On Generalization Ostrowski Type Inequalities for Functions of Two Variables with Bounded Variation

Hüseyin BUDAK and Mehmet Zeki SARIKAYA

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 26D15, 26B30; Secondary 26D10, 41A55.

Keywords and phrases: Bounded variation, Ostrowski type inequality, Riemann-Stieltjes integral.

Abstract In this paper, we establish a generalization of the Ostrowski type integral inequalities for functions of two independent variables with bounded variation and we give some applications for general quadrature formulae.

1 Introduction

Let $f : [a, b] \to \mathbb{R}$ be a differentiable mapping on (a, b) whoose derivative $f' : (a, b) \to \mathbb{R}$ is bounded on (a, b), i.e. $||f'||_{\infty} := \sup_{t \in (a, b)} |f'(t)| < \infty$. Then we have the inequality

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] (b-a) \left\| f' \right\|_{\infty},$$
(1.1)

for all $x \in [a, b]$ [18]. The constant $\frac{1}{4}$ is the best possible. This inequality is well known in the literature as the *Ostrowski inequality*.

In [10], Dragomir proved following Ostrowski type inequalities related functions of bounded variation:

Theorem 1.1. Let $f : [a,b] \to \mathbb{R}$ be a mapping of bounded variation on [a,b]. Then

$$\left| \int_{a}^{b} f(t)dt - (b-a)f(x) \right| \leq \left[\frac{1}{2} \left(b-a \right) + \left| x - \frac{a+b}{2} \right| \right] \bigvee_{a}^{b} (f)$$

holds for all $x \in [a, b]$. The constant $\frac{1}{2}$ is the best possible.

In a recent years, many authors studied the well-known Ostrowski inequality in one variable for variant types of functions such as, Lipschitzian, absolutely continuous and *n*-differentiable functions as well as the functions of bounded variation. However, a small attention and a few works have been considered for functions of two variables with bounded variation (see, [3], [6], [7], [16]). Among others, in particular, Dragomir and his group studied a very interesting inequalities for functions of one variable. For more information and recent developments on inequalities for mappings of bounded variation, please refer to([1], [2], [5], [8]-[14], [17], [19]-[24]).

2 Preliminaries and Lemmas

In 1910, Fréchet [15] has given the following characterization for the double Riemann-Stieltjes integral. Assume that f(x, y) and $\alpha(x, y)$ are defined over the rectangle $Q = [a, b] \times [c, d]$; let R be the divided into rectangular subdivisions, or cells, by the net of straight lines $x = x_i, y = y_i$,

$$a = x_0 < x_1 < \ldots < x_n = b$$
, and $c = y_0 < y_1 < \ldots < y_m = d$;

let ξ_i, η_j be any numbers satisfying $\xi_i \in [x_{i-1}, x_i], \eta_j \in [y_{j-1}, y_j], : (i = 1, 2, ..., n; j = 1, 2, ..., m);$ and for all i, j let

$$\Delta_{11}\alpha(x_i, y_j) = \alpha(x_{i-1}, y_{j-1}) - \alpha(x_{i-1}, y_j) - \alpha(x_i, y_{j-1}) + \alpha(x_i, y_j).$$

Then if the sum

$$S = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_i, \eta_j) \Delta_{11} \alpha(x_i, y_j)$$

tends to a finite limit as the norm of the subdivisions approaches zero, the integral of f with respect to α is said to exist. We call this limit the restricted integral, and designate it by the symbol

$$\int_{a}^{b} \int_{c}^{d} f(x,y) d_y d_x \alpha(x,y).$$
(2.1)

If in the above formulation S is replaced by the sum

$$S^* = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_{ij}, \eta_{ij}) \Delta_{11} \alpha(x_i, y_j),$$

where ξ_{ij} , η_{ij} are numbers satisfying $\xi_{ij} \in [x_{i-1}, x_i]$, $\eta_{ij} \in [y_{j-1}, y_j]$, we call the limit, when it exist, the unrestricted integral, and designate it by the symbol

$$\int_{a}^{b} \int_{c}^{d} f(x,y) d_y d_x \alpha(x,y).$$
(2.2)

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality (2.2). On the other hand, Clarkson ([7]) has shown that the existence of (2.1) does not imply the existence of (2.2).

