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Abstract In this paper, we establish a generalization of the Ostrowski type integral inequali-
ties for functions of two independent variables with bounded variation and we give some appli-
cations for general quadrature formulae.

1 Introduction

Let f : [a, b] → R be a differentiable mapping on (a, b) whoose derivative f ′ : (a, b) → R is
bounded on (a, b) , i.e. ‖f ′‖∞ := sup

t∈(a,b)
|f ′(t)| <∞. Then we have the inequality

∣∣∣∣∣∣f(x)− 1
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1
4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ‖f ′‖∞ , (1.1)

for all x ∈ [a, b][18]. The constant 1
4 is the best possible. This inequality is well known in the

literature as the Ostrowski inequality.
In [10], Dragomir proved following Ostrowski type inequalities related functions of bounded

variation:

Theorem 1.1. Let f : [a, b]→ R be a mapping of bounded variation on [a, b] . Then∣∣∣∣∣∣
b∫

a

f(t)dt− (b− a) f(x)

∣∣∣∣∣∣ ≤
[

1
2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(f)

holds for all x ∈ [a, b] . The constant 1
2 is the best possible.

In a recent years, many authors studied the well-known Ostrowski inequality in one variable
for variant types of functions such as, Lipschitzian, absolutely continuous and n-differentiable
functions as well as the functions of bounded variation. However, a small attention and a few
works have been considered for functions of two variables with bounded variation (see, [3],
[6], [7], [16] ). Among others, in particular, Dragomir and his group studied a very interesting
inequalities for functions of one variable. For more information and recent developments on
inequalities for mappings of bounded variation, please refer to([1], [2], [5], [8]-[14], [17], [19]-
[24]).

2 Preliminaries and Lemmas

In 1910, Fréchet [15] has given the following characterization for the double Riemann-Stieltjes
integral. Assume that f(x, y) and α(x, y) are defined over the rectangle Q = [a, b]× [c, d]; let R
be the divided into rectangular subdivisions, or cells, by the net of straight lines x = xi, y = yi,

a = x0 < x1 < ... < xn = b, and c = y0 < y1 < ... < ym = d;

let ξi, ηj be any numbers satisfying ξi ∈ [xi−1, xi] , ηj ∈ [yj−1, yj ] , :(i = 1, 2, ..., n; j =
1, 2, ...,m); and for all i, j let

∆11α(xi, yj) = α(xi−1, yj−1)− α(xi−1, yj)− α(xi, yj−1) + α(xi, yj).

Then if the sum

S =
n∑

i=1

m∑
j=1

f (ξi, ηj)∆11α(xi, yj)
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tends to a finite limit as the norm of the subdivisions approaches zero, the integral of f with
respect to α is said to exist. We call this limit the restricted integral, and designate it by the
symbol

b∫
a

d∫
c

f(x, y)dydxα(x, y). (2.1)

If in the above formulation S is replaced by the sum

S∗ =
n∑

i=1

m∑
j=1

f (ξij , ηij)∆11α(xi, yj),

where ξij , ηij are numbers satisfying ξij ∈ [xi−1, xi] , ηij ∈ [yj−1, yj ] , we call the limit, when it
exist, the unrestricted integral, and designate it by the symbol

b∫
a

d∫
c

f(x, y)dydxα(x, y). (2.2)

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality (2.2). On the
other hand, Clarkson ([7]) has shown that the existence of (2.1) does not imply the existence of
(2.2).

In [6], Clarkson and Adams gave the following definitions of bounded variation for functions
of two variables:

2.1 Definitions

The function f(x, y) is assumed to be defined in rectangle R(a ≤ x ≤ b, c ≤ y ≤ d). By the
term net we shall, unless otherwise specified mean a set of parallels to the axes:

x = xi(i = 0, 1, 2, ...,m), a = x0 < x1 < ... < xm = b;

y = yj(j = 0, 1, 2, ..., n), c = y0 < y1 < ... < yn = d.

Each of the smaller rectangles into which R is devided by a net will be called a cell. We employ
the notation

∆11f(xi, yj) = f(xi+1, yj+1)− f(xi+1, yj)− f(xi, yj+1) + f(xi, yj),

∆f(xi, yj) = f(xi+1, yj+1)− f(xi, yj).

