Vol. 4 (Spec. 1) (2015), 547–552

Quantum Codes Over $F_2 + uF_2 + vF_2$

Abdullah Dertli, Yasemin Cengellenmis and Senol Eren

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 94B05; Secondary 94B15.

Keywords and phrases: Cyclic codes, quantum codes, finite rings.

Abstract In this paper, it was constructed quantum codes from cyclic codes over finite ring $S = F_2 + uF_2 + vF_2$, $u^2 = u$, $v^2 = v$, uv = vu = 0 for arbitrary length n. It was given a new Gray map Ψ which is both an isometry and weight preserving map. It was shown that C is self orthogonal codes over S, so is $\Psi(C)$. It was given a necessary and sufficient condition for cyclic codes over S that contains its dual and it was determined the parameters of quantum codes which are obtained from cyclic codes over S.

1 Introduction

Although the theory quantum error correcting codes has striking differences from the theory classical error correcting codes, Calderbank et al. gave a way to construct quantum error correcting codes from classical error correcting codes in [3].

Many good quantum codes have been constructed by using classical cyclic codes over F_q with self orthogonal (or dual containing) properties.

Some authors constructed quantum codes by using linear codes over finite rings. For example, in [5], J. Qian et al. gave a new method to obtain self-orthogonal codes over F_2 . They gave a construction for quantum error correcting codes starting from cyclic codes over finite ring, $F_2 + uF_2$, $u^2 = 0$. X. Kai, S. Zhu gave construction for quantum codes from linear and cyclic codes over $F_4 + uF_4$, $u^2 = 0$ in [6]. They derived Hermitian self-orthogonal codes over F_4 as Gray images of linear and cyclic codes over $F_4 + uF_4$. In [7], X. Yin and W. Ma gave an existence condition of quantum codes which are derived from cyclic codes over finite ring $F_2 + uF_2 + u^2F_2$, $u^3 = 0$ with Lee metric. J. Qian gave a new method of constructing quantum error correcting codes from cyclic codes over finite ring $F_2 + vF_2$, $v^2 = v$, for arbitrary length n in [4]. A. Dertli et al. gave quantum codes over the finite ring in [1, 2].

This paper is organized as follows. In section 2, we give some basic knowledges about the finite ring S, cyclic code, dual code. In section 3, we define a new Gray map from S to F_2^3 , Lee weights of elements of S. We show that if C is self orthogonal so is $\Psi(C)$. In section 4, a necessary and sufficient condition for cyclic code over S that contains its dual is given. The parameters of quantum error correcting codes are obtained from cyclic codes over S. In section 5, we give some examples.

2 Preliminaries

Let S be the ring $F_2 + uF_2 + vF_2$ where $u^2 = u$, $v^2 = v$, uv = vu = 0 and $F_2 = \{0, 1\}$ a finite commutative ring with 8 elements. S is semi local ring with three maximal ideals and a principal ideal ring. It is not finite chain ring. Let w = 1 + u + v. Addition and multiplication over S are given in the following tables:

+	0	1	u	v	1+u	1 + v	u + v	w
0	0	1	u	v	1+u	1 + v	u + v	w
1	1	0	1+u	1+v	u	v	w	u + v
u	u	1+u	0	u+v	1	w	v	1+v
v	v	1 + v	u + v	0	w	1	u	1+u
1+u	1+u	u	1	w	0	u+v	1 + v	v
1+v	1+v	v	w	1	u+v	0	1+u	u
u+v	u+v	w	v	u	1 + v	1+u	0	1
w	w	u+v	1 + v	1+u	v	u	1	0

	0	1	u	v	1+u	1 + v	u + v	1 + u + v
0	0	0	0	0	0	0	0	0
1	0	1	u	v	1+u	1 + v	u + v	w
u	0	u	u	0	0	u	u	0
v	0	v	0	v	v	0	v	0
1+u	0	1+u	0	v	1+u	w	v	w
1 + v	0	1+v	u	0	w	1 + v	u	w
u + v	0	u+v	u	v	v	u	u + v	0
1 + u + v	0	w	0	0	w	w	0	w

