6} \leq x \leq \frac{5 b+a}{6}$ and $\frac{5 c+d}{6} \leq y \leq \frac{5 d+c}{6}$.
Remark 3.5. If we choose $x=\frac{a+b}{2}$ and $y=\frac{c+d}{2}$ in Corollary 3.4, then we have the "Simpson's rule inequality "

$$
\begin{aligned}
& \left\lvert\,(b-a)(d-c)\left[\frac{f(b, d)+f(b, c)+f(a, d)+f(a, c)}{36}\right.\right. \\
& +\frac{f\left(a, \frac{c+d}{2}\right)+f\left(\frac{a+b}{2}, c\right)+f\left(b, \frac{c+d}{2}\right)+f\left(\frac{a+b}{2}, d\right)}{9} \\
& \left.\quad+\frac{4}{9} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right]-\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \mid \\
& \leq \frac{1}{9}(b-a)(d-c) \bigvee_{a}^{b} \bigvee_{c}^{d}(f)
\end{aligned}
$$

which is proved by Jawarneh and Noorani in [16].
Corollary 3.6. Under the assumptions of Theorem 3.1 with $\lambda=\frac{1}{2}$ and $\eta=\frac{1}{2}$, we have the
inequality

$$
\begin{aligned}
& \left\lvert\, \frac{(b-a)(d-c)}{4}\left[f(x, y)+\frac{f(a, y)+f(b, y)+f(x, c)+f(x, d)}{2}\right.\right. \\
& \left.++\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}\right]-\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \mid \\
\leq & \max \left\{\frac{b-a}{4},\left(x-\frac{3 a+b}{4}\right),\left(\frac{3 b+a}{4}-x\right)\right\} \\
& \times \max \left\{\frac{d-c}{4},\left(y-\frac{3 c+d}{4}\right),\left(\frac{3 d+c}{4}-y\right)\right\} \bigvee_{a}^{b} \bigvee_{c}^{d}(f)
\end{aligned}
$$

for $\frac{3 a+b}{4} \leq x \leq \frac{3 b+a}{4}$ and $\frac{3 c+d}{4} \leq y \leq \frac{3 d+c}{4}$.
Corollary 3.7. If we take $x=\frac{a+b}{2}$ and $y=\frac{c+d}{2}$ in Corollary 3.6, then we get

$$
\begin{aligned}
& \left\lvert\, \frac{(b-a)(d-c)}{4}\left[\frac{f(b, d)+f(b, c)+f(a, d)+f(a, c)}{4}\right.\right. \\
& \quad+\frac{f\left(a, \frac{c+d}{2}\right)+f\left(\frac{a+b}{2}, c\right)+f\left(b, \frac{c+d}{2}\right)+f\left(\frac{a+b}{2}, d\right)}{2} \\
& \left.\quad+f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right]-\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \mid \\
& \leq \frac{(b-a)(d-c)}{16} \bigvee_{a}^{b} \bigvee_{c}^{d}(f) .
\end{aligned}
$$

The constant $\frac{1}{16}$ is the best possible.
Proof. Assume that (3.10) holds with a constant $C>0$, i.e.,

$$
\begin{aligned}
& \left\lvert\, \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{16}\right. \\
& \quad+\frac{f\left(a, \frac{c+d}{2}\right)+f\left(b, \frac{c+d}{2}\right)+f\left(\frac{a+b}{2}, c\right)+f\left(\frac{a+b}{2}, d\right)}{8} \\
& \left.\quad+\frac{1}{4} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \right\rvert\, \\
& \leq C \bigvee_{Q}(f) .
\end{aligned}
$$

Define the set

$$
\begin{aligned}
E:= & \left\{(a, c),(a, d),(b, c),(b, d),\left(a, \frac{c+d}{2}\right),\left(b, \frac{c+d}{2}\right),\right. \\
& \left.\left(\frac{a+b}{2}, c\right),\left(\frac{a+b}{2}, d\right),\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right\} .
\end{aligned}
$$

If we choose $f: Q \rightarrow \mathbb{R}$ with

$$
f(x, y)= \begin{cases}1 \text { if } & (x, y) \in E \\ 0 \text { if } & (x, y) \in[a, b] \times[c, d] \backslash E\end{cases}
$$

then f is of bounded variation on Q, and

$$
\begin{aligned}
\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{16} & =\frac{1}{4} \\
\frac{f\left(a, \frac{c+d}{2}\right)+f\left(b, \frac{c+d}{2}\right)+f\left(\frac{a+b}{2}, c\right)+f\left(\frac{a+b}{2}, d\right)}{8} & =\frac{1}{2} \\
\frac{1}{4} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) & =\frac{1}{4}, \\
\int_{a} \int_{c}^{b} f(t, s) d s d t & =0 \\
\text { and } \bigvee_{Q}^{d}(f) & =16
\end{aligned}
$$

Therefore, we get in (3.11), $1 \leq 16 C$, thus $C \geq \frac{1}{16}$, which implies the constant $\frac{1}{16}$ is the best possible. This completes the proof.