The total variation function, φ(x) [ψ(y)] , is defined as the total variation of f(x, y) [f(x, y)]
considered as a function of y [x] alone in interval (c, d) [(a, b)], or as +∞ if f(x, y) [f(x, y)] is
of unbounded variation.

Definition 2.1. (Vitali-Lebesque-Fréchet-de la Vallée Poussin). The function f(x, y) is said tobe
of bounded variation if the sum

m−1 , n−1∑
i=0 , j=0

|∆11f(xi, yj)|

is bounded for all nets.

Definition 2.2. (Fréchet). The function f(x, y) is said tobe of bounded variation if the sum

m−1 , n−1∑
i=0 , j=0

εiεj |∆11f(xi, yj)|

is bounded for all nets and all possible choices of εi = ±1 and εj = ±1.

Definition 2.3. (Hardy-Krause). The function f(x, y) is said tobe of bounded variation if it
satisfies the condition of Definition 2.1 and if in addition f(x, y) is of bounded variation in y (i.e.
φ(x) is finite) for at least one x and f(x, y) is of bounded variation in y (i.e. ψ(y) is finite) for at
least one y.
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Definition 2.4. (Arzelà). Let (xi, yi) (i = 0, 1, 2, ...,m) be any set of points satisfiying the
conditions

a = x0 < x1 < ... < xm = b;

c = y0 < y1 < ... < ym = d.

Then f(x, y) is said tobe of bounded variation if the sum

m∑
i=1

|∆f(xi, yi)|

is bounded for all such sets of points.

Therefore, one can define the consept of total variation of a function of two variables, as
follows:

Let f be of bounded variation onQ = [a, b]×[c, d], and let
∑

(P ) denote the sum
n∑

i=1

m∑
j=1
|∆11f(xi, yj)|

corresponding to the partition P of Q. The number

∨
Q

(f) :=
d∨
c

b∨
a

(f) := sup
{∑

(P ) : P ∈ P(Q)
}
,

is called the total variation of f on Q. Here P([a, b]) denotes the family of partitions of [a, b] .
In [16], authors proved following Lemmas related double Riemann-Stieltjes integral:

Lemma 2.5. (Integrating by parts) If f ∈ RS(α) on Q, then α ∈ RS(f) on Q, and we have

d∫
c

b∫
a

f(t, s)dtdsα(t, s) +

d∫
c

b∫
a

α(t, s)dtdsf(t, s) (2.3)

= f(b, d)α(b, d)− f(b, c)α(b, c)− f(a, d)α(a, d) + f(a, c)α(a, c).

Lemma 2.6. Assume that g ∈ RS(α) on Q and α is of bounded variation on Q, then∣∣∣∣∣∣
d∫

c

b∫
a

g(x, y)dxdyα(x, y)

∣∣∣∣∣∣ ≤ sup
(x,y)∈Q

|g(x, y)|
∨
Q

(α) . (2.4)

In [16], Jawarneh and Noorani obtained following Ostrowski type inequality for functions of
two variables with bounded variation:

Theorem 2.7. Let f : Q →→ R be a mapping of bounded variation on Q. Then for all (x, y) ∈
Q, we have inequality∣∣∣∣∣∣(b− a) (d− c) f(x, y)−

d∫
c

b∫
a

f(t, s)dtds

∣∣∣∣∣∣ (2.5)

≤
[

1
2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] [1
2
(d− c) +

∣∣∣∣y − c+ d

2

∣∣∣∣]∨
Q

(f)

where
∨
Q

(f) denotes the total (double) variation of f on Q.

The aim of this paper is to establish a generalization of the Ostrowski type integral inequali-
ties for functions of two independent variables with bounded variation and we give some appli-
cations for general quadrature formulae.

3 Main Results

We first prove the following theorem:
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Theorem 3.1. Let f : Q→ R be a mapping of bounded variation on Q. Then for all (x, y) ∈ Q,
we have inequality

∣∣∣∣(b− a) (d− c) [(1− λ) (1− η) f(x, y) + (1− λ) η
2

[f(a, y) + f(b, y)] (3.1)

+
λ (1− η)

2
[f(x, c) + f(x, d)] +

λη

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)]

]
−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ max

{
λ
b− a

2
,

(
x− (2− λ) a+ λb

2

)
,

(
(2− λ) b+ λa

2
− x
)}

×max
{
η
d− c

2
,

(
y − (2− η) c+ ηd

2

)
,

(
(2− η) d+ ηc

2
− y
)} b∨

a

d∨
c

(f)

for any λ, η ∈ [0, 1] and a+ λ b−a
2 ≤ x ≤ b− λ b−a

2 , c+ η d−c
2 ≤ y ≤ d− η d−c

2 , where
b∨
a

d∨
c
(f)

denotes he total variation of f on Q.