The ideals are follows:

$$I_{0} = \{0\}, I_{1} = S$$

$$I_{u} = \{0, u\}, I_{v} = \{0, v\}, I_{1+u+v} = \{0, 1+u+v\}$$

$$I_{u+v} = \{0, u, v, u+v\}, I_{1+u} = \{0, v, 1+u, 1+u+v\}$$

$$I_{1+v} = \{0, u, 1+v, 1+u+v\}$$

A linear code C over S length n is a S-submodule of S^n . An element of C is called a codeword.

For any $x = (x_0, x_1, ..., x_{n-1}), y = (y_0, y_1, ..., y_{n-1})$ the inner product is defined as

$$x.y = \sum_{i=0}^{n-1} x_i y_i$$

If $x \cdot y = 0$ then x and y are said to be orthogonal. Let C be linear code of length n over S, the dual code of C

$$C^{\perp} = \{ x : \forall y \in C, x \cdot y = 0 \}$$

which is also a linear code over S of length n. A code C is self orthogonal if $C \subseteq C^{\perp}$ and self dual if $C = C^{\perp}$.

A cyclic code C over S is a linear code with the property that if $c = (c_0, c_1, ..., c_{n-1}) \in C$ then $\sigma(C) = (c_{n-1}, c_0, ..., c_{n-2}) \in C$. A subset C of S^n is a linear cyclic code of length n iff it is polynomial representation is an ideal of $S[x] / \langle x^n - 1 \rangle$.

Let C be code over F_2 of length n and $\dot{c} = (\dot{c}_0, \dot{c}_1, ..., \dot{c}_{n-1})$ be a codeword of C. The Hamming weight of \dot{c} is defined as $w_H(\dot{c}) = \sum_{i=0}^{n-1} w_H(\dot{c}_i)$ where $w_H(\dot{c}_i) = 1$ if $\dot{c}_i = 1$ and $w_H(\dot{c}_i) = 0$ if $\dot{c}_i = 0$. Hamming distance of C is defined as $d_H(C) = \min d_H(c, \dot{c})$, where for any $\dot{c} \in C$, $c \neq \dot{c}$ and $d_H(c, \dot{c})$ is Hamming distance between two codewords with $d_H(c, \dot{c}) = w_H(c - \dot{c})$.

Let $a \in F_2^{3n}$ with $a = (a_0, a_1, ..., a_{3n-1}) = (a^{(0)} | a^{(1)} | a^{(2)}), a^{(i)} \in F_2^n$ for i = 0, 1, 2. Let φ be a map from F_2^{3n} to F_2^{3n} given by $\varphi(a) = (\sigma(a^{(0)}) | \sigma(a^{(1)}) | \sigma(a^{(2)}))$ where σ is a cyclic shift from F_2^n to F_2^n given by $\sigma(a^{(i)}) = ((a^{(i,n-1)}), (a^{(i,0)}), (a^{(i,1)}), ..., (a^{(i,n-2)}))$ for every $a^{(i)} = (a^{(i,0)}, ..., a^{(i,n-1)})$ where $a^{(i,j)} \in F_2, 0 \le j \le n-1$. A code of length 3n over F_2 is said to be quasi cyclic code of index 3 if $\varphi(C) = C$.

3 Gray Map And Gray Images Of Cyclic Codes Over S

Let x = a + ub + uc be an element of S where $a, b, c \in F_2$. We define Gray map Ψ from S to F_2^3 by

$$\begin{split} \Psi & : \quad S \to F_2^3 \\ \Psi \left(a + ub + vc \right) & = \quad (a, a + b, a + c) \end{split}$$

The Lee weight of elements of S are defined $w_L (a + ub + vc) = w_H(a, a + b, a + c)$ where w_H denotes the ordinary Hamming weight for binary codes. Hence, there is one element whose weight is 0, there are u, v, 1 + u + v elements whose weights are 1, there are 1 + u, 1 + v, u + v elements whose weights are 2, there is one element whose weight are 3.

