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Abstract. In this paper we study time semi-discrete approximations of a class of polynomi-
ally stable infinite dimensional systems modeling the damped vibrations. We prove that adding a
suitable numerical viscosity term in the numerical scheme, one obtains approximations that are
uniformly polynomially stable with respect to the discretization parameter.

1 Introduction

Let X and Y be real Hilbert spaces ( Y will be identified to its dual space) with norms denoted
respectively by ‖.‖X and ‖.‖Y .

Let A : D(A) → X be a self-adjoint positive operator with A−1 compact in X and let
B ∈ L(Y,X). We consider the system described by{

ẅ(t) +Aw(t) + BB∗ẇ(t) = 0, t ≥ 0
w(0) = w0, ẇ(0) = w1.

(1.1)

Most of the linear equations modeling the damped vibrations of elastic structures can be written
in the form (1.1). We define the energy of solutions at instant t by

E(t) =
1
2

{
‖ẇ(t)‖2

X + ‖A 1
2w(t)‖2

X

}
, (1.2)

which satisfies
dE

dt
(t) = −‖B∗ẇ(t)‖2

Y , ∀t ≥ 0. (1.3)

It is well known that the natural well-posedness space for (1.1) isH = V ×X where V = D(A 1
2 )

and ‖x‖V = ‖A 1
2x‖X ,∀x ∈ V . The existence and uniqueness of finite energy solutions of (1.1)

can be obtained by standard semigroup methods.
We consider the undamped system associated to (1.1):{

φ̈(t) +Aφ(t) = 0, t ≥ 0
φ(0) = w0, φ̇(0) = w1.

(1.4)

We assume that system (1.4) satisfy a "weakened" observability inequality (that is the case
when the damping operator is effective on a subdomain where the Geometric Control Condition
is not fulfilled [4]), that is there exist positive constants T,C > 0 and β > − 1

2 such that for all
(w0, w1) ∈ D(A)× V we have∫ T

0
‖B∗φ′(t)‖2

Y dt ≥ C‖(w0, w1)‖2
X−β×X−β− 1

2

, (1.5)
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where {
Xβ = D(Aβ), β ≥ 0,
X−β = (D(Aβ))′, β ≥ 0.

The dual space is obtained by means of the inner product in X . Then system (1.1) is poly-
nomially stable [2], that is there exist a constant C1 > 0 such that for all t > 0 and for all
(w0, w1) ∈ D(A)× V we have

E(t) ≤ C1

t
1

2β+1
‖(w0, w1)‖2

D(A)×V .

Our goal is to get, as consequence of (1.5), polynomial stability results for time-discrete
systems.

If we introduce z(t) :=

(
w(t)

ẇ(t)

)
, y(t) =

(
φ(t)

φ̇(t)

)
,

then z satisfies

ż(t) =

(
ẇ(t)

−Aw(t)− BB∗ẇ(t)

)
.

Consequently the problem (1.1) may be rewritten as the first order evolution equation{
ż(t) = Az(t)−BB∗z(t),
z(0) = z0 = (w0, w1),

(1.6)

where A : D(A)→ H,A =

(
0 I

−A 0

)
, B =

(
0
B

)
,

B∗ = (0,B∗) , D(A) = D(A)× V and H = V ×X .

With this notation, (1.5) becomes∫ T

0
‖B∗ y(t)‖2

Y dt ≥ C‖z0‖2
X−β×X−β− 1

2

. (1.7)

In recent years an important literature was devoted to the space/time semi-discrete approxi-
mations of a class of exponentially stable infinite dimensional systems. Let us also mention the
recent work [1], where polynomial stability was discussed for space discrete schemes of (1.1). It
has been proved that exponential/polynomial stability may be lost under numerical discretization
as the mesh size tends to zero due to the existence of high-frequency spurious solutions.