In [6], Clarkson and Adams gave the following definitions of bounded variation for functions of two variables:

2.1 Definitions

The function f(x, y) is assumed to be defined in rectangle $R(a \le x \le b, c \le y \le d)$. By the term *net* we shall, unless otherwise specified mean a set of parallels to the axes:

$$\begin{array}{rcl} x & = & x_i (i=0,1,2,...,m), \ a=x_0 < x_1 < \ldots < x_m = b; \\ y & = & y_j (j=0,1,2,...,n), \ c=y_0 < y_1 < \ldots < y_n = d. \end{array}$$

Each of the smaller rectangles into which R is devided by a net will be called a *cell*. We employ the notation

$$\Delta_{11}f(x_i, y_j) = f(x_{i+1}, y_{j+1}) - f(x_{i+1}, y_j) - f(x_i, y_{j+1}) + f(x_i, y_j),$$
$$\Delta f(x_i, y_j) = f(x_{i+1}, y_{j+1}) - f(x_i, y_j).$$

The total variation function, $\phi(\overline{x}) \ [\psi(\overline{y})]$, is defined as the total variation of $f(\overline{x}, y) \ [f(x, \overline{y})]$ considered as a function of $y \ [x]$ alone in interval $(c, d) \ [(a, b)]$, or as $+\infty$ if $f(\overline{x}, y) \ [f(x, \overline{y})]$ is of unbounded variation.

Definition 2.1. (Vitali-Lebesque-Fréchet-de la Vallée Poussin). The function f(x, y) is said tobe of bounded variation if the sum

$$\sum_{i=0, j=0}^{m-1, n-1} |\Delta_{11} f(x_i, y_j)|$$

is bounded for all nets.

Definition 2.2. (Fréchet). The function f(x, y) is said tobe of bounded variation if the sum

$$\sum_{i=0, j=0}^{m-1, n-1} \epsilon_i \overline{\epsilon_j} \left| \Delta_{11} f(x_i, y_j) \right|$$

is bounded for all nets and all possible choices of $\epsilon_i = \pm 1$ and $\overline{\epsilon_j} = \pm 1$.

Definition 2.3. (Hardy-Krause). The function f(x, y) is said tobe of bounded variation if it satisfies the condition of Definition 2.1 and if in addition $f(\overline{x}, y)$ is of bounded variation in y (i.e. $\phi(\overline{x})$ is finite) for at least one \overline{x} and $f(x, \overline{y})$ is of bounded variation in y (i.e. $\psi(\overline{y})$ is finite) for at least one \overline{y} .

Definition 2.4. (Arzelà). Let (x_i, y_i) (i = 0, 1, 2, ..., m) be any set of points satisfying the conditions

$$a = x_0 < x_1 < \dots < x_m = b;$$

$$c = y_0 < y_1 < \dots < y_m = d.$$

Then f(x, y) is said tobe of bounded variation if the sum

$$\sum_{i=1}^{m} |\Delta f(x_i, y_i)|$$

is bounded for all such sets of points.

=

Therefore, one can define the consept of total variation of a function of two variables, as follows:

Let f be of bounded variation on $Q = [a, b] \times [c, d]$, and let $\sum (P)$ denote the sum $\sum_{i=1}^{n} \sum_{j=1}^{m} |\Delta_{11} f(x_i, y_j)|$ corresponding to the partition P of Q. The number

$$\bigvee_{Q} (f) := \bigvee_{c}^{d} \bigvee_{a}^{b} (f) := \sup \left\{ \sum (P) : P \in P(Q) \right\},$$

is called the total variation of f on Q. Here P([a, b]) denotes the family of partitions of [a, b].

In [16], authors proved following Lemmas related double Riemann-Stieltjes integral:

Lemma 2.5. (Integrating by parts) If $f \in RS(\alpha)$ on Q, then $\alpha \in RS(f)$ on Q, and we have

$$\int_{c}^{d} \int_{a}^{b} f(t,s)d_{t}d_{s}\alpha(t,s) + \int_{c}^{d} \int_{a}^{b} \alpha(t,s)d_{t}d_{s}f(t,s)$$

$$f(b,d)\alpha(b,d) - f(b,c)\alpha(b,c) - f(a,d)\alpha(a,d) + f(a,c)\alpha(a,c).$$
(2.3)

Lemma 2.6. Assume that $g \in RS(\alpha)$ on Q and α is of bounded variation on Q, then

$$\left| \int_{c}^{d} \int_{a}^{b} g(x,y) d_{x} d_{y} \alpha(x,y) \right| \leq \sup_{(x,y) \in Q} |g(x,y)| \bigvee_{Q} (\alpha) .$$

$$(2.4)$$

In [16], Jawarneh and Noorani obtained following Ostrowski type inequality for functions of two variables with bounded variation:

Theorem 2.7. Let $f : Q \to \mathbb{R}$ be a mapping of bounded variation on Q. Then for all $(x, y) \in Q$, we have inequality

$$\left| (b-a) (d-c) f(x,y) - \int_{c}^{d} \int_{a}^{b} f(t,s) dt ds \right|$$

$$\leq \left[\frac{1}{2} (b-a) + \left| x - \frac{a+b}{2} \right| \right] \left[\frac{1}{2} (d-c) + \left| y - \frac{c+d}{2} \right| \right] \bigvee_{Q} (f)$$
(2.5)

where $\bigvee_{Q} (f)$ denotes the total (double) variation of f on Q.