Let C be a linear code over S of length n. For any codeword $c = (c_0, ..., c_{n-1})$ the Lee weight of c is defined as $w_L(c) = \sum_{i=0}^{n-1} w_L(c_i)$ and the Lee distance of C is defined as $d_L(C) = \min d_L(c, c)$, where for any $c \in C$, $c \neq c$ and $d_L(c, c)$ is Lee distance between two codewords with $d_L(c, \acute{c}) = w_L(c - \acute{c})$. Gray map Ψ can be extended to map from S^n to F_2^{3n} .

Theorem 3.1. The Gray map Ψ is a weight preserving map from (Sⁿ, Lee weight) to (F_2^{3n} , Hamming weight). Moreover it is an isometry from S^n to F_2^{3n} .

Theorem 3.2. If C is an $[n, k, d_L]$ linear codes over S then $\Psi(C)$ is a $[3n, k, d_H]$ linear codes over F_2 , where $d_H = d_L$.

Proof. Let $x_1 = a_1 + ub_1 + vc_1, x_2 = a_2 + ub_2 + vc_2 \in S, \alpha \in F_2$ then $\Psi(x_1 + x_2) = \Psi(a_1 + a_2 + u(b_1 + b_2) + v(c_1 + c_2))$ $= (a_1 + a_2, a_1 + a_2 + b_1 + b_2, a_1 + a_2 + c_1 + c_2)$ $= (a_1, a_1 + b_1, a_1 + c_1) + (a_2, a_2 + b_2, a_2 + c_2)$ $=\Psi(x_1)+\Psi(x_2)$ $\Psi(\alpha x_1) = \Psi(\alpha a_1 + u\alpha b_1 + v\alpha c_1)$ $= (\alpha a_1, \alpha a_1 + \alpha b_1, \alpha a_1 + \alpha c_1)$ $= \alpha(a_1, a_1 + b_1, a_1 + c_1)$ $= \alpha \Psi(x_1)$ so Ψ is linear. As Ψ is bijective then $|C| = |\Psi(C)|$. From Theorem 3.1 we have $d_H = d_L$.

Theorem 3.3. If C is self orthogonal, so is $\Psi(C)$.

Proof. Let $x_1 = a_1 + ub_1 + vc_1$, $x_2 = a_2 + ub_2 + vc_2$ where $a_1, b_1, c_1, a_2, b_2, c_2 \in F_2$.

From $x_1 \cdot x_2 = a_1 a_2 + u(a_1 b_2 + b_1 a_2 + b_1 b_2) + v(a_1 c_2 + c_1 a_2 + c_1 c_2)$, if C is self orthogonal, so we have $a_1a_2 = 0$, $a_1b_2 + b_1a_2 + b_1b_2 = 0$, $a_1c_2 + c_1a_2 + c_1c_2 = 0$. From

 $\Psi(x_1) \cdot \Psi(x_2) = (a_1, a_1 + b_1, a_1 + c_1)(a_2, a_2 + b_2, a_2 + c_2)$

 $= a_1a_2 + a_1b_2 + b_1a_2 + b_1b_2 + a_1a_2 + a_1c_2 + c_1a_2 + c_1c_2 = 0$ Therefore, we have $\Psi(C)$ is self orthogonal.

Proposition 3.4. Let Ψ be Gray map from S^n to F_2^{3n} , let σ be cyclic shift and let φ be a map as in the preliminaries. Then $\Psi \sigma = \varphi \Psi$.

Proposition 3.5. Let σ and φ be as in the preliminaries. A code C of length n over S is cyclic code if and only if $\Psi(C)$ is quasi cyclic code of index 3 over F_2 with length 3n.

Proof. Similar to proof of in [8].