Proof. Applying Lemma 2.5, we have

x∫
a

y∫
c

(
t−
(
a+ λ

b− a
2

))(
s−

(
c+ η

d− c
2

))
dsdtf(t, s) (3.2)

=

(
x− a− λb− a

2

)(
y − c− η d− c

2

)
f(x, y)

+

(
x− a− λb− a

2

)(
η
d− c

2

)
f(x, c)

+

(
λ
b− a

2

)(
y − c− η d− c

2

)
f(a, y)

+

(
λ
b− a

2

)(
η
d− c

2

)
f(a, c)−

x∫
a

y∫
c

f(t, s)dsdt,

and similarly

x∫
a

d∫
y

(
t−
(
a+ λ

b− a
2

))(
s−

(
d− η d− c

2

))
dsdtf(t, s) (3.3)

=

(
x− a− λb− a

2

)(
η
d− c

2

)
f(x, d)

+

(
x− a− λb− a

2

)(
d− y − η d− c

2

)
f(x, y)

+

(
λ
b− a

2

)(
η
d− c

2

)
f(a, d)

+

(
λ
b− a

2

)(
d− y − η d− c

2

)
f(a, y)−

x∫
a

d∫
y

f(t, s)dsdt,
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b∫
x

y∫
c

(
t−
(
b− λb− a

2

))(
s−

(
c+ η

d− c
2

))
dsdtf(t, s) (3.4)

=

(
λ
b− a

2

)(
y − c− η d− c

2

)
f(b, y)

+

(
λ
b− a

2

)(
η
d− c

2

)
f(a, c)

+

(
b− x− λb− a

2

)(
y − c− η d− c

2

)
f(x, y)

+

(
b− x− λb− a

2

)(
η
d− c

2

)
f(x, c)−

b∫
x

y∫
c

f(t, s)dsdt,

b∫
x

d∫
y

(
t−
(
b− λb− a

2

))(
s−

(
d− η d− c

2

))
dsdtf(t, s) (3.5)

=

(
λ
b− a

2

)(
η
d− c

2

)
f(b, d)

+

(
λ
b− a

2

)(
d− y − η d− c

2

)
f(b, y)

+

(
b− x− λb− a

2

)(
η
d− c

2

)
f(x, d)

+

(
b− x− λb− a

2

)(
d− y − η d− c

2

)
f(x, y)−

b∫
x

d∫
y

f(t, s)dsdt.

Summing (3.2)-(3.5), we have

b∫
a

d∫
c

P (x, t; y, s)dsdtf(t, s) (3.6)

= (b− a) (d− c)
[
(1− λ) (1− η) f(x, y) + (1− λ) η

2
[f(a, y) + f(b, y)]

+
λ (1− η)

2
[f(x, c) + f(x, d)] +

λη

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)]

]
−

b∫
a

d∫
c

f(t, s)dsdt

where

P (x, t; y, s) =



(
t−
(
a+ λ b−a

2

)) (
s−

(
c+ η d−c

2

))
, (t, s) ∈ [a, x]× [c, y]

(
t−
(
a+ λ b−a

2

)) (
s−

(
d− η d−c

2

))
, (t, s) ∈ [a, x]× (y, d]

(
t−
(
b− λ b−a

2

)) (
s−

(
c+ η d−c

2

))
, (t, s) ∈ (x, b]× [c, y]

(
t−
(
b− λ b−a

2

)) (
s−

(
d− η d−c

2

))
, (t, s) ∈ (x, b]× (y, d]

for any λ, η ∈ [0, 1] and a+ λ b−a
2 ≤ x ≤ b− λ

b−a
2 , c+ η d−c

2 ≤ y ≤ d− η
d−c

2 .
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Now, taking the modulus in (3.6), we have∣∣∣∣∣∣
b∫

a

d∫
c

P (x, t; y, s)dsdtf(t, s)

∣∣∣∣∣∣
=

∣∣∣∣(b− a) (d− c) [(1− λ) (1− η) f(x, y) + (1− λ) η
2

[f(a, y) + f(b, y)]