The aim of this paper is to establish a generalization of the Ostrowski type integral inequalities for functions of two independent variables with bounded variation and we give some applications for general quadrature formulae.

3 Main Results

We first prove the following theorem:

Theorem 3.1. Let $f : Q \to \mathbb{R}$ be a mapping of bounded variation on Q. Then for all $(x, y) \in Q$, we have inequality

$$\left| (b-a) (d-c) \left[(1-\lambda) (1-\eta) f(x,y) + \frac{(1-\lambda)\eta}{2} \left[f(a,y) + f(b,y) \right] \right.$$

$$+ \frac{\lambda (1-\eta)}{2} \left[f(x,c) + f(x,d) \right] + \frac{\lambda \eta}{4} \left[f(a,c) + f(a,d) + f(b,c) + f(b,d) \right] \right] - \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \left| \right.$$

$$\leq \max \left\{ \lambda \frac{b-a}{2}, \left(x - \frac{(2-\lambda)a + \lambda b}{2} \right), \left(\frac{(2-\lambda)b + \lambda a}{2} - x \right) \right\}$$

$$\times \max \left\{ \eta \frac{d-c}{2}, \left(y - \frac{(2-\eta)c + \eta d}{2} \right), \left(\frac{(2-\eta)d + \eta c}{2} - y \right) \right\} \bigvee_{a}^{b} \bigvee_{c}^{d} (f)$$

for any $\lambda, \eta \in [0, 1]$ and $a + \lambda \frac{b-a}{2} \le x \le b - \lambda \frac{b-a}{2}$, $c + \eta \frac{d-c}{2} \le y \le d - \eta \frac{d-c}{2}$, where $\bigvee_{a}^{b} \bigvee_{c}^{d} (f)$ denotes he total variation of f on Q.

Proof. Applying Lemma 2.5, we have

$$\int_{a}^{x} \int_{c}^{y} \left(t - \left(a + \lambda \frac{b-a}{2}\right) \right) \left(s - \left(c + \eta \frac{d-c}{2}\right) \right) d_{s} d_{t} f(t,s)$$
(3.2)
$$= \left(x - a - \lambda \frac{b-a}{2} \right) \left(y - c - \eta \frac{d-c}{2} \right) f(x,y)$$
$$+ \left(x - a - \lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(x,c)$$
$$+ \left(\lambda \frac{b-a}{2} \right) \left(y - c - \eta \frac{d-c}{2} \right) f(a,y)$$
$$+ \left(\lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(a,c) - \int_{a}^{x} \int_{c}^{y} f(t,s) ds dt,$$

and similarly

$$\int_{a}^{x} \int_{y}^{d} \left(t - \left(a + \lambda \frac{b-a}{2} \right) \right) \left(s - \left(d - \eta \frac{d-c}{2} \right) \right) d_{s} d_{t} f(t,s)$$
(3.3)
$$= \left(x - a - \lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(x,d)$$
$$+ \left(x - a - \lambda \frac{b-a}{2} \right) \left(d - y - \eta \frac{d-c}{2} \right) f(x,y)$$
$$+ \left(\lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(a,d)$$
$$+ \left(\lambda \frac{b-a}{2} \right) \left(d - y - \eta \frac{d-c}{2} \right) f(a,y) - \int_{a}^{x} \int_{y}^{d} f(t,s) ds dt,$$

$$\int_{x}^{b} \int_{c}^{y} \left(t - \left(b - \lambda \frac{b-a}{2} \right) \right) \left(s - \left(c + \eta \frac{d-c}{2} \right) \right) d_{s} d_{t} f(t,s) \quad (3.4)$$

$$= \left(\lambda \frac{b-a}{2} \right) \left(y - c - \eta \frac{d-c}{2} \right) f(b,y)$$

$$+ \left(\lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(a,c)$$

$$+ \left(b - x - \lambda \frac{b-a}{2} \right) \left(y - c - \eta \frac{d-c}{2} \right) f(x,y)$$