We denote that $A_1 \otimes A_2 \otimes A_3 = \{(a_1, a_2, a_3) : a_1 \in A_1, a_2 \in A_2, a_3 \in A_3\}$ and $A_1 \oplus A_2 \oplus A_3 = \{(a_1, a_2, a_3) : a_1 \in A_1, a_2 \in A_2, a_3 \in A_3\}$ ${a_1 + a_2 + a_3 : a_1 \in A_1, a_2 \in A_2, a_3 \in A_3}$

Let C be a linear code of length n over S. Define

 $C_1 = \{a \in F_2^n : \exists b, c \in F_2^n, a + ub + vc \in C\}$ $C_2 = \{a + b \in F_2^n : \exists c \in F_2^n, a + ub + vc \in C\}$ $C_3 = \{a + c \in F_2^n : \exists b \in F_2^n, a + ub + vc \in C\}$

Then C_1, C_2 and C_3 are binary linear codes of length n. Moreover, the linear code C of length *n* over *S* can be uniquely expressed as $C = (1 + u + v)C_1 \oplus (u) C_2 \oplus (v) C_3$.

Theorem 3.6. Let C be a linear code of length n over S. Then $\Psi(C) = C_1 \otimes C_2 \otimes C_3$ and $|C| = |C_1| |C_2| |C_3|.$

Proof. For any $(a_0, a_1, ..., a_{n-1}, b_0, b_1, ..., b_{n-1}, c_0, c_1, ..., c_{n-1}) \in \Psi(C)$. Let $r_i = a_i + u(a_i + b_i) + b_i +$ $v(a_i + c_i), i = 0, 1, ..., n - 1$. Since Ψ is a bijection $r = (r_0, r_1, ..., r_{n-1}) \in C$. By definitions of C_1, C_2 and C_3 we have $(a_0, a_1, ..., a_{n-1}) \in C_1, (b_0, b_1, ..., b_{n-1}) \in C_2, (c_0, c_1, ..., c_{n-1}) \in C_3$. So, $(a_0, a_1, ..., a_{n-1}, b_0, b_1, ..., b_{n-1}, c_0, c_1, ..., c_{n-1}) \in C_1 \otimes C_2 \otimes C_3$. That is $\Psi(C) \subseteq C_1 \otimes C_2 \otimes C_3$.

On the other hand, for any $(a_0, a_1, ..., a_{n-1}, b_0, b_1, ..., b_{n-1}, c_0, c_1, ..., c_{n-1}) \in C_1 \otimes C_2 \otimes C_3$ where $(a_0, a_1, ..., a_{n-1}) \in C_1, (b_0, b_1, ..., b_{n-1}) \in C_2, (c_0, c_1, ..., c_{n-1}) \in C_3$. There are x = x $(a_0, a_1, ..., a_{n-1}), y = (b_0, b_1, ..., b_{n-1}), z = (c_0, c_1, ..., c_{n-1}) \in C$ such that $x_i = a_i + (u+v)p_i$, $y_i = b_i + (1+u)q_i$, $z_i = c_i + (1+v)s_i$ where $p_i, q_i, s_i \in F_2$ and $0 \le i \le n-1$. Since C is linear we have $r = (1 + u + v)x + (u)y + (v)z = a + u(a + b) + v(a + c) \in C$. It follows then $\Psi(r) = (a_0, a_1, ..., a_{n-1}, b_0, b_1, ..., b_{n-1}, c_0, c_1, ..., c_{n-1})$, which gives $C_1 \otimes C_2 \otimes C_3 \subseteq \Psi(C)$. Therefore, $\Psi(C) = C_1 \otimes C_2 \otimes C_3$. The second result is easy to verify.

Corollary 3.7. If $\Psi(C) = C_1 \otimes C_2 \otimes C_3$, then $C = (1 + u + v)C_1 \oplus (u)C_2 \oplus (v)C_3$.

It is easy to see that,

$$|C| = |C_1| |C_2| |C_3| = 2^{n - \deg(f_1)} 2^{n - \deg(f_2)} 2^{n - \deg(f_3)}$$

= $2^{3n - (\deg(f_1) + \deg(f_2) + \deg(f_3))}$

where f_1, f_2 and f_3 are the generator polynomials of C_1, C_2 and C_3 , respectively.

