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Abstract In this paper, it was constructed quantum codes from cyclic codes over finite ring
S = F2 + uF2 + vF2, u

2 = u, v2 = v, uv = vu = 0 for arbitrary length n. It was given a new
Gray map Ψ which is both an isometry and weight preserving map. It was shown that C is self
orthogonal codes over S, so is Ψ(C). It was given a necessary and sufficient condition for cyclic
codes over S that contains its dual and it was determined the parameters of quantum codes which
are obtained from cyclic codes over S.

1 Introduction

Although the theory quantum error correcting codes has striking differences from the theory clas-
sical error correcting codes, Calderbank et al. gave a way to construct quantum error correcting
codes from classical error correcting codes in [3].

Many good quantum codes have been constructed by using classical cyclic codes over Fq

with self orthogonal (or dual containing) properties.
Some authors constructed quantum codes by using linear codes over finite rings. For exam-

ple, in [5], J. Qian et al. gave a new method to obtain self-orthogonal codes over F2. They gave
a construction for quantum error correcting codes starting from cyclic codes over finite ring,
F2 + uF2, u2 = 0. X. Kai, S. Zhu gave construction for quantum codes from linear and cyclic
codes over F4 + uF4, u2 = 0 in [6]. They derived Hermitian self-orthogonal codes over F4 as
Gray images of linear and cyclic codes over F4+uF4. In [7], X. Yin and W. Ma gave an existence
condition of quantum codes which are derived from cyclic codes over finite ring F2+uF2+u2F2,
u3 = 0 with Lee metric. J. Qian gave a new method of constructing quantum error correcting
codes from cyclic codes over finite ring F2 + vF2, v

2 = v, for arbitrary length n in [4]. A. Dertli
et al. gave quantum codes over the finite ring in [1, 2].

This paper is organized as follows. In section 2, we give some basic knowledges about the
finite ring S, cyclic code, dual code. In section 3, we define a new Gray map from S to F 3

2 ,
Lee weights of elements of S. We show that if C is self orthogonal so is Ψ (C) . In section 4,
a necessary and sufficient condition for cyclic code over S that contains its dual is given. The
parameters of quantum error correcting codes are obtained from cyclic codes over S. In section
5, we give some examples.

2 Preliminaries

Let S be the ring F2 + uF2 + vF2 where u2 = u, v2 = v, uv = vu = 0 and F2 = {0, 1} a finite
commutative ring with 8 elements. S is semi local ring with three maximal ideals and a principal
ideal ring. It is not finite chain ring. Let w = 1 + u+ v. Addition and multiplication over S are
given in the following tables:

+ 0 1 u v 1 + u 1 + v u+ v w

0 0 1 u v 1 + u 1 + v u+ v w

1 1 0 1 + u 1 + v u v w u+ v

u u 1 + u 0 u+ v 1 w v 1 + v

v v 1 + v u+ v 0 w 1 u 1 + u

1 + u 1 + u u 1 w 0 u+ v 1 + v v

1 + v 1 + v v w 1 u+ v 0 1 + u u

u+ v u+ v w v u 1 + v 1 + u 0 1
w w u+ v 1 + v 1 + u v u 1 0
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. 0 1 u v 1 + u 1 + v u+ v 1 + u+ v

0 0 0 0 0 0 0 0 0
1 0 1 u v 1 + u 1 + v u+ v w

u 0 u u 0 0 u u 0
v 0 v 0 v v 0 v 0

1 + u 0 1 + u 0 v 1 + u w v w

1 + v 0 1 + v u 0 w 1 + v u w

u+ v 0 u+ v u v v u u+ v 0
1 + u+ v 0 w 0 0 w w 0 w

The ideals are follows:

I0 = {0}, I1 = S

Iu = {0, u}, Iv = {0, v}, I1+u+v = {0, 1 + u+ v}
Iu+v = {0, u, v, u+ v}, I1+u = {0, v, 1 + u, 1 + u+ v}
I1+v = {0, u, 1 + v, 1 + u+ v}

A linear code C over S length n is a S−submodule of Sn. An element of C is called a
codeword.