$$+ \left(b - x - \lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(x,c) - \int_{x}^{b} \int_{c}^{y} f(t,s) ds dt,$$

$$\int_{x}^{b} \int_{y}^{d} \left(t - \left(b - \lambda \frac{b-a}{2} \right) \right) \left(s - \left(d - \eta \frac{d-c}{2} \right) \right) d_{s} d_{t} f(t,s) \quad (3.5)$$

$$= \left(\lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(b,d)$$

$$+ \left(b - x - \lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(b,y)$$

$$+ \left(b - x - \lambda \frac{b-a}{2} \right) \left(\eta \frac{d-c}{2} \right) f(x,d)$$

$$+ \left(b - x - \lambda \frac{b-a}{2} \right) \left(d - y - \eta \frac{d-c}{2} \right) f(x,y) - \int_{x}^{b} \int_{y}^{d} f(t,s) ds dt.$$

Summing (3.2)-(3.5), we have

$$\int_{a}^{b} \int_{c}^{d} P(x,t;y,s) d_{s} d_{t} f(t,s)$$

$$= (b-a) (d-c) \left[(1-\lambda) (1-\eta) f(x,y) + \frac{(1-\lambda)\eta}{2} [f(a,y) + f(b,y)] \right]$$

$$+ \frac{\lambda (1-\eta)}{2} [f(x,c) + f(x,d)] + \frac{\lambda \eta}{4} [f(a,c) + f(a,d) + f(b,c) + f(b,d)] - \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt$$
(3.6)

where

$$P(x,t;y,s) = \begin{cases} \left(t - \left(a + \lambda \frac{b-a}{2}\right)\right) \left(s - \left(c + \eta \frac{d-c}{2}\right)\right) &, (t,s) \in [a,x] \times [c,y] \\ \left(t - \left(a + \lambda \frac{b-a}{2}\right)\right) \left(s - \left(d - \eta \frac{d-c}{2}\right)\right) &, (t,s) \in [a,x] \times (y,d] \\ \left(t - \left(b - \lambda \frac{b-a}{2}\right)\right) \left(s - \left(c + \eta \frac{d-c}{2}\right)\right) &, (t,s) \in (x,b] \times [c,y] \\ \left(t - \left(b - \lambda \frac{b-a}{2}\right)\right) \left(s - \left(d - \eta \frac{d-c}{2}\right)\right) &, (t,s) \in (x,b] \times (y,d] \end{cases}$$
for any $\lambda, \eta \in [0,1]$ and $a + \lambda \frac{b-a}{2} \le x \le b - \lambda \frac{b-a}{2}, c + \eta \frac{d-c}{2} \le y \le d - \eta \frac{d-c}{2}.$

Now, taking the modulus in (3.6), we have

$$\begin{aligned} \left| \int_{a}^{b} \int_{c}^{d} P(x,t;y,s) d_{s} d_{t} f(t,s) \right| \\ &= \left| (b-a) \left(d-c \right) \left[(1-\lambda) \left(1-\eta \right) f(x,y) + \frac{(1-\lambda) \eta}{2} \left[f(a,y) + f(b,y) \right] \right. \\ &+ \frac{\lambda \left(1-\eta \right)}{2} \left[f(x,c) + f(x,d) \right] + \frac{\lambda \eta}{4} \left[f(a,c) + f(a,d) + f(b,c) + f(b,d) \right] \right] - \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right|. \end{aligned}$$

On the other hand, using Lemma 2.6 it follows that

This completes the proof of Theorem.

Remark 3.2. Under the assumptions of Theorem 3.1 with $\lambda = 0$ and $\eta = 0$, the inequality (3.1) reduces inequality (2.5).

Remark 3.3. If we take $\lambda = 1$ and $\eta = 1$ in Theorem 3.1, we have the trapezoid inequality

$$\left|\frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} - \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right| \le \frac{1}{4} \bigvee_{a}^{b} \bigvee_{c}^{d} (f) \quad (3.7)$$

which proved by Jawarneh and Noorani in [16]. The constant $\frac{1}{4}$ is the best possible.

Proof. For proof of the sharpness of the constant, assume that (3.7) holds with a constant A > 0, that is,

$$\left|\frac{f(b,d) + f(a,d) + f(b,c) + f(a,c)}{4} - \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right| \le A \bigvee_{a}^{b} \bigvee_{c}^{d} (f).$$
(3.8)

If we choose $f: Q \to \mathbb{R}$ with

$$f(x,y) = \begin{cases} 1 \text{ if } x = a, b \text{ and } y = c, d \\ 0 \text{ if } (x,y) \in (a,b) \times (c,d) \end{cases}$$

then f is of bounded variation on Q, and

$$\frac{f(b,d) + f(a,d) + f(b,c) + f(a,c)}{4} = 1, \quad \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt = 0, \text{ and } \bigvee_{Q} (f) = 4,$$

giving in (3.8), $1 \le 4A$, thus $A \ge \frac{1}{4}$.