Corollary 3.8. If G_1, G_2, G_3 and G_4 are generator matrices of binary linear codes C_1, C_2 and C_3 respectively, then the generator matrix of C is

$$G = \begin{bmatrix} (1+u+v)G_1\\ (u)G_2\\ (v)G_3 \end{bmatrix}$$

We have

$$\Psi(G) = \begin{bmatrix} \Psi((1+u+v)G_1) \\ \Psi((u)G_2) \\ \Psi((v)G_3) \end{bmatrix} = \begin{bmatrix} G_1 & 0 & 0 \\ 0 & G_2 & 0 \\ 0 & 0 & G_3 \end{bmatrix}$$

Let d_L minimum Lee weight of linear code C over S. Then,

 $d_L = d_H(\Psi(C)) = \min\{d_H(C_1), d_H(C_2), d_H(C_3)\}$

where $d_H(C_i)$ denotes the minimum Hamming weights of binary codes C_1, C_2 and C_3 , respectively.

4 Quantum Codes From Cyclic Codes Over S

Theorem 4.1. (CSS Construction) Let C and \acute{C} be two binary codes with parameters $[n, k_1, d_1]$ and $[n, k_2, d_2]$, respectively. If $C^{\perp} \subseteq \acute{C}$, then an $[[n, k_1 + k_2 - n, \min\{d_1, d_2\}]]$ quantum code can be constructed. Especially, if $C^{\perp} \subseteq C$, then there exists an $[[n, 2k_1 - n, d_1]]$ quantum code.

Proposition 4.2. Let $C = (1 + u + v)C_1 \oplus (u) C_2 \oplus (v) C_3$ be a linear code over S. Then C is a cyclic code over S iff C_1, C_2 and C_3 are binary cyclic codes.

Proof. Let $(a_0, a_1, ..., a_{n-1}) \in C_1$, $(b_0, b_1, ..., b_{n-1}) \in C_2$ and $(c_0, c_1, ..., c_{n-1}) \in C_3$. Assume that $m_i = (1+u+v)a_i+(u)b_i+(v)c_i$ for i = 0, 1, ..., n-1. Then $(m_0, m_1, ..., m_{n-1}) \in C$. Since C is a cyclic code, it follows that $(m_{n-1}, m_0, ..., m_{n-2}) \in C$. Note that $(m_{n-1}, m_0, ..., m_{n-2}) = (1+u+v)(a_{n-1}, a_0, ..., a_{n-2})+(u)(b_{n-1}, b_0, ..., b_{n-2})+(v)(c_{n-1}, c_0, ..., c_{n-2})$. Hence $(a_{n-1}, a_0, ..., a_{n-2}) \in C_1$, $(b_{n-1}, b_0, ..., b_{n-2}) \in C_2$ and $(c_{n-1}, c_0, ..., c_{n-2}) \in C_3$. Therefore, C_1, C_2 and C_3 cyclic codes over F_2 .

Conversely, suppose that C_1, C_2 and C_3 cyclic codes over F_2 . Let $(m_0, m_1, ..., m_{n-1}) \in C$ where $m_i = (1 + u + v)a_i + (u)b_i + (v)c_i$ for i = 0, 1, ..., n - 1. Then $(a_0, a_1, ..., a_{n-1}) \in C_1$, $(b_0, b_1, ..., b_{n-1}) \in C_2$ and $(c_0, c_1, ..., c_{n-1}) \in C_3$. Note that $(m_{n-1}, m_0, ..., m_{n-2}) = (1 + u + v)(a_{n-1}, a_0, ..., a_{n-2}) + (u)(b_{n-1}, b_0, ..., b_{n-2}) + (v)(c_{n-1}, c_0, ..., c_{n-2}) \in C = (1 + u + v)C_1 \oplus (u)C_2 \oplus (v)C_3$. So, C is cyclic code over S.