For any x = (x0, x1, ..., xn−1), y = (y0, y1, ..., yn−1) the inner product is defined as

x.y =
n−1∑
i=0

xiyi

If x.y = 0 then x and y are said to be orthogonal. Let C be linear code of length n over S,
the dual code of C

C⊥ = {x : ∀y ∈ C, x.y = 0}

which is also a linear code over S of length n. A code C is self orthogonal if C ⊆ C⊥ and self
dual if C = C⊥.

A cyclic code C over S is a linear code with the property that if c = (c0, c1, ..., cn−1) ∈ C
then σ (C) = (cn−1, c0, ..., cn−2) ∈ C. A subset C of Sn is a linear cyclic code of length n iff it
is polynomial representation is an ideal of S [x] / 〈xn − 1〉 .

Let C be code over F2 of length n and ć = (ć0, ć1, ..., ćn−1) be a codeword of C. The
Hamming weight of ć is defined as wH (ć) =

∑n−1
i=0 wH (ći) where wH (ći) = 1 if ći = 1

and wH (ći) = 0 if ći = 0. Hamming distance of C is defined as dH (C) = min dH (c, ć) ,
where for any ć ∈ C, c 6= ć and dH (c, ć) is Hamming distance between two codewords with
dH (c, ć) = wH (c− ć) .

Let a ∈ F 3n
2 with a = (a0, a1, ..., a3n−1) =

(
a(0)

∣∣a(1)∣∣ a(2)) , a(i) ∈ Fn
2 for i = 0, 1, 2. Let

ϕ be a map from F 3n
2 to F 3n

2 given by ϕ (a) =
(
σ
(
a(0)
) ∣∣σ (a(1))∣∣σ (a(2))) where σ is a cyclic

shift from Fn
2 to Fn

2 given by σ
(
a(i)
)
= ((a(i,n−1)), (a(i,0)), (a(i,1)), ..., (a(i,n−2))) for every

a(i) = (a(i,0), ..., a(i,n−1)) where a(i,j) ∈ F2, 0 ≤ j ≤ n− 1. A code of length 3n over F2 is said
to be quasi cyclic code of index 3 if ϕ (C) = C.

3 Gray Map And Gray Images Of Cyclic Codes Over S

Let x = a+ub+uc be an element of S where a, b, c ∈ F2. We define Gray map Ψ from S to F 3
2

by

Ψ : S → F 3
2

Ψ (a+ ub+ vc) = (a, a+ b, a+ c)

The Lee weight of elements of S are defined wL (a+ ub+ vc) = wH(a, a+ b, a+ c) where
wH denotes the ordinary Hamming weight for binary codes. Hence, there is one element whose
weight is 0, there are u, v, 1 + u+ v elements whose weights are 1, there are 1 + u, 1 + v, u+ v
elements whose weights are 2, there is one element whose weight are 3.
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Let C be a linear code over S of length n. For any codeword c = (c0, ..., cn−1) the Lee weight
of c is defined as wL (c) =

∑n−1
i=0 wL (ci) and the Lee distance of C is defined as dL (C) =

min dL (c, ć) , where for any ć ∈ C, c 6= ć and dL (c, ć) is Lee distance between two codewords
with dL (c, ć) = wL (c− ć) . Gray map Ψ can be extended to map from Sn to F 3n

2 .

Theorem 3.1. The Gray map Ψ is a weight preserving map from (Sn, Lee weight) to (F 3n
2 ,

Hamming weight). Moreover it is an isometry from Sn to F 3n
2 .

Theorem 3.2. If C is an [n, k, dL] linear codes over S then Ψ (C) is a [3n, k, dH ] linear codes
over F2, where dH = dL.

Proof. Let x1 = a1 + ub1 + vc1, x2 = a2 + ub2 + vc2 ∈ S, α ∈ F2 then
Ψ (x1 + x2) = Ψ (a1 + a2 + u (b1 + b2) + v (c1 + c2))

= (a1 + a2, a1 + a2 + b1 + b2, a1 + a2 + c1 + c2)
= (a1, a1 + b1, a1 + c1) + (a2, a2 + b2, a2 + c2)
= Ψ (x1) + Ψ (x2)

Ψ (αx1) = Ψ (αa1 + uαb1 + vαc1)
= (αa1, αa1 + αb1, αa1 + αc1)
= α(a1, a1 + b1, a1 + c1)
= αΨ (x1) so Ψ is linear. As Ψ is bijective then |C| = |Ψ (C)|. From Theorem 3.1

we have dH = dL.