+
λ (1− η)

2
[f(x, c) + f(x, d)] +

λη

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)]

]
−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣ .
On the other hand, using Lemma 2.6 it follows that∣∣∣∣∣∣

b∫
a

d∫
c

P (x, t; y, s)dsdtf(t, s)

∣∣∣∣∣∣
≤ sup

(t,s)∈Q
|P (x, y; t, s)|

b∨
a

d∨
c

(f)

= max

{
sup

(t,s)∈[a,x]×[c,y]
|P (x, y; t, s)| , sup

(t,s)∈[a,x]×(y,d]
|P (x, y; t, s)| ,

sup
(t,s)∈(x,b]×[c,y]

|P (x, y; t, s)| , sup
(t,s)∈(x,b]×(y,d]

|P (x, y; t, s)|

}
b∨
a

d∨
c

(f)

= max
{

max
{
λ
b− a

2
,

(
x− (2− λ) a+ λb

2

)}
max

{
η
d− c

2
,

(
y − (2− η) c+ ηd

2

)}
,

max
{
λ
b− a

2
,

(
x− (2− λ) a+ λb

2

)}
max

{
η
d− c

2
,

(
(2− η) d+ ηc

2
− y
)}

,

max
{
λ
b− a

2
,

(
(2− λ) b+ λa

2
− x
)}

max
{
η
d− c

2
,

(
y − (2− η) c+ ηd

2

)}
,

max
{
λ
b− a

2
,

(
(2− λ) b+ λa

2
− x
)}

max
{
η
d− c

2
,

(
(2− η) d+ ηc

2
− y
)}} b∨

a

d∨
c

(f)

≤ max
{
λ
b− a

2
,

(
x− (2− λ) a+ λb

2

)
,

(
(2− λ) b+ λa

2
− x
)}

×max
{
η
d− c

2
,

(
y − (2− η) c+ ηd

2

)
,

(
(2− η) d+ ηc

2
− y
)} b∨

a

d∨
c

(f).

This completes the proof of Theorem.

Remark 3.2. Under the assumptions of Theorem 3.1 with λ = 0 and η = 0, the inequality (3.1)
reduces inequality (2.5).

Remark 3.3. If we take λ = 1 and η = 1 in Theorem 3.1, we have the trapezoid inequality∣∣∣∣∣∣f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
− 1

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣ ≤ 1
4

b∨
a

d∨
c

(f) (3.7)

which proved by Jawarneh and Noorani in [16]. The constant 1
4 is the best possible.
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Proof. For proof of the sharpness of the constant, assume that (3.7) holds with a constant A >
0,that is,∣∣∣∣∣∣f(b, d) + f(a, d) + f(b, c) + f(a, c)

4
− 1

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣ ≤ A
b∨
a

d∨
c

(f).

(3.8)
If we choose f : Q→ R with

f(x, y) =

{
1 if x = a, b and y = c, d

0 if (x, y) ∈ (a, b)× (c, d)

then f is of bounded variation on Q, and

f(b, d) + f(a, d) + f(b, c) + f(a, c)

4
= 1,

b∫
a

d∫
c

f(t, s)dsdt = 0, and
∨
Q

(f) = 4,

giving in (3.8), 1 ≤ 4A, thus A ≥ 1
4 .

Corollary 3.4. Under the assumptions of Theorem 3.1 with λ = 1
3 and η = 1

3 , we have the
inequality ∣∣∣∣(b− a) (d− c) [4

9
f(x, y) +

f(a, y) + f(b, y) + f(x, c) + f(x, d)

9
(3.9)

++
f(a, c) + f(a, d) + f(b, c) + f(b, d)

36

]
−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ max

{
b− a

6
,

(
x− 5a+ b

6

)
,

(
5b+ a

6
− x
)}

×max
{
d− c

6
,

(
y − 5c+ d

6

)
,

(
5d+ c

6
− y
)} b∨

a

d∨
c

(f)

for 5a+b
6 ≤ x ≤ 5b+a

6 and 5c+d
6 ≤ y ≤ 5d+c

6 .