4 Some Composite Quadrature Formula

Let us consider the arbitrary division $I_{n}: a=x_{0}<x_{1}<\ldots<x_{n}=b$, and $J_{m}: c=y_{0}<y_{1}<$ $\ldots<y_{m}=d, h_{i}:=x_{i+1}-x_{i}$, and $l_{j}:=y_{j+1}-y_{j}$,

$$
\begin{aligned}
& v(h):=\max \left\{h_{i} \mid i=0, \ldots, n-1\right\} \\
& v(l):=\max \left\{l_{j} \mid j=0, \ldots, m-1\right\}
\end{aligned}
$$

Then the following Theorem holds.
Theorem 4.1. Let $f: Q \rightarrow \mathbb{R}$ is of bounded variatin on Q and $\xi_{i} \in\left[x_{i}, x_{i+1}\right](i=0, \ldots, n-1)$, $\tau_{j} \in\left[y_{j}, y_{j+1}\right](j=0, \ldots, m-1)$. Then we have the quadrature formula:

$$
\begin{aligned}
& \int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \\
& =\frac{4}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} f\left(\xi_{i}, \tau_{j}\right) h_{i} l_{j} \\
& \quad+\frac{1}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1}\left[f\left(x_{i}, \tau_{j}\right)+f\left(x_{i+1}, \tau_{j}\right)+f\left(\xi_{i}, y_{j}\right)+f\left(\xi_{i}, y_{j+1}\right)\right] h_{i} l_{j} \\
& \quad+\frac{1}{36} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1}\left[f\left(x_{i}, y_{j}\right)+f\left(x_{i}, y_{j+1}\right)+f\left(x_{i+1}, y_{j}\right)+f\left(x_{i+1}, y_{j+1}\right)\right] h_{i} l_{j} \\
& \quad+R\left(I_{n}, J_{m}, \xi, \tau, f\right)
\end{aligned}
$$

The remainder $R\left(I_{n}, J_{m}, \xi, \eta, f\right)$ satisfies

$$
\begin{aligned}
& \left|R\left(I_{n}, J_{m}, \xi, \eta, f\right)\right| \\
\leq & \max _{i \in\{0, \ldots, n-1\}}\left\{\max \left\{\frac{h_{i}}{6},\left(\xi_{i}-\frac{5 x_{i}+x_{i+1}}{6}\right),\left(\frac{5 x_{i+1}+x_{i}}{6}-\xi_{i}\right)\right\}\right\} \\
& \times \max _{j \in\{j=0, \ldots, m-1\}}\left\{\max \left\{\frac{l_{j}}{6},\left(\tau_{j}-\frac{5 y_{j}+y_{j+1}}{6}\right),\left(\frac{5 y_{j+1}+y_{j}}{6}-\tau_{j}\right)\right\}\right\} \\
& \times \bigvee_{a}^{b} \bigvee_{c}^{d}(f) .
\end{aligned}
$$

Proof. Applying Corollary 3.4 to bidimentional interval $\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right]$ and $\xi_{i} \in\left[x_{i}, x_{i+1}\right]$ $(i=0, \ldots, n-1), \tau_{j} \in\left[y_{j}, y_{j+1}\right](j=0, \ldots, m-1)$, we have the inequality

$$
\begin{aligned}
& \left\lvert\,(b-a)(d-c)\left[\frac{4}{9} f\left(\xi_{i}, y\right)+\frac{f\left(x_{i}, \tau_{j}\right)+f\left(x_{i+1}, \tau_{j}\right)+f\left(\xi_{i}, y_{j}\right)+f\left(\xi_{i}, y_{j+1}\right)}{9}\right.\right. \\
& \left.++\frac{f\left(x_{i}, y_{j}\right)+f\left(x_{i}, y_{j+1}\right)+f\left(x_{i+1}, y_{j}\right)+f\left(x_{i+1}, y_{j+1}\right)}{36}\right]-\int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \mid \\
\leq & \max \left\{\frac{h_{i}}{6},\left(\xi_{i}-\frac{5 x_{i}+x_{i+1}}{6}\right),\left(\frac{5 x_{i+1}+x_{i}}{6}-\xi_{i}\right)\right\} \\
& \times \max \left\{\frac{l_{j}}{6},\left(\tau_{j}-\frac{5 y_{j}+y_{j+1}}{6}\right),\left(\frac{5 y_{j+1}+y_{j}}{6}-\tau_{j}\right)\right\} \bigvee_{x_{i}}^{x_{i+1}} \bigvee_{y_{j}}^{y_{j+1}}(f) .
\end{aligned}
$$