Theorem 3.3. If C is self orthogonal, so is Ψ (C) .

Proof. Let x1 = a1 + ub1 + vc1, x2 = a2 + ub2 + vc2 where a1, b1, c1, a2, b2, c2 ∈ F2.
From x1.x2 = a1a2 + u(a1b2 + b1a2 + b1b2) + v(a1c2 + c1a2 + c1c2), if C is self orthogonal,

so we have a1a2 = 0, a1b2 + b1a2 + b1b2 = 0, a1c2 + c1a2 + c1c2 = 0. From
Ψ (x1) .Ψ (x2) = (a1, a1 + b1, a1 + c1)(a2, a2 + b2, a2 + c2)

= a1a2 + a1b2 + b1a2 + b1b2 + a1a2 + a1c2 + c1a2 + c1c2 = 0 Therefore, we have
Ψ (C) is self orthogonal.

Proposition 3.4. Let Ψ be Gray map from Sn to F 3n
2 , let σ be cyclic shift and let ϕ be a map as

in the preliminaries. Then Ψσ = ϕΨ.

Proposition 3.5. Let σ and ϕ be as in the preliminaries. A code C of length n over S is cyclic
code if and only if Ψ (C) is quasi cyclic code of index 3 over F2 with length 3n.

Proof. Similar to proof of in [8].

We denote thatA1⊗A2⊗A3 = {(a1, a2, a3) : a1 ∈ A1, a2 ∈ A2, a3 ∈ A3} andA1⊕A2⊕A3 =
{a1 + a2 + a3 : a1 ∈ A1, a2 ∈ A2, a3 ∈ A3}

Let C be a linear code of length n over S. Define

C1 = {a ∈ Fn
2 : ∃b, c ∈ Fn

2 , a+ ub+ vc ∈ C}
C2 = {a+ b ∈ Fn

2 : ∃c ∈ Fn
2 , a+ ub+ vc ∈ C}

C3 = {a+ c ∈ Fn
2 : ∃b ∈ Fn

2 , a+ ub+ vc ∈ C}

Then C1, C2 and C3 are binary linear codes of length n. Moreover, the linear code C of length
n over S can be uniquely expressed as C = (1 + u+ v)C1 ⊕ (u)C2 ⊕ (v)C3.

Theorem 3.6. Let C be a linear code of length n over S. Then Ψ (C) = C1 ⊗ C2 ⊗ C3 and
|C| = |C1| |C2| |C3| .

Proof. For any (a0, a1, ..., an−1, b0, b1, ..., bn−1, c0, c1, ..., cn−1) ∈ Ψ (C) . Let ri = ai+u (ai + bi)+
v(ai + ci), i = 0, 1, ..., n− 1. Since Ψ is a bijection r = (r0, r1, ..., rn−1) ∈ C. By definitions of
C1, C2 and C3 we have (a0, a1, ..., an−1) ∈ C1, (b0, b1, ..., bn−1) ∈ C2, (c0, c1, ..., cn−1) ∈ C3. So,
(a0, a1, ..., an−1, b0, b1, ..., bn−1, c0, c1, ..., cn−1) ∈ C1⊗C2⊗C3. That is Ψ (C) ⊆ C1⊗C2⊗C3.

On the other hand, for any (a0, a1, ..., an−1, b0, b1, ..., bn−1, c0, c1, ..., cn−1) ∈ C1 ⊗ C2 ⊗ C3
where (a0, a1, ..., an−1) ∈ C1, (b0, b1, ..., bn−1) ∈ C2, (c0, c1, ..., cn−1) ∈ C3. There are x =
(a0, a1, ..., an−1) , y = (b0, b1, ..., bn−1) , z = (c0, c1, ..., cn−1) ∈ C such that xi = ai+(u+v)pi,
yi = bi + (1 + u) qi, zi = ci + (1 + v) si where pi, qi, si ∈ F2 and 0 ≤ i ≤ n − 1. Since C is
linear we have r = (1 + u+ v)x+ (u)y+ (v)z = a+ u (a+ b) + v(a+ c) ∈ C. It follows then
Ψ (r) = (a0, a1, ..., an−1, b0, b1, ..., bn−1, c0, c1, ..., cn−1), which gives C1 ⊗ C2 ⊗ C3 ⊆ Ψ (C) .
Therefore, Ψ (C) = C1 ⊗ C2 ⊗ C3. The second result is easy to verify.
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Corollary 3.7. If Ψ (C) = C1 ⊗ C2 ⊗ C3, then C = (1 + u+ v)C1 ⊕ (u)C2 ⊕ (v)C3.

