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Abstract In this paper, it was constructed quantum codes from cyclic codes over finite ring
S = F +uF, +vF,u? = u,v*> = v,uv = vu = 0 for arbitrary length n. It was given a new
Gray map ¥ which is both an isometry and weight preserving map. It was shown that C' is self
orthogonal codes over S, so is ¥(C). It was given a necessary and sufficient condition for cyclic
codes over S that contains its dual and it was determined the parameters of quantum codes which
are obtained from cyclic codes over S.

1 Introduction

Although the theory quantum error correcting codes has striking differences from the theory clas-
sical error correcting codes, Calderbank et al. gave a way to construct quantum error correcting
codes from classical error correcting codes in [3].

Many good quantum codes have been constructed by using classical cyclic codes over £,
with self orthogonal (or dual containing) properties.

Some authors constructed quantum codes by using linear codes over finite rings. For exam-
ple, in [5], J. Qian et al. gave a new method to obtain self-orthogonal codes over F,. They gave
a construction for quantum error correcting codes starting from cyclic codes over finite ring,
F> + uF>, u*> = 0. X. Kai, S. Zhu gave construction for quantum codes from linear and cyclic
codes over Iy + uFy, u> = 0 in [6]. They derived Hermitian self-orthogonal codes over Fj as
Gray images of linear and cyclic codes over Fy +uFy. In [7], X. Yin and W. Ma gave an existence
condition of quantum codes which are derived from cyclic codes over finite ring F> +uF> +u*F»,
u® = 0 with Lee metric. J. Qian gave a new method of constructing quantum error correcting
codes from cyclic codes over finite ring F» + v, v> = v, for arbitrary length n in [4]. A. Dertli
et al. gave quantum codes over the finite ring in [1, 2].

This paper is organized as follows. In section 2, we give some basic knowledges about the
finite ring S, cyclic code, dual code. In section 3, we define a new Gray map from S to F3,
Lee weights of elements of .S. We show that if C' is self orthogonal so is ¥ (C') . In section 4,
a necessary and sufficient condition for cyclic code over S that contains its dual is given. The
parameters of quantum error correcting codes are obtained from cyclic codes over S. In section
5, we give some examples.

2 Preliminaries

Let S be the ring F> + uF> + vF> where u> = u, v> = v, uv = vu = 0 and F> = {0, 1} a finite
commutative ring with 8 elements. S is semi local ring with three maximal ideals and a principal
ideal ring. It is not finite chain ring. Let w = 1 4 v + v. Addition and multiplication over S are
given in the following tables:

+ 0 1 U v l4+u | 14+v|utwo w
0 0 1 u v l4+u | 14+v | utwo w
1 1 0 l+u | 1+v U v w U+ v
U U 1+u 0 u—+v 1 w v 1+wv
v v I1+v | u+w 0 w 1 U 1+u
l+u | 14+u U 1 w 0 utv | 1+wv v
I+v | 14w v w 1 U+ v 0 14+u U
u4v | u+ov w v U 1+v | 14w 0 1
w w ut+v | 1+v | 14+u v U 1 0
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0 1 u|lv|l4+u|l4+v |utv | l4+utwv
0 0 0 0|0 0 0 0 0
1 0 1 u|lv|l4+u | l4+v|utv w
U 0 U u | 0 0 U U 0
v 0 v 0w v 0 v 0
14+u O I14+u |0 |v|1l+u w v w
1+wv O|14+v|ul|0 w 14w U w
U+ v Olut+v |u|w v U U+ v 0
l+u+v |0 w 010 w w 0 w
The ideals are follows:
Iy = {0}, =S
I, = {0,u}, I, ={0,v}, ijysr ={0,1 +u+v}
ILiw = {0,u,v,u+v}, 11y =4{0,0,14+u,1+u+0v}
Liiw = {0,u,14v,14+u+v}

A linear code C over S length n is a S—submodule of S™. An element of C' is called a
codeword.
For any = = (zo, 21, ..., @n—1) ¥ = (Y0, Y1, ---, Yn—1) the inner product is defined as

n—1
.y = Z Z;Yi
i=0

If z.y = 0 then = and y are said to be orthogonal. Let C be linear code of length n over S,
the dual code of C
t={r:VyeCuay=0}

which is also a linear code over S of length n. A code C is self orthogonal if C C C+ and self
dual if C = C+.

A cyclic code C over S is a linear code with the property that if ¢ = (¢, ¢y, ...,cn—1) € C
then o (C) = (cp—1, o, ..., cn—2) € C. A subset C of S™ is a linear cyclic code of length n iff it
is polynomial representation is an ideal of S [x] / (z™ — 1).