Summing the inequality (4.1) over i from 0 to $n-1$ and j from 0 to $m-1$, then we get

$$
\begin{aligned}
& \left|R\left(I_{n}, J_{m}, \xi, \tau, f\right)\right| \\
\leq & \sum_{i=0}^{n-1} \sum_{j=0}^{m-1}\left[\max \left\{\frac{h_{i}}{6},\left(\xi_{i}-\frac{5 x_{i}+x_{i+1}}{6}\right),\left(\frac{5 x_{i+1}+x_{i}}{6}-\xi_{i}\right)\right\}\right. \\
& \left.\times \max ^{n}\left\{\frac{l_{j}}{6},\left(\tau_{j}-\frac{5 y_{j}+y_{j+1}}{6}\right),\left(\frac{5 y_{j+1}+y_{j}}{6}-\tau_{j}\right)\right\} \bigvee_{x_{i}}^{x_{i+1} y_{j+1}} \bigvee_{y_{j}}(f)\right] \\
\leq & \max _{i \in\{0, \ldots, n-1\}}\left\{\max \left\{\frac{h_{i}}{6},\left(\xi_{i}-\frac{5 x_{i}+x_{i+1}}{6}\right),\left(\frac{5 x_{i+1}+x_{i}}{6}-\xi_{i}\right)\right\}\right\} \\
& \times \max _{j \in\{j=0, \ldots, m-1\}}\left\{\max \left\{\frac{l_{j}}{6},\left(\tau_{j}-\frac{5 y_{j}+y_{j+1}}{6}\right),\left(\frac{5 y_{j+1}+y_{j}}{6}-\tau_{j}\right)\right\}\right\} \\
& \times \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \bigvee_{x_{i}}^{x_{i+1}} \bigvee_{y_{j}}^{y_{j+1}}(f) \\
= & \max _{i \in\{0, \ldots, n-1\}}\left\{\max \left\{\frac{h_{i}}{6},\left(\xi_{i}-\frac{5 x_{i}+x_{i+1}}{6}\right),\left(\frac{5 x_{i+1}+x_{i}}{6}-\xi_{i}\right)\right\}\right\} \\
& \times \max _{j \in\{j=0, \ldots, m-1\}}\left\{\max \left\{\frac{l_{j}}{6},\left(\tau_{j}-\frac{5 y_{j}+y_{j+1}}{6}\right),\left(\frac{5 y_{j+1}+y_{j}}{6}-\tau_{j}\right)\right\}\right\}
\end{aligned}
$$

which is the required result.

Corollary 4.2. Let I_{n}, J_{m} and f be as above. If we choose $\xi_{i}=\frac{x_{i}+x_{i+1}}{2}$ and $\tau_{j}=\frac{y_{j}+y_{j+1}}{2}$ in

Theorem 4.1, then we have the "Simpson's rule"

$$
\begin{aligned}
& \quad \int_{a}^{b} \int_{c}^{d} f(t, s) d s d t \\
& =\frac{4}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} f\left(\frac{x_{i}+x_{i+1}}{2}, \frac{y_{j}+y_{j+1}}{2}\right) h_{i} l_{j} \\
& \quad+\frac{1}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1}\left[f\left(\frac{x_{i}+x_{i+1}}{2}, y_{j}\right)+f\left(\frac{x_{i}+x_{i+1}}{2}, y_{j+1}\right)\right] h_{i} l_{j} \\
& \quad+\frac{1}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1}\left[f\left(x_{i}, \frac{y_{j}+y_{j+1}}{2}\right)+f\left(x_{i+1}, \frac{y_{j}+y_{j+1}}{2}\right)\right] h_{i} l_{j} \\
& \quad+\frac{1}{36} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1}\left[f\left(x_{i}, y_{j}\right)+f\left(x_{i}, y_{j+1}\right)+f\left(x_{i+1}, y_{j}\right)+f\left(x_{i+1}, y_{j+1}\right)\right] h_{i} l_{j} \\
& \quad+R_{S}\left(I_{n}, J_{m}, f\right)
\end{aligned}
$$