Corollary 3.4. Under the assumptions of Theorem 3.1 with $\lambda = \frac{1}{3}$ and $\eta = \frac{1}{3}$, we have the inequality

$$\left| (b-a) (d-c) \left[\frac{4}{9} f(x,y) + \frac{f(a,y) + f(b,y) + f(x,c) + f(x,d)}{9} \right] + \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{36} \right] - \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right|$$

$$\leq \max\left\{ \frac{b-a}{6}, \left(x - \frac{5a+b}{6} \right), \left(\frac{5b+a}{6} - x \right) \right\}$$

$$\times \max\left\{ \frac{d-c}{6}, \left(y - \frac{5c+d}{6} \right), \left(\frac{5d+c}{6} - y \right) \right\} \bigvee_{a}^{b} \bigvee_{c}^{d} (f)$$

for $\frac{5a+b}{6} \le x \le \frac{5b+a}{6}$ and $\frac{5c+d}{6} \le y \le \frac{5d+c}{6}$.

Remark 3.5. If we choose $x = \frac{a+b}{2}$ and $y = \frac{c+d}{2}$ in Corollary 3.4, then we have the "Simpson's rule inequality "

$$\left| (b-a) (d-c) \left[\frac{f(b,d) + f(b,c) + f(a,d) + f(a,c)}{36} + \frac{f(a,\frac{c+d}{2}) + f(\frac{a+b}{2},c) + f(b,\frac{c+d}{2}) + f(\frac{a+b}{2},d)}{9} + \frac{4}{9} f\left(\frac{a+b}{2},\frac{c+d}{2}\right) \right] - \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right|$$

$$\frac{1}{9} (b-a) (d-c) \bigvee_{a}^{b} \bigvee_{c}^{d} (f)$$

which is proved by Jawarneh and Noorani in [16].

 \leq

Corollary 3.6. Under the assumptions of Theorem 3.1 with $\lambda = \frac{1}{2}$ and $\eta = \frac{1}{2}$, we have the

inequality

$$\left| \frac{(b-a)(d-c)}{4} \left[f(x,y) + \frac{f(a,y) + f(b,y) + f(x,c) + f(x,d)}{2} \right] + \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} \right] - \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right|$$

$$\leq \max\left\{ \frac{b-a}{4}, \left(x - \frac{3a+b}{4} \right), \left(\frac{3b+a}{4} - x \right) \right\}$$

$$\times \max\left\{ \frac{d-c}{4}, \left(y - \frac{3c+d}{4} \right), \left(\frac{3d+c}{4} - y \right) \right\} \bigvee_{a}^{b} \bigvee_{c}^{d} (f)$$

for $\frac{3a+b}{4} \le x \le \frac{3b+a}{4}$ and $\frac{3c+d}{4} \le y \le \frac{3d+c}{4}$.

Corollary 3.7. If we take $x = \frac{a+b}{2}$ and $y = \frac{c+d}{2}$ in Corollary 3.6, then we get

$$\begin{split} & \left| \frac{\left(b-a\right)\left(d-c\right)}{4} \left[\frac{f(b,d) + f(b,c) + f(a,d) + f(a,c)}{4} \right. \\ & \left. + \frac{f\left(a,\frac{c+d}{2}\right) + f\left(\frac{a+b}{2},c\right) + f\left(b,\frac{c+d}{2}\right) + f\left(\frac{a+b}{2},d\right)}{2} \right. \\ & \left. + f\left(\frac{a+b}{2},\frac{c+d}{2}\right) \right] - \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right| \\ & \leq \left. \frac{\left(b-a\right)\left(d-c\right)}{16} \bigvee_{a}^{b} \bigvee_{c}^{d} (f). \end{split}$$

The constant $\frac{1}{16}$ is the best possible.