Let C be code over F, of length n and ¢ = (é,¢é, ..., ¢én—1) be a codeword of C. The
Hamming weight of ¢ is defined as wy (&) = Y77 wi (¢) where wy (é) = 1if ¢ = 1
and wy (¢;) = 0if ¢, = 0. Hamming distance of C is defined as dy (C') = mindg (c,¢),
where for any ¢ € C, ¢ # ¢ and dy (¢, ¢) is Hamming distance between two codewords with
dy (¢,é) =wy (c—¢).

Let a € F5™ with a = (ag, ai,...,azn—1) = (¢ |aV|a®), ') € F} fori = 0,1,2. Let
¢ be a map from F3" to F5™ given by ¢ (a) = ( (@) |o (V)] o (a®))) where o is a cyclic
shift from FJ to Fy given by o (a') = ((a®"7V), (a¥?), (a®D), ..., (a#"=2))) for every
al¥) = (a0, ..., a»=1) where a(*7) € 5,0 < j < n — 1. A code of length 3n over F> is said
to be quasi cychc code of index 3 if p (C) = c.

3 Gray Map And Gray Images Of Cyclic Codes Over S

Let 2 = a+ ub+ uc be an element of S where a, b, c € F>. We define Gray map ¥ from S to F3
by
¥ : S F
Y(a+ub+ve) = (a,a+b,a+c)

The Lee weight of elements of S are defined wy, (a + ub+ vc) = wy(a,a + b,a + ¢) where
wy denotes the ordinary Hamming weight for binary codes. Hence, there is one element whose
weight is 0, there are u, v, 1 + u 4 v elements whose weights are 1, there are 1 + u, 1 + v, u +v
elements whose weights are 2, there is one element whose weight are 3.
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Let C be a linear code over S of length n. For any codeword ¢ = (¢, ..., ¢,—1 ) the Lee weight
of ¢ is defined as wy, (¢) = Z?;Ol wr, (¢;) and the Lee distance of C is defined as dj, (C') =
mindy, (¢, é), where for any é € C, ¢ # ¢ and dy, (¢, ¢) is Lee distance between two codewords
with dy, (¢, é) = wy, (¢ — ¢) . Gray map ¥ can be extended to map from S™ to F3™.

Theorem 3.1. The Gray map ¥ is a weight preserving map from (S™, Lee weight) to ( F;”
Hamming weight). Moreover it is an isometry from S™ to F23"

Theorem 3.2. [f C is an [n, k,dy] linear codes over S then ¥ (C') is a [3n, k, dy] linear codes
over F», where dg = dj,.

Proof. Let x; = a; + ub; +vey, xp = ap + uby +ve; € S, € F, then
Y(r)+x)=¥(a1+ar+u(b+b)+v(c+x))
= (a1 +az,a; +ay + by +by,a1 +ay+ ¢y -|—Cz)
= (a1, a1 +bi,a1 + c1) + (a2, a0 + ba, a2 + 2)
=¥ (1) +¥(22)
Y (ax1) =¥ (aay + uaby + vacy)
= (aay, aa; + aby, aa + acy)
= a(al,al + by, a1 + Cl)
=aoW¥(z;) soWislinear. As ¥ is bijective then |C| = [¥ (C)|. From Theorem 3.1
we have dy = dj,. O

Theorem 3.3. If C is self orthogonal, so is ¥ (C).

Proof. Let x; = ay + uby + vcy, x3 = ay + uby + vep; where ay, by, ¢y, az, by, cp € F>.
From 1.2 = ajaz + u(aiby + biaz + biba) + v(aica + c1az + c1z), if C is self orthogonal,
so we have ajap = 0,a1by + biay + b1br = 0,a1¢3 + crap + ¢ieo = 0. From
¥ (I]) ¥ (1‘2) = (a1,a1 + by, a1 + C])(CLQ7 ap + by, ar + Cz)
=ajap +a1by +biax + b1by + ayaz + ajcx + cran + cicp = 0 Therefore, we have
¥ (C) is self orthogonal. o

Proposition 3.4. Let ¥ be Gray map from S™ to F5", let o be cyclic shift and let ¢ be a map as
in the preliminaries. Then Yo = pW.

Proposition 3.5. Let o and ¢ be as in the preliminaries. A code C of length n over S is cyclic
code if and only if ¥ (C) is quasi cyclic code of index 3 over F» with length 3n.

Proof. Similar to proof of in [8]. O

We denote that A ® Ay @Az = {(a1,a2,a3) : a1 € A1,ap € Az, a3 € Az} and A Ay @Az =
{al +ay+taz:a € Aj,a € Ay, az € A3}
Let C be a linear code of length n over S. Define

C, = {aeF}:3bceFat+ub+vceC}
C, = {a+beF}:3ce Fa+ub+wvceC}
C; = {at+ceFy:FeF’atubtvceC}

Then C}, C, and C} are binary linear codes of length n. Moreover, the linear code C' of length
n over S can be uniquely expressed as C' = (1 +u + v)C; & (u) Cr, @ (v) Cs.