Several remedies have been proposed and analyzed to overcome this difficulties. Let us quote
the Tychonoff regularization [11, 22, 21, 23, 8, 1 ], a bi-grid algorithm [9, 19], a mixed finite
element method [10, 3, 5, 6, 18], or filtering the high frequencies [13, 16, 25, 7, 24]. As in [1, 8,
21, 22, 23] our goal is to damp the spurious high frequency modes by introducing a numerical
viscosity in the approximation schemes. Though our paper is inspired from [8], it differs from
that paper on the following points:

i) We analyze the polynomial decay of the discrete schemes when the continuous problem
has such a decay.

ii) For the proof of the discrete observability inequality, we will use a method based on a
decoupling argument of low and high frequencies, the low frequency observability property for
time semi-discrete approximations of conservative linear systems and the dissipativity of the
numerical viscosity on the high frequency components. But, for the low frequency, contrary
to [8] where a Hautus-type test is required, we use a spectral approach and a discrete Ingham
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type inequalities ( when the spectrum of the spatial operator A associated with the undamped
problem satisfies such a gap condition).

Note however that we cannot apply these methods when the damped operator B is not
bounded, as in [2], where the wave equation is damped by a feedback law on the boundary.
Dealing with unbounded damping operators B needs further work.

Despite all the existing literature, this article seems to be the first one to provide a systematic
way of transferring polynomial decay properties from the continuous to the time-discrete setting.

The paper is organized as follows. In section 2, we prove a uniform "weakened" observability
after the addition of numerical viscosity term by using, as we said, a decoupling argument and a
spectral approach. Section 3 is devoted to prove the main result of this paper. We illustrate our
results by presenting different examples in Section 4. Finally, some further comments and open
problems are collected in section 5.

In the following, we will writeE ∼ F instead of c1E ≤ F ≤ c2E for brevity, where c1, c2 > 0
are constants.

2 observability of time-discrete systems

In this section, we assume that system (1.6) is polynomially stable and B∗ ∈ L(H,Y ), i.e. there
exists a constant KB such that

‖B∗z‖Y ≤ KB‖z‖H , ∀ z ∈ H.
We start considering the following time-discretization scheme for the continuous system (1.1)

or equivalent for the system (1.6). For any ∆t > 0, we denote by zk the approximation of the
solution z of system (1.6) at time tk = k∆t, for k ∈ N, and we consider time discretization of
system (1.6): 

z̃k+1−zk
∆t = A

(
zk+z̃k+1

2

)
−BB∗

(
zk+z̃k+1

2

)
, k ∈ N,

zk+1−z̃k+1

∆t = (∆t)2A2zk+1, k ∈ N,

z0 = z0.

(2.1)

The numerical viscosity term (∆t)2A2 in (2.1) is introduced in order to damp the high fre-
quency modes.

We can define the discrete energy by:

Ek =
1
2
‖zk‖2

H , k ≥ 0. (2.2)

The energy satisfies ( [8]):

Ek+1 + (∆t)3 ∥∥Azk+1∥∥2
H
+

(∆t)6

2
∥∥A2zk+1∥∥2

H
+ ∆t

∥∥∥∥B∗(zk + z̃k+1

2

)∥∥∥∥2

Y

= Ek.

Summing from j = 0 to l = [T/∆t], it follows then that:

E0 − El+1 = ∆t

l∑
j=0

(∆t)2 ∥∥Azj+1∥∥2
H
+

∆t

2

l∑
j=0

(∆t)5 ∥∥A2zj+1∥∥2
H

+ ∆t

l∑
j=0

∥∥∥∥B∗(zj + z̃j+1

2

)∥∥∥∥2

Y

. (2.3)
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Note that this numerical scheme is based on the decomposition of the operator A − BB∗ +
(∆t)2A2 into its conservative and dissipative parts, that we treat differently. Indeed, the mid-
point scheme is appropriate for conservative systems since it preserves the norm conservation
property. This is not the case for dissipative systems, since midpoint schemes do not preserve
the dissipative properties of high frequency solutions. Therefore, we rather use an implicit Euler
scheme, which efficiently preserves these dissipative properties.

The convergence of the solutions of (2.1) towards those of the original system (1.6) when
∆t→ 0 holds in a suitable topology ( [8]).