The remainder $R_{S}\left(I_{n}, J_{m}, f\right)$ satisfies

$$
\left|R_{S}\left(I_{n}, J_{m}, f\right)\right| \leq \frac{1}{9} v(h) v(l) \bigvee_{a}^{b} \bigvee_{c}^{d}(f)
$$

References

[1] M. W. Alomari, A Generalization of Weighted Companion of Ostrowski Integral Inequality for Mappings of Bounded Variation, RGMIA Research Report Collection, 14(2011), Article 87, 11 pp .
[2] M. W. Alomari and M.A. Latif, Weighted Companion for the Ostrowski and the Generalized Trapezoid Inequalities for Mappings of Bounded Variation, RGMIA Research Report Collection, 14(2011), Article 92, 10 pp .
[3] H. Budak and M. Z. Sarikaya, On Ostrowski Type Inequalities for Functions of Two Variables with Bounded Variation, RGMIA Research Report Collection, 17(2014), Article 153, 18 pp.
[4] P. Cerone, W.S. Cheung, and S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation, Computers and Mathematics with Applications 54 (2007) 183-191.
[5] P. Cerone, S. S. Dragomir, and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk J Math, 24 (2000), 147-163.
[6] J.A. Clarkson and C. R. Adams, On definitions of bounded variation for functions of two variables,Bull. Amer. Math. Soc. 35 (1933), 824-854.
[7] J.A. Clarkson, On double Riemann-Stieltjes integrals, Bull. Amer. Math. Soc. 39 (1933), 929-936.
[8] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull.Austral. Math. Soc., 60(1) (1999), 495-508.
[9] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J. Math. 22(2000) 13-19.
[10] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. 4 (2001), no. 1, 59-66.
[11] S. S. Dragomir, A companion of Ostrowski's inequality for functions of bounded variation and applications, Int. J. Nonlinear Anal. Appl. 5 (2014) No. 1, 89-97
[12] S. S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450-460.
[13] S.S. Dragomir and E. Momoniat, A Three Point Quadrature Rule for Functions of Bounded Variation and Applications, RGMIA Research Report Collection, 14(2011), Article 33, 16 pp.
[14] S. S. Dragomir, Some perturbed Ostrowski type inequalities for functions of bounded variation, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 93.
[15] Fréchet, M., Extension au cas des intégrals multiples d'une définition de l'intégrale due á Stieltjes,Nouvelles Annales de Math ematiques 10 (1910), 241-256.
[16] Y. Jawarneh and M.S.M Noorani, Inequalities of Ostrowski and Simpson Type for Mappings of Two Variables with Bounded Variation and Applications, TJMM, 3 (2011), No. 2, 81-94
[17] W. Liu and Y. Sun, A Refinement of the Companion of Ostrowski inequality for functions of bounded variation and Applications, arXiv:1207.3861v1, 2012.
[18] A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10(1938), 226-227.
[19] J. Pečarič and S. Varoŝanec, A Note on Simpson's inequality for functions of bounded variation, Tamkang Journal of Mathematics 31(3), 2000.
[20] K-L Tseng, G-S Yang, and S. S. Dragomir, Generalizations of Weighted Trapezoidal Inequality for Mappings of Bounded Variation and Their Applications, Mathematical and Computer Modelling 40 (2004) 77-84.
[21] K-L Tseng, Improvements of some inequalites of Ostrowski type and their applications, Taiwan. J. Math. 12 (9) (2008) 2427-2441.
[22] K-L Tseng, S-R Hwang, G-S Yang, and Y-M Chou, Improvements of the Ostrowski integral inequality for mappings of bounded variation I, Applied Mathematics and Computation 217 (2010) 2348-2355.
[23] K-L Tseng, S-R Hwang, G-S Yang, and Y-M Chou, Weighted Ostrowski Integral Inequality for Mappings of Bounded Variation, Taiwanese J. of Math., Vol. 15, No. 2, pp. 573-585, April 2011.
[24] K-L Tseng, Improvements of the Ostrowski integral inequality for mappings of bounded variation II, Applied Mathematics and Computation 218 (2012) 5841-5847.

Author information

Hüseyin BUDAK, Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, TURKEY.
E-mail: hsyn.budak@gmail.com
Mehmet Zeki SARIKAYA, Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, TURKEY.
E-mail: sarikayamz@gmail.com
Received: December 11, 2014.

Accepted: May 12, 2015