It is easy to see that,

|C| = |C1| |C2| |C3| = 2n−deg(f1)2n−deg(f2)2n−deg(f3)

= 23n−(deg(f1)+deg(f2)+deg(f3))

where f1, f2 and f3 are the generator polynomials of C1, C2 and C3, respectively.

Corollary 3.8. If G1, G2, G3 and G4 are generator matrices of binary linear codes C1, C2 and
C3 respectively, then the generator matrix of C is

G =

 (1 + u+ v)G1

(u)G2

(v)G3


We have

Ψ(G) =

 Ψ((1 + u+ v)G1)

Ψ((u)G2)

Ψ((v)G3)

 =

 G1 0 0
0 G2 0
0 0 G3

 .
Let dL minimum Lee weight of linear code C over S. Then,

dL = dH(Ψ (C)) = min{dH(C1), dH(C2), dH(C3)}
where dH(Ci) denotes the minimum Hamming weights of binary codes C1, C2 and C3, re-

spectively.

4 Quantum Codes From Cyclic Codes Over S

Theorem 4.1. (CSS Construction) Let C and Ć be two binary codes with parameters [n, k1, d1]
and [n, k2, d2], respectively. If C⊥ ⊆ Ć, then an [[n, k1 + k2 − n,min{d1, d2}]] quantum code
can be constructed. Especially, if C⊥ ⊆ C, then there exists an [[n, 2k1 − n, d1]] quantum code.

Proposition 4.2. Let C = (1 + u+ v)C1 ⊕ (u)C2 ⊕ (v)C3 be a linear code over S. Then C is a
cyclic code over S iff C1, C2 and C3 are binary cyclic codes.

Proof. Let (a0, a1, ..., an−1) ∈ C1, (b0, b1, ..., bn−1) ∈ C2 and (c0, c1, ..., cn−1) ∈ C3. Assume
thatmi = (1+u+v)ai+(u) bi+(v) ci for i = 0, 1, ..., n−1. Then (m0,m1, ...,mn−1) ∈ C. Since
C is a cyclic code, it follows that (mn−1,m0, ...,mn−2) ∈ C. Note that (mn−1,m0, ...,mn−2) =
(1+u+v)(an−1, a0, ..., an−2)+(u) (bn−1, b0, ..., bn−2)+(v) (cn−1, c0, ..., cn−2).Hence (an−1, a0, .
.., an−2) ∈ C1, (bn−1, b0, ..., bn−2) ∈ C2 and (cn−1, c0, ..., cn−2) ∈ C3. Therefore, C1, C2 and C3
cyclic codes over F2.

Conversely, suppose that C1, C2 and C3 cyclic codes over F2. Let (m0,m1, ...,mn−1) ∈ C
where mi = (1 + u+ v)ai + (u) bi + (v) ci for i = 0, 1, ..., n− 1. Then (a0, a1, ..., an−1) ∈ C1,
(b0, b1, ..., bn−1) ∈ C2 and (c0, c1, ..., cn−1) ∈ C3. Note that (mn−1,m0, ...,mn−2) = (1 + u +
v) (an−1, a0, ..., an−2)+(u) (bn−1, b0, ..., bn−2)+(v) (cn−1, c0, ..., cn−2) ∈ C = (1+u+v)C1⊕
(u)C2 ⊕ (v)C3. So, C is cyclic code over S.

Proposition 4.3. Suppose C = (1+u+ v)C1⊕ (u)C2⊕ (v)C3 is a cyclic code of length n over
S. Then

C =< (1 + u+ v)f1, (u) f2, (v) f3 >

and |C| = 23n−(deg f1+deg f2+deg f3) where f1, f2 and f3 generator polynomials of C1, C2 and C3
respectively.

Proposition 4.4. SupposeC is a cyclic code of length n over S, then there is a unique polynomial
f (x) such that C = 〈f (x)〉 and f (x) | xn − 1 where f (x) = (1 + u+ v)f1(x) + (u) f2(x) +
(v) f3(x).