Proposition 4.3. Suppose $C = (1 + u + v)C_1 \oplus (u) C_2 \oplus (v) C_3$ is a cyclic code of length *n* over *S*. Then

$$C = <(1 + u + v)f_1, (u) f_2, (v) f_3 >$$

and $|C| = 2^{3n - (\deg f_1 + \deg f_2 + \deg f_3)}$ where f_1, f_2 and f_3 generator polynomials of C_1, C_2 and C_3 respectively.

Proposition 4.4. Suppose *C* is a cyclic code of length *n* over *S*, then there is a unique polynomial f(x) such that $C = \langle f(x) \rangle$ and $f(x) | x^n - 1$ where $f(x) = (1 + u + v)f_1(x) + (u)f_2(x) + (v)f_3(x)$.

Proposition 4.5. If $C = (1 + u + v)C_1 \oplus (u) C_2 \oplus (v) C_3$ is a cyclic code of length *n* over *S*. *Then*

$$C^{\perp} = \langle (1+u+v)h_1^* + (u)h_2^* + (v)h_3^* \rangle$$

and $|C^{\perp}| = 2^{\deg f_1 + \deg f_2 + \deg f_3}$ where for $i = 1, 2, 3, h_i^*$ are the reciprocal polynomials of h_i i.e., $h_i(x) = (x^n - 1)/f_i(x), h_i^*(x) = x^{\deg h_i}h_i(x^{-1})$ for i = 1, 2, 3.

Lemma 4.6. A binary linear cyclic code C with generator polynomial f(x) contains its dual code iff

$$x^n - 1 \equiv 0 \,(modff^*)$$

where f^* is the reciprocal polynomial of f.

Theorem 4.7. Let $C = \langle (1 + u + v)f_1, (u) f_2, (v) f_3 \rangle$ be a cyclic code of length n over S. Then $C^{\perp} \subseteq C$ iff $x^n - 1 \equiv 0 \pmod{f_i f_i^*}$ for i = 1, 2, 3.

 $\begin{array}{l} \textit{Proof. Let } x^n - 1 \equiv 0 \left(modf_i f_i^* \right) \text{ for } i = 1,2,3. \text{ Then } C_1^{\perp} \subseteq C_1, C_2^{\perp} \subseteq C_2, C_3^{\perp} \subseteq C_3. \text{ By using } (1 + u + v)C_1^{\perp} \subseteq (1 + u + v)C_1, (u) C_2^{\perp} \subseteq (u) C_2, (v) C_3^{\perp} \subseteq (v) C_3. \text{ We have } (1 + u + v)C_1^{\perp} \oplus (u) C_2^{\perp} \oplus (v) C_3^{\perp} \subseteq (1 + u + v)C_1 \oplus (u) C_2 \oplus (v) C_3. \text{ So, } < (1 + u + v)h_1^* + (u) h_2^* + (v) h_3^* > \subseteq < (1 + u + v)f_1, (u) f_2, (v) f_3 > . \text{ That is } C^{\perp} \subseteq C. \end{array}$

Conversely, if $C^{\perp} \subseteq C$, then $(1 + u + v)C_1^{\perp} \oplus (u)C_2^{\perp} \oplus (v)C_3^{\perp} \subseteq (1 + u + v)C_1 \oplus (u)C_2 \oplus (v)C_3$. By thinking mod(1 + u + v), mod(u) and mod(v) respectively we have $C_i^{\perp} \subseteq C_i$ for i = 1, 2, 3. Therefore, $x^n - 1 \equiv 0 \pmod{if_i}$ for i = 1, 2, 3.

Corollary 4.8. $C = (1 + u + v)C_1 \oplus (u) C_2 \oplus (v) C_3$ is a cyclic code of length n over S. Then $C^{\perp} \subseteq C$ iff $C_i^{\perp} \subseteq C_i$ for i = 1, 2, 3.