Theorem 3.6. Let C' be a linear code of length n over S. Then ¥ (C) = C, ® C, @ C3 and
IC| = |C1]|Ca| |C5] -

Proof. Forany (ag, a1, ..., Gn—1,b0,01, .oy bn—1,€0,C1, ooy n—1) € ¥(C) . Letr; = a;4u (a; + b;)+
v(a; +¢;),i=0,1,...,n — 1. Since W is a bijection r = (r¢,71,...,7n—1) € C. By definitions of
01,02 and C5 we have (ao,al, ...,anfl) S Cl, (bo,bl, ...,bnfl) € Cz, (C(),Cl, ...,Cnfl) € (5. So,
(ag,al, ey @1, 00,01, ..., bn_1, o, C1, ---,Cn—l) € (1 ®Cy®C5. That ISlP(C) CCIeC,®(Cs.
On the other hand, for any (ag, a1, ..., @n—1,00, 015 -+, bn—1,€0,C1, s cn_1) € C1 @ Cr @ C3
where (ao,al,...,an_]) (S 01, (b(),b],...,bn_1) e (, (Co,C],...,Cn_l) € (5. There are x =
(ag, a1, ...,an—1),y = (bo, b1, ...;bp—1) , 2 = (co, €1, ..., cn—1) € C such that x; = a; + (u+v)p;,
yi =b;+ (14+u)q, 2z = ¢+ (1 +v)s; where p;, ¢;,8; € F, and 0 < i < n — 1. Since C is
linear we have r = (1 + u+v)z + (v)y + (v)z2 = a+u(a +b) + v(a+ ¢) € C. It follows then
Y (r) = (ao, an, -, an—1,b0,0b1, ..., b_1, o, C1, ..., cn—1), Which gives C; @ C, @ C5 C ¥ (C).
Therefore, ¥ (C) = C; ® C, ® C3. The second result is easy to verify. O
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Corollary 3.7. If ¥ (C) = C1 @ C, ® C5, then C = (1 + u + v)Cy @ (u) C & (v) C5.
It is easy to see that,
IC| = |C1]|Cy]|Cs] = 27— deelfi)gn—deg(f2)pn—deg(f3)
93n—(deg(f1)+deg(f2)+deg(f3))
where fi, f» and f3 are the generator polynomials of C, C; and C3, respectively.

Corollary 3.8. If G1, G2, G3 and G4 are generator matrices of binary linear codes C,,C, and
C} respectively, then the generator matrix of C is

(1+u+0)G;
G= (U)Gz
(v) Gs
We have
Y((14+u+0v)G) G 0 0
Y(G) = Y((u) Ga) = 0 Gy O
‘P((U)G3) 0 0 G3

Let d;, minimum Lee weight of linear code C' over S. Then,
dL = dH(lP (C)) = min{dH(Cl), dH(Cz), dH(C3)}
where dy (C;) denotes the minimum Hamming weights of binary codes Cy, C, and Cj, re-
spectively.

4 Quantum Codes From Cyclic Codes Over S

Theorem 4.1. (CSS Construction) Let C and C be two binary codes with parameters [n, ki, di]
and [n, ky, dy), respectively. If C+ C C, then an [[n, ki + ky — n,min{dy, d2}]] quantum code
can be constructed. Especially, if C+ C C, then there exists an [[n, 2k, — n, d]] quantum code.

Proposition 4.2. Let C = (1 4+ u+v)Cy & (u) Cr ® (v) C3 be a linear code over S. Then C'is a
cyclic code over S iff C, Cy and C5 are binary cyclic codes.

Proof. Let (ag,ai,...,an—1) € C1, (bo,b1,...,0n—1) € Cy and (cg, c1,...,cn—1) € C5. Assume
thatm; = (1+u+v)a;+(u) bi+(v) ¢; fori = 0,1, ...,n—1. Then (mg, my, ..., my—1) € C. Since
C is a cyclic code, it follows that (m,,—_1, mo, ..., m,—2) € C. Note that (m,_1,mg, ..., mp—2) =
(I+utv)(an—1,a0, -..; an—2)+(1) (bn-1,b0, .., bn—2)+(v) (¢pn_1, co, ..., cn—2).Hence (an_1, ag, .
..,anfz) S Cl, (bnfl, b(), . bn,Q) € C, and (Cnfl, Co, ...,Cnfz) € (5. Therefore, Cl, 5 and Cs
cyclic codes over F3.