Proposition 4.5. If C = (1 + u + v)C1 ⊕ (u)C2 ⊕ (v)C3 is a cyclic code of length n over S.
Then

C⊥ = 〈(1 + u+ v)h∗1 + (u)h∗2 + (v)h∗3〉
and

∣∣C⊥∣∣ = 2deg f1+deg f2+deg f3 where for i = 1, 2, 3, h∗i are the reciprocal polynomials of hi i.e.,
hi (x) = (xn − 1) /fi (x) , h∗i (x) = xdeg hihi

(
x−1

)
for i = 1, 2, 3.
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Lemma 4.6. A binary linear cyclic code C with generator polynomial f (x) contains its dual
code iff

xn − 1 ≡ 0 (modff∗)

where f∗ is the reciprocal polynomial of f .

Theorem 4.7. Let C = 〈(1 + u+ v)f1, (u) f2, (v) f3〉 be a cyclic code of length n over S. Then
C⊥ ⊆ C iff xn − 1 ≡ 0 (modfif∗i ) for i = 1, 2, 3.

Proof. Let xn − 1 ≡ 0 (modfif∗i ) for i = 1, 2, 3. Then C⊥1 ⊆ C1, C
⊥
2 ⊆ C2, C

⊥
3 ⊆ C3. By using

(1+ u+ v)C⊥1 ⊆ (1+ u+ v)C1, (u)C⊥2 ⊆ (u)C2, (v)C⊥3 ⊆ (v)C3. We have (1+ u+ v)C⊥1 ⊕
(u)C⊥2 ⊕ (v)C⊥3 ⊆ (1+u+ v)C1⊕ (u)C2⊕ (v)C3. So, < (1+u+ v)h∗1 +(u)h∗2 +(v)h∗3 >⊆
< (1 + u+ v)f1, (u) f2, (v) f3 > . That is C⊥ ⊆ C.

Conversely, if C⊥ ⊆ C, then (1+u+ v)C⊥1 ⊕ (u)C⊥2 ⊕ (v)C⊥3 ⊆ (1+u+ v)C1⊕ (u)C2⊕
(v)C3. By thinking mod (1 + u+ v) ,mod (u) and mod (v) respectively we have C⊥i ⊆ Ci for
i = 1, 2, 3. Therefore, xn − 1 ≡ 0 (modfif∗i ) for i = 1, 2, 3.

Corollary 4.8. C = (1 + u+ v)C1 ⊕ (u)C2 ⊕ (v)C3 is a cyclic code of length n over S. Then
C⊥ ⊆ C iff C⊥i ⊆ Ci for i = 1, 2, 3.

Example 4.9. Let n = 7, S = F2 + uF2 + vF2
x7 − 1 = (x+ 1)

(
x3 + x+ 1

) (
x3 + x2 + 1

)
= f1f2f3 in F2 [x]. Hence,

f∗1 = x+ 1 = f1

f∗2 = x3 + x2 + 1 = f3

f∗3 = x3 + x+ 1 = f2

Let C = 〈(1 + u+ v)f3, (u) f2, (v) f3〉 . Obviously xn − 1 is divisibly by fif∗i for i = 2, 3.
Thus we have C⊥ ⊆ C.

Using Theorem 4.1 and Theorem 4.7 we can construct quantum codes.

Theorem 4.10. Let C = C = (1 + u + v)C1 ⊕ (u)C2 ⊕ (v)C3 be a cyclic code of arbitrary
length n over S with type 8k1 4k2 2k3 . If C⊥i ⊆ Ci where i = 1, 2, 3 then C⊥ ⊆ C and there exists
a quantum error-correcting code with parameters [[3n, 3k1 + 2k2 + k3 − 3n, dL]] where dL is
the minimum Lee weights of C.

5 Examples

n C1 C2 C3 Ψ(C) [[N,K,D]]

7 [7, 4, 3] [7, 4, 3] [7, 4, 3] [21, 12, 3] [[21, 3, 3]]

8 [8, 6, 2] [8, 4, 2] [8, 6, 2] [24, 16, 2] [[24, 8, 2]]

15 [15, 11, 3] [15, 8, 4] [15, 11, 3] [45, 30, 3] [[45, 15, 3]]

30 [30,18,5] [30, 21, 4] [30, 17, 6] [90, 56, 4] [[90, 22, 4]]
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