Remark 3.5. If we choose x = a+b
2 and y = c+d

2 in Corollary 3.4, then we have the "Simpson’s
rule inequality " ∣∣∣∣(b− a) (d− c) [f(b, d) + f(b, c) + f(a, d) + f(a, c)

36

+
f
(
a, c+d

2

)
+ f

(
a+b

2 , c
)
+ f

(
b, c+d

2

)
+ f

(
a+b

2 , d
)

9

+
4
9
f

(
a+ b

2
,
c+ d

2

)]
−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ 1

9
(b− a) (d− c)

b∨
a

d∨
c

(f)

which is proved by Jawarneh and Noorani in [16].

Corollary 3.6. Under the assumptions of Theorem 3.1 with λ = 1
2 and η = 1

2 , we have the
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inequality ∣∣∣∣(b− a) (d− c)4

[
f(x, y) +

f(a, y) + f(b, y) + f(x, c) + f(x, d)

2
(3.10)

++
f(a, c) + f(a, d) + f(b, c) + f(b, d)

4

]
−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ max

{
b− a

4
,

(
x− 3a+ b

4

)
,

(
3b+ a

4
− x
)}

×max
{
d− c

4
,

(
y − 3c+ d

4

)
,

(
3d+ c

4
− y
)} b∨

a

d∨
c

(f)

for 3a+b
4 ≤ x ≤ 3b+a

4 and 3c+d
4 ≤ y ≤ 3d+c

4 .

Corollary 3.7. If we take x = a+b
2 and y = c+d

2 in Corollary 3.6, then we get∣∣∣∣(b− a) (d− c)4

[
f(b, d) + f(b, c) + f(a, d) + f(a, c)

4

+
f
(
a, c+d

2

)
+ f

(
a+b

2 , c
)
+ f

(
b, c+d

2

)
+ f

(
a+b

2 , d
)

2

+f

(
a+ b

2
,
c+ d

2

)]
−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ (b− a) (d− c)

16

b∨
a

d∨
c

(f).

The constant 1
16 is the best possible.

Proof. Assume that (3.10) holds with a constant C > 0, i.e.,∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

16
(3.11)

+
f
(
a, c+d

2

)
+ f

(
b, c+d

2

)
+ f

(
a+b

2 , c
)
+ f

(
a+b

2 , d
)

8

+
1
4
f

(
a+ b

2
,
c+ d

2

)
− 1

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ C

∨
Q

(f).

Define the set

E : =

{
(a, c) , (a, d) , (b, c) , (b, d) ,

(
a,
c+ d

2

)
,

(
b,
c+ d

2

)
,

(
a+ b

2
, c

)
,

(
a+ b

2
, d

)
,

(
a+ b

2
,
c+ d

2

)}
.

If we choose f : Q→ R with

f(x, y) =


1 if (x, y) ∈ E

0 if (x, y) ∈ [a, b]× [c, d] \E
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then f is of bounded variation on Q, and

f (a, c) + f (a, d) + f (b, c) + f (b, d)

16
=

1
4
,

f
(
a, c+d

2

)
+ f

(
b, c+d

2

)
+ f

(
a+b

2 , c
)
+ f

(
a+b

2 , d
)

8
=

1
2
,

1
4
f

(
a+ b

2
,
c+ d

2

)
=

1
4
,

b∫
a

d∫
c

f(t, s)dsdt = 0,

and
∨
Q

(f) = 16.

Therefore, we get in (3.11), 1 ≤ 16C, thus C ≥ 1
16 , which implies the constant 1

16 is the best
possible. This completes the proof.

4 Some Composite Quadrature Formula

Let us consider the arbitrary division In : a = x0 < x1 < ... < xn = b, and Jm : c = y0 < y1 <
... < ym = d, hi := xi+1 − xi, and lj := yj+1 − yj ,

υ(h) := max {hi| i = 0, ..., n− 1} ,

υ(l) := max { lj | j = 0, ...,m− 1} .
Then the following Theorem holds.

Theorem 4.1. Let f : Q→ R is of bounded variatin on Q and ξi ∈ [xi, xi+1] (i = 0, ..., n− 1) ,
τj ∈ [yj , yj+1] (j = 0, ...,m− 1) . Then we have the quadrature formula:

b∫
a

d∫
c

f(t, s)dsdt

=
4
9

n−1∑
i=0

m−1∑
j=0

f(ξi, τj)hilj

+
1
9

n−1∑
i=0

m−1∑
j=0

[f(xi, τj) + f(xi+1, τj) + f(ξi, yj) + f(ξi, yj+1)]hilj

+
1
36

n−1∑
i=0

m−1∑
j=0

[f(xi, yj) + f(xi, yj+1) + f(xi+1, yj) + f(xi+1, yj+1)]hilj

+R(In, Jm, ξ, τ, f)