Proof. Assume that (3.10) holds with a constant C > 0, i.e.,

$$\left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{16} \right|$$

$$+ \frac{f(a,\frac{c+d}{2}) + f(b,\frac{c+d}{2}) + f(\frac{a+b}{2},c) + f(\frac{a+b}{2},d)}{8}$$

$$+ \frac{1}{4}f\left(\frac{a+b}{2},\frac{c+d}{2}\right) - \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \right|$$

$$\leq C \bigvee_{Q} (f).$$
(3.11)

Define the set

$$E := \left\{ \left(a,c\right), \left(a,d\right), \left(b,c\right), \left(b,d\right), \left(a,\frac{c+d}{2}\right), \left(b,\frac{c+d}{2}\right), \left(\frac{a+b}{2},c\right), \left(\frac{a+b}{2},d\right), \left(\frac{a+b}{2},\frac{c+d}{2}\right) \right\}.$$

If we choose $f: Q \to \mathbb{R}$ with

$$f(x,y) = \begin{cases} 1 \text{ if } (x,y) \in E\\\\ 0 \text{ if } (x,y) \in [a,b] \times [c,d] \setminus E \end{cases}$$

then f is of bounded variation on Q, and

$$\begin{aligned} \frac{f\left(a,c\right) + f\left(a,d\right) + f\left(b,c\right) + f\left(b,d\right)}{16} &= \frac{1}{4}, \\ \frac{f\left(a,\frac{c+d}{2}\right) + f\left(b,\frac{c+d}{2}\right) + f\left(\frac{a+b}{2},c\right) + f\left(\frac{a+b}{2},d\right)}{8} &= \frac{1}{2}, \\ \frac{1}{4}f\left(\frac{a+b}{2},\frac{c+d}{2}\right) &= \frac{1}{4}, \\ \int_{a}^{b} \int_{c}^{d} f(t,s) ds dt &= 0, \\ &\text{and } \bigvee_{Q}(f) &= 16. \end{aligned}$$

Therefore, we get in (3.11), $1 \le 16C$, thus $C \ge \frac{1}{16}$, which implies the constant $\frac{1}{16}$ is the best possible. This completes the proof.

4 Some Composite Quadrature Formula

Let us consider the arbitrary division $I_n : a = x_0 < x_1 < ... < x_n = b$, and $J_m : c = y_0 < y_1 < ... < y_m = d$, $h_i := x_{i+1} - x_i$, and $l_j := y_{j+1} - y_j$,

$$v(h) := \max \{ h_i | i = 0, ..., n - 1 \}$$

$$v(l) := \max \{ l_j | j = 0, ..., m - 1 \}.$$

Then the following Theorem holds.

Theorem 4.1. Let $f : Q \to \mathbb{R}$ is of bounded variatin on Q and $\xi_i \in [x_i, x_{i+1}]$ (i = 0, ..., n - 1), $\tau_j \in [y_j, y_{j+1}]$ (j = 0, ..., m - 1). Then we have the quadrature formula:

$$\begin{split} &\int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \\ &= \frac{4}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} f(\xi_{i},\tau_{j}) h_{i} l_{j} \\ &+ \frac{1}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \left[f(x_{i},\tau_{j}) + f(x_{i+1},\tau_{j}) + f(\xi_{i},y_{j}) + f(\xi_{i},y_{j+1}) \right] h_{i} l_{j} \\ &+ \frac{1}{36} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \left[f(x_{i},y_{j}) + f(x_{i},y_{j+1}) + f(x_{i+1},y_{j}) + f(x_{i+1},y_{j+1}) \right] h_{i} l_{j} \end{split}$$

$$+R(I_n, J_m, \xi, \tau, f)$$

The remainder $R(I_n, J_m, \xi, \eta, f)$ satisfies

$$|R(I_n, J_m, \xi, \eta, f)|$$

$$\leq \max_{i \in \{0,...,n-1\}} \left\{ \max\left\{ \frac{h_i}{6}, \left(\xi_i - \frac{5x_i + x_{i+1}}{6}\right), \left(\frac{5x_{i+1} + x_i}{6} - \xi_i\right) \right\} \right\} \\ \times \max_{j \in \{j=0,...,m-1\}} \left\{ \max\left\{ \frac{l_j}{6}, \left(\tau_j - \frac{5y_j + y_{j+1}}{6}\right), \left(\frac{5y_{j+1} + y_j}{6} - \tau_j\right) \right\} \right\} \\ \times \bigvee_{a} \bigvee_{c}^{b} \bigvee_{c}^{d} (f).$$