As the continuous level, we will prove that the uniform polynomial decay of system (1.6)
is a consequence of the following "weakened" observability inequality for every solution of the
following time-discrete system:

ũk+1−uk
∆t = A

(
uk+ũk+1

2

)
, k ∈ N,

uk+1−ũk+1

∆t = (∆t)2A2uk+1, k ∈ N,

u0 = u0.

(2.4)

We want to show that there exist positive constants T , c and β > − 1
2 such that, for any ∆t > 0

every solution uk of (2.4) satisfies:

c‖u0‖2
X−β×X−β− 1

2

≤ ∆t
∑

k∆t∈[0,T ]

∥∥∥∥B∗( ũk+1 + uk

2

)∥∥∥∥2

Y

+ ∆t
∑

k∆t∈[0,T ]

(∆t)2 ∥∥Auk+1∥∥2
H

+ ∆t
∑

k∆t∈[0,T ]

(∆t)5 ∥∥A2uk+1∥∥2
H
. (2.5)

Here and in the sequel c denotes a generic positive constant that may vary from line to line but
is independent of ∆t.

In this section, we show how to obtain the observability inequality (2.5). Before giving
spectral conditions to obtain polynomial decay, we need to introduce some notations.

Since A is a skew-adjoint operator with compact resolvent, its spectrum is discrete and
σ(A) = {iµj : j ∈ Z∗} where (µj)j∈Z∗ is a sequence of real numbers such that |µj | → ∞
when j → ∞. Set (ϕj)j∈Z∗ an orthonormal basis of eigenvectors of A associated to the eigen-
values (iµj)j∈Z∗ , that is Aϕj = iµjϕj , with µj ={ √

ηj if j ∈ N∗,
−√η−j if (−j) ∈ N∗,

and ϕj =
1√
2

(
1
iµj
φj

φj

)
∀ j ∈ Z∗, ( we define

φ−j = φj , ∀j ∈ N∗)

where ηj and φj are the eigenvalues and the corresponding eigenvectors of A.
Moreover, define

Cs = span{ϕj : the corresponding iµj satisfies |µj | ≤ s}.

Now, we recall some results about Discrete Ingham type inequalities.
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Theorem 2.1. ( [14]) Assume that there exist a positive number γ satisfying

|ωk − ωn| ≥ γ for all k 6= n, (2.6)

where (ωk)k∈Z is a family of real numbers.
Given 0 < σ ≤ π/γ arbitrarily, fix an integer J such that Jσ > π/γ. Then there exist two

positive constants c1 and c2, depending only on γ and Jσ, such that, for every t ∈ R, we have

σ

J∑
j=−J

∣∣∣∣∣∑
k∈Z

xke
iωk(t+jσ)

∣∣∣∣∣
2

∼
∑
k∈Z
|xk|2, (2.7)

with complex coefficients xk satisfying the condition

xk = 0 whenever |wk| ≥
π

σ
− γ

2
, (2.8)

Theorem 2.2. ( [15]) Assume that there exist a positive number γ1 satisfying

ωk+2 − ωk ≥ 2γ1 ∀ k, (2.9)

where (ωk)k∈Z is a family of real numbers.
Given 0 < σ1 ≤ π/γ1 arbitrarily, fix an integer J such that Jσ1 > π/γ1. Then there exist two

positive constants c3 and c4, depending only on γ1 and Jσ1,

c3Q(x) ≤ σ1

J∑
j=−J

∣∣∣∣∣∑
k∈Z

xke
iωkjσ1

∣∣∣∣∣
2

≤ c4Q(x), (2.10)

with complex coefficients xk satisfying the condition

xk = 0 whenever |wk| ≥
π

σ1
− γ1

2
, (2.11)

and where

Q(x) =
∑
k∈A1

|xk|2 +
∑
k∈A2

|xk + xk+1|2 + (ωk+1 − ωk)2(|xk|2 + |xk+1|2).