Example 4.9. Let $n = 7, S = F_2 + uF_2 + vF_2$ $x^7 - 1 = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1) = f_1 f_2 f_3$ in $F_2[x]$. Hence,

$$f_1^* = x + 1 = f_1$$

$$f_2^* = x^3 + x^2 + 1 = f_3$$

$$f_3^* = x^3 + x + 1 = f_2$$

Let $C = \langle (1 + u + v) f_3, (u) f_2, (v) f_3 \rangle$. Obviously $x^n - 1$ is divisibly by $f_i f_i^*$ for i = 2, 3. Thus we have $C^{\perp} \subseteq C$.

Using Theorem 4.1 and Theorem 4.7 we can construct quantum codes.

Theorem 4.10. Let $C = C = (1 + u + v)C_1 \oplus (u) C_2 \oplus (v) C_3$ be a cyclic code of arbitrary length n over S with type $8^{k_1}4^{k_2}2^{k_3}$. If $C_i^{\perp} \subseteq C_i$ where i = 1, 2, 3 then $C^{\perp} \subseteq C$ and there exists a quantum error-correcting code with parameters $[[3n, 3k_1 + 2k_2 + k_3 - 3n, d_L]]$ where d_L is the minimum Lee weights of C.

5	Exam	ples
•	1.1.4111	PICO

n	C_1	C_2	C_3	$\Psi(C)$	[[N, K, D]]
7	[7,4,3]	[7,4,3]	[7,4,3]	[21, 12, 3]	[[21,3,3]]
8	[8, 6, 2]	[8, 4, 2]	[8, 6, 2]	[24, 16, 2]	[[24, 8, 2]]
15	[15, 11, 3]	[15, 8, 4]	[15, 11, 3]	[45, 30, 3]	[[45, 15, 3]]
30	[30,18,5]	[30, 21, 4]	[30, 17, 6]	[90, 56, 4]	[[90, 22, 4]]

References

- [1] A. Dertli, Y. Cengellenmis, S. Eren, On quantum codes obtained from cyclic codes over A₂, *Int. J. Quantum Inform.* **13**, (2015).
- [2] A. Dertli, Y. Cengellenmis, S. Eren, Quantum codes over the ring $F_2 + uF_2 + u^2F_2 + ... + u^mF_2$, *Int. Journal of Alg.*, **3**, (2015).
- [3] A. R. Calderbank, E. M. Rains, P. M. Shor, N. J. A. Sloane, Quantum error correction via codes over *GF* (4), *IEEE Trans. Inf. Theory*, **44**, (1998).
- [4] J. Qian, Quantum codes from cyclic codes over $F_2 + vF_2$, Journal of Inform.& computational Science **6**, 1715-1722 (2013).

- [5] J. Qian, W. Ma, W. Gou, Quantum codes from cyclic codes over finite ring 7, 1277-1283 (2009).
- [6] X. Kai, S. Zhu, Quaternary construction bof quantum codes from cyclic codes over F_4+uF_4 , Int. J. Quantum Inform., **9**, 689-700 (2011).
- [7] X. Yin, W. Ma, Gray Map And Quantum Codes Over The Ring $F_2 + uF_2 + u^2F_2$, International Joint Conferences of IEEE TrustCom-11, (2011).
- [8] Y. Cengellenmis, A. Dertli, S. T. Dougherty, Codes over an infinite family of rings with a Gray map, 72, 559-580 (2014).

Author information

Abdullah Dertli, Department of Mathematics, Ondokuz Mayıs University, Faculty of Arts and Sciences, Samsun, TURKEY.

E-mail: abdullah.dertli@gmail.com

Yasemin Cengellenmis, Department of Mathematics, Trakya University, Faculty of Arts and Sciences, Edirne, TURKEY.

E-mail: ycengellenmis@gmail.com

Senol Eren, Department of Mathematics, Ondokuz Mayıs University, Faculty of Arts and Sciences, Samsun, TURKEY.

E-mail: seren@omu.edu.tr

Received: March 9, 2015.

Accepted: May 7, 2015.