Proof. Applying Corollary 3.4 to bidimentional interval $[x_i, x_{i+1}] \times [y_j, y_{j+1}]$ and $\xi_i \in [x_i, x_{i+1}]$ $(i = 0, ..., n - 1), \tau_j \in [y_j, y_{j+1}]$ (j = 0, ..., m - 1), we have the inequality

$$\left| (b-a) (d-c) \left[\frac{4}{9} f(\xi_{i}, y) + \frac{f(x_{i}, \tau_{j}) + f(x_{i+1}, \tau_{j}) + f(\xi_{i}, y_{j}) + f(\xi_{i}, y_{j+1})}{9} \right] + \frac{f(x_{i}, y_{j}) + f(x_{i}, y_{j+1}) + f(x_{i+1}, y_{j}) + f(x_{i+1}, y_{j+1})}{36} \right] - \int_{a}^{b} \int_{c}^{d} f(t, s) ds dt \right|$$

$$\leq \max \left\{ \frac{h_{i}}{6}, \left(\xi_{i} - \frac{5x_{i} + x_{i+1}}{6} \right), \left(\frac{5x_{i+1} + x_{i}}{6} - \xi_{i} \right) \right\} \\ \times \max \left\{ \frac{l_{j}}{6}, \left(\tau_{j} - \frac{5y_{j} + y_{j+1}}{6} \right), \left(\frac{5y_{j+1} + y_{j}}{6} - \tau_{j} \right) \right\} \bigvee_{x_{i}}^{x_{i+1}} \bigvee_{y_{j}}^{y_{j+1}} (f).$$

Summing the inequality (4.1) over i from 0 to n - 1 and j from 0 to m - 1, then we get

$$\begin{split} &|R(I_n, J_m, \xi, \tau, f)| \\ &\leq \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \left[\max\left\{ \frac{h_i}{6}, \left(\xi_i - \frac{5x_i + x_{i+1}}{6} \right), \left(\frac{5x_{i+1} + x_i}{6} - \xi_i \right) \right\} \right. \\ &\times \max\left\{ \frac{l_j}{6}, \left(\tau_j - \frac{5y_j + y_{j+1}}{6} \right), \left(\frac{5y_{j+1} + y_j}{6} - \tau_j \right) \right\} \bigvee_{x_i}^{x_{i+1}} \bigvee_{y_j}^{y_{j+1}} (f) \right] \\ &\leq \max_{i \in \{0, \dots, n-1\}} \left\{ \max\left\{ \frac{h_i}{6}, \left(\xi_i - \frac{5x_i + x_{i+1}}{6} \right), \left(\frac{5x_{i+1} + x_i}{6} - \xi_i \right) \right\} \right\} \\ &\times \max_{j \in \{j=0, \dots, m-1\}} \left\{ \max\left\{ \frac{l_j}{6}, \left(\tau_j - \frac{5y_j + y_{j+1}}{6} \right), \left(\frac{5y_{j+1} + y_j}{6} - \tau_j \right) \right\} \right\} \\ &\times \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \bigvee_{x_i}^{x_{i+1}} \bigvee_{y_j}^{y_{j+1}} (f) \\ &= \max_{i \in \{0, \dots, n-1\}} \left\{ \max\left\{ \frac{h_i}{6}, \left(\xi_i - \frac{5x_i + x_{i+1}}{6} \right), \left(\frac{5x_{i+1} + x_i}{6} - \xi_i \right) \right\} \right\} \\ &\times \max_{j \in \{j=0, \dots, m-1\}} \left\{ \max\left\{ \frac{l_j}{6}, \left(\tau_j - \frac{5y_j + y_{j+1}}{6} \right), \left(\frac{5y_{j+1} + y_j}{6} - \tau_j \right) \right\} \right\} \\ &\times \bigvee_{a \in V} \bigvee_{a \in V} \bigcup_{c}^{d} (f) \end{split}$$

which is the required result.

Theorem 4.1, then we have the "Simpson's rule"

$$\begin{split} &\int_{a}^{b} \int_{c}^{d} f(t,s) ds dt \\ &= \frac{4}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} f\left(\frac{x_i + x_{i+1}}{2}, \frac{y_j + y_{j+1}}{2}\right) h_i l_j \\ &\quad + \frac{1}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \left[f\left(\frac{x_i + x_{i+1}}{2}, y_j\right) + f\left(\frac{x_i + x_{i+1}}{2}, y_{j+1}\right) \right] h_i l_j \\ &\quad + \frac{1}{9} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \left[f\left(x_i, \frac{y_j + y_{j+1}}{2}\right) + f\left(x_{i+1}, \frac{y_j + y_{j+1}}{2}\right) \right] h_i l_j \\ &\quad + \frac{1}{36} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \left[f(x_i, y_j) + f(x_i, y_{j+1}) + f(x_{i+1}, y_j) + f(x_{i+1}, y_{j+1}) \right] h_i l_j \\ &\quad + R_S(I_n, J_m, f). \end{split}$$