The above equivalence means that ( see [20] for more details)

σ1

J∑
j=−J

∣∣∣∣∣∑
k∈Z

xke
iωkjσ

∣∣∣∣∣
2

≥ c3

2∑
l=1

∑
k∈Al

‖B−1
k Ck‖2

2,

where ‖.‖2 means the Euclidean norm of the vector, for k ∈ Al the vector Ck and the l× l matrix
Bk are given by

Ck = xk, B
−1
k = 1 if l = 1,

and

Ck =

(
xk

xk+1

)
, B−1

k =

(
1 1

0 ωk+1 − ωk

)
if l = 2.
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Now, as in [20], let U be a separable Hilbert space (in the sequel, U will be Y ). For a vector

d =


d1

.

.

.

dm

 ∈ U
m, we set ‖.‖U,2 the norm in Um defined by

‖d‖2
U,2 =

m∑
j=l

‖dj‖2
U .

Let δ ∈ (0, δ0) where δ0 = min(π − ∆tγ
2 , π − ∆tγ1

2 ).
Then we obtain the discrete inequality of Ingham’s type in U :

Proposition 2.3. If µn satisfy (2.6), then for all sequence (an)n in U , the function

xk =
∑

|µn|≤δ/∆t

ane
ik∆tµn

satisfies the estimates
∆t

∑
k∆t∈[0,T ]

‖xk‖2
U ∼

∑
|µn|≤δ/∆t

‖an‖2
U ,

for T > T0 =
2π
γ .

Proof. Since U is a separable Hilbert space, there exists a Hilbert basis (ψj)j≥1 of U . Therefore,
an ∈ U can be written as

an =
+∞∑
j=1

ajnψj .

We truncate an as follows: forK ∈ N∗, let a(K)
n =

K∑
j=1

ajnψj and set xkK =
K∑
j=1

 ∑
|µn|≤δ/∆t

ajne
ik∆tµn

ψj .

Since (ψj)j≥1 is a Hilbert basis, we have by Parseval’s theorem

‖xkK‖2
U =

K∑
j=1

∣∣∣∣∣∣
∑

|µn|≤δ/∆t

ajne
ik∆tµn

∣∣∣∣∣∣
2

.

Thus, by applying discrete Ingham type inequality, we have

∆t
∑

k∆t∈[0,T ]

‖xkK‖2
U = ∆t

K∑
j=1

∑
k∆t∈[0,T ]

∣∣∣∣∣∣
∑

|µn|≤δ/∆t

ajne
ik∆tµn

∣∣∣∣∣∣
2

.

∼
K∑
j=1

∑
|µn|≤δ/∆t

(ajn)
2.

∼
∑

|µn|≤δ/∆t

K∑
j=1

(ajn)
2.
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Therefore
∆t

∑
k∆t∈[0,T ]

‖xkK‖2
U ∼

∑
|µn|≤δ/∆t

‖a(K)
n ‖2

U .

Since xkK → xk and a(K)
n → an when K → +∞, we obtain the result.

Corollary 2.4. With the same hypothesis of Theorem 2.2, for all sequence (an)n∈Z∗ in U , the
function

fk =
∑
n∈Z∗

ane
iωnk∆t,

satisfy, for T > T1 =
2π
γ1

, the inequality

∆t
∑

k∆t∈[0,T ]

‖fk‖2
U ≥ c

2∑
l=1

∑
n∈Al

‖B−1
n Cn‖2

U,2,

with an = 0 whenever |wn| ≥ π
∆t −

γ1
2 , and c > 0.

Proposition 2.5. Assume that Y is separable. Let yk the solution of the following system{
yk+1−yk

∆t = A
(
yk+1+yk

2

)
, k ∈ N,

y0 = z0 = (w0, w1).
(2.12)

(i) Assume that µj satisfy (2.6) and for all y0 ∈ V ×X we have

∃ θ > 0, ∀ j ≥ 1, ‖B∗ϕj‖Y ≥
θ

µ2β+1
j

(2.13)

for some constant θ > 0 and for a fixed real number β > − 1
2 .

Then, there exist a time T > T0 and a constant C > 0 such that

C‖y0‖2
X−β×X−β− 1

2

≤ ∆t
∑

k∆t∈[0,T ]

∥∥∥∥B