Conversely, suppose that Cy, C, and Cj cyclic codes over Fs. Let (mg, mq,...,m,—1) € C
where m; = (1 +u—+ v)ai + (u) bz + (1}) C; fori = 0, 1, ey — 1. Then (ao, CL],...,an_]) S O],
(b(),bl7 ...,bnfl) € C, and (C(),Cl, ...,Cnfl) € (3. Note that (mn,l,mo, ...,mnfz) = (1 + u +
V) (An—1,@0, -y an—2) + (©) (br—1,b0s .-, bn—2) + (v) (cn-1, 0y -, cn—2) € C = (1 +u+0v)C1 &
(u) Cy, @ (v) Cs. So, C'is cyclic code over S. o

Proposition 4.3. Suppose C = (1 +u+v)Cy & (u) C2 @ (v) Cs is a cyclic code of length n over
S. Then
C=<(l+u+v)fi,(u) f, (v) fs >

and |C| = 237~ (deg fitdeg otdee f3) yhere f1. f, and f3 generator polynomials of Cy,Cy and Cs
respectively.

Proposition 4.4. Suppose C is a cyclic code of length n over S, then there is a unique polynomial
f(x) such that C = (f (x)) and f (x) | 2™ — 1 where f () = (1 +u+v)fi(z) + (u) fo(x) +
(v) f3().
Proposition 4.5. If C = (1 + u + v)C) & (u) C2 & (v) Cs is a cyclic code of length n over S.
Then

CH ={(1+u+v)hj+ (u)h}+ (v)h3)
and ’C’J-| = pdee fitdeg fotdee fs \where for i = 1,2,3, h¥ are the reciprocal polynomials of h; i.e.,
he(2) = (@7 — 1) /; (&) B} () = 2%2heh, () fori = 1,2,3,
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Lemma 4.6. A binary linear cyclic code C with generator polynomial f (z) contains its dual
code iff

" —1=0(modf f*)

where f* is the reciprocal polynomial of f.

Theorem 4.7. Let C = {(1 + u+v) f1, (u) f2, (v) f3) be a cyclic code of length n over S. Then
Ct CCiffz" — 1 =0 (modf, f) fori=1,2,3.

Proof. Letz™ — 1 =0 (modf; f}) fori = 1,2,3. Then C{- C Cy,C5" C C»,C5- C C5. By using
(1+u+v)Cf C (1 +u+0)Cy, (u) Cf C (u) Gy, (v) C5 C (v) C5. We have (1 +u+v)Ci- @
(u) C3- @ (v) C5 € (1+u+0v)Ci & (u) C& (v) Cs. So, < (1+u+v)hi + (u) by + (v) b >C
< (1 +u+v)fi,(u) fa, (v) fs > . Thatis C+ C C.

Conversely, if C+ C C, then (1 +u+v)Ci- & (u) C5- & (v) C3 € (1+u+v)C) & (u) Cr @
(v) C5. By thinking mod (1 + u + v) ,mod (u) and mod (v) respectively we have Ci- C C; for
i =1,2,3. Therefore, 2™ — 1 = 0 (modf; f}) fori = 1,2,3. O

Corollary 4.8. C = (1 +u +v)C, @ (u) C, @ (v) Cs is a cyclic code of length n over S. Then
CLCCifCt CCfori=1,2,3.

Example 4.9.Let n=7,5 = F, +uF, +vF,
2’ —1=(z+1) (P +z+1) (2*+ 22+ 1) = fifofs in F> [z]. Hence,

fil = z+1=/
o= dradtl=45
fi = Pd+a+l=f

Let C = (1 4+ u+v)f3,(u) f2,(v) f3) . Obviously z™ — 1 is divisibly by f; fF fori = 2,3.
Thus we have C+ C C.
Using Theorem 4.1 and Theorem 4.7 we can construct quantum codes.

Theorem 4.10. Let C = C = (1 +u + v)C) & (u) Cy & (v) C3 be a cyclic code of arbitrary
length n over S with type 8¥14%22% | If C:- C C; where i = 1,2,3 then C+ C C and there exists
a quantum error-correcting code with parameters [[3n,3k, + 2ks + k3 — 3n,dy]] where dy, is
the minimum Lee weights of C.

5 Examples
n C Cy Cs P(C) [N, K, D]]
7 [7,4,3] [7,4,3] [7,4,3] [21,12,3] [[21,3,3]]
8 [8,6,2] [8,4,2] [8,6,2] [24,16,2] [[24,8,2]]
15 [15,11,3] [15,8,4] [15,11,3] [45,30,3] [[45,15,3]]
30 [30,18,5] [30,21,4] [30,17,6] [90,56,4] [[90,22,4]]
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