The remainder $R_S(I_n, J_m, f)$ satisfies

$$|R_S(I_n, J_m, f)| \le \frac{1}{9} v(h) v(l) \bigvee_a^b \bigvee_c^d (f).$$

References

- M. W. Alomari, A Generalization of Weighted Companion of Ostrowski Integral Inequality for Mappings of Bounded Variation, RGMIA Research Report Collection, 14(2011), Article 87, 11 pp.
- [2] M. W. Alomari and M.A. Latif, Weighted Companion for the Ostrowski and the Generalized Trapezoid Inequalities for Mappings of Bounded Variation, RGMIA Research Report Collection, 14(2011), Article 92, 10 pp.
- [3] H. Budak and M. Z. Sarikaya, On Ostrowski Type Inequalities for Functions of Two Variables with Bounded Variation, RGMIA Research Report Collection, 17(2014), Article 153, 18 pp.
- [4] P. Cerone, W.S. Cheung, and S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation, Computers and Mathematics with Applications 54 (2007) 183–191.
- [5] P. Cerone, S. S. Dragomir, and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk J Math, 24 (2000), 147-163.
- [6] J.A. Clarkson and C. R. Adams, On definitions of bounded variation for functions of two variables, Bull. Amer. Math. Soc. 35 (1933), 824-854.
- [7] J.A. Clarkson, On double Riemann-Stieltjes integrals, Bull. Amer. Math. Soc. 39 (1933), 929-936.
- [8] S. S. Dragomir, *The Ostrowski integral inequality for mappings of bounded variation*, Bull.Austral. Math. Soc., 60(1) (1999), 495-508.
- [9] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J. Math. 22(2000) 13-19.
- [10] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. 4 (2001), no. 1, 59–66.
- [11] S. S. Dragomir, A companion of Ostrowski's inequality for functions of bounded variation and applications, Int. J. Nonlinear Anal. Appl. 5 (2014) No. 1, 89-97
- [12] S. S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450–460.
- [13] S.S. Dragomir and E. Momoniat, A Three Point Quadrature Rule for Functions of Bounded Variation and Applications, RGMIA Research Report Collection, 14(2011), Article 33, 16 pp.
- [14] S. S. Dragomir, Some perturbed Ostrowski type inequalities for functions of bounded variation, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 93.
- [15] Fréchet, M., *Extension au cas des intégrals multiples d'une définition de l'intégrale due á Stieltjes*,Nouvelles Annales de Math ematiques 10 (1910), 241-256.

- [16] Y. Jawarneh and M.S.M Noorani, Inequalities of Ostrowski and Simpson Type for Mappings of Two Variables with Bounded Variation and Applications, TJMM, 3 (2011), No. 2, 81-94
- [17] W. Liu and Y. Sun, A Refinement of the Companion of Ostrowski inequality for functions of bounded variation and Applications, arXiv:1207.3861v1, 2012.
- [18] A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10(1938), 226-227.
- [19] J. Pečarič and S. Varoŝanec, A Note on Simpson's inequality for functions of bounded variation, Tamkang Journal of Mathematics 31(3), 2000.
- [20] K-L Tseng, G-S Yang, and S. S. Dragomir, Generalizations of Weighted Trapezoidal Inequality for Mappings of Bounded Variation and Their Applications, Mathematical and Computer Modelling 40 (2004) 77-84.
- [21] K-L Tseng, Improvements of some inequalites of Ostrowski type and their applications, Taiwan. J. Math. 12 (9) (2008) 2427–2441.
- [22] K-L Tseng, S-R Hwang, G-S Yang, and Y-M Chou, Improvements of the Ostrowski integral inequality for mappings of bounded variation I, Applied Mathematics and Computation 217 (2010) 2348–2355.
- [23] K-L Tseng, S-R Hwang, G-S Yang, and Y-M Chou, Weighted Ostrowski Integral Inequality for Mappings of Bounded Variation, Taiwanese J. of Math., Vol. 15, No. 2, pp. 573-585, April 2011.
- [24] K-L Tseng, Improvements of the Ostrowski integral inequality for mappings of bounded variation II, Applied Mathematics and Computation 218 (2012) 5841–5847.

Author information

Hüseyin BUDAK, Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, TURKEY.

E-mail: hsyn.budak@gmail.com

Mehmet Zeki SARIKAYA, Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, TURKEY. E-mail: sarikayamz@gmail.com

Received: December 11, 2014.

Accepted: May 12, 2015