The remainder R(In, Jm, ξ, η, f) satisfies

|R(In, Jm, ξ, η, f)|

≤ max
i∈{0,...,n−1}

{
max

{
hi
6
,

(
ξi −

5xi + xi+1

6

)
,

(
5xi+1 + xi

6
− ξi

)}}

× max
j∈{j=0,...,m−1}

{
max

{
lj
6
,

(
τj −

5yj + yj+1

6

)
,

(
5yj+1 + yj

6
− τj

)}}

×
b∨
a

d∨
c

(f).
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Proof. Applying Corollary 3.4 to bidimentional interval [xi, xi+1]× [yj , yj+1] and ξi ∈ [xi, xi+1]
(i = 0, ..., n− 1) , τj ∈ [yj , yj+1] (j = 0, ...,m− 1) , we have the inequality

∣∣∣∣(b− a) (d− c) [4
9
f(ξi, y) +

f(xi, τj) + f(xi+1, τj) + f(ξi, yj) + f(ξi, yj+1)

9
(4.1)

++
f(xi, yj) + f(xi, yj+1) + f(xi+1, yj) + f(xi+1, yj+1)

36

]
−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣
≤ max

{
hi
6
,

(
ξi −

5xi + xi+1

6

)
,

(
5xi+1 + xi

6
− ξi

)}

×max
{
lj
6
,

(
τj −

5yj + yj+1

6

)
,

(
5yj+1 + yj

6
− τj

)} xi+1∨
xi

yj+1∨
yj

(f).

Summing the inequality (4.1) over i from 0 to n− 1 and j from 0 to m− 1, then we get

|R(In, Jm, ξ, τ, f)|

≤
n−1∑
i=0

m−1∑
j=0

[
max

{
hi
6
,

(
ξi −

5xi + xi+1

6

)
,

(
5xi+1 + xi

6
− ξi

)}

× max
{
lj
6
,

(
τj −

5yj + yj+1

6

)
,

(
5yj+1 + yj

6
− τj

)} xi+1∨
xi

yj+1∨
yj

(f)


≤ max

i∈{0,...,n−1}

{
max

{
hi
6
,

(
ξi −

5xi + xi+1

6

)
,

(
5xi+1 + xi

6
− ξi

)}}

× max
j∈{j=0,...,m−1}

{
max

{
lj
6
,

(
τj −

5yj + yj+1

6

)
,

(
5yj+1 + yj

6
− τj

)}}

×
n−1∑
i=0

m−1∑
j=0

xi+1∨
xi

yj+1∨
yj

(f)

= max
i∈{0,...,n−1}

{
max

{
hi
6
,

(
ξi −

5xi + xi+1

6

)
,

(
5xi+1 + xi

6
− ξi

)}}

× max
j∈{j=0,...,m−1}

{
max

{
lj
6
,

(
τj −

5yj + yj+1

6

)
,

(
5yj+1 + yj

6
− τj

)}}

×
b∨
a

d∨
c

(f)

which is the required result.

Corollary 4.2. Let In, Jm and f be as above. If we choose ξi = xi+xi+1
2 and τj =

yj+yj+1
2 in
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Theorem 4.1, then we have the "Simpson’s rule"

b∫
a

d∫
c

f(t, s)dsdt

=
4
9

n−1∑
i=0

m−1∑
j=0

f

(
xi + xi+1

2
,
yj + yj+1

2

)
hilj

+
1
9

n−1∑
i=0

m−1∑
j=0

[
f

(
xi + xi+1

2
, yj

)
+ f

(
xi + xi+1

2
, yj+1

)]
hilj

+
1
9

n−1∑
i=0

m−1∑
j=0

[
f

(
xi,

yj + yj+1

2

)
+ f

(
xi+1,

yj + yj+1

2

)]
hilj

+
1
36

n−1∑
i=0

m−1∑
j=0

[f(xi, yj) + f(xi, yj+1) + f(xi+1, yj) + f(xi+1, yj+1)]hilj

+RS(In, Jm, f).

The remainder RS(In, Jm, f) satisfies

|RS(In, Jm, f)| ≤
1
9
υ(h)υ(l)

b∨
a

d∨
c

(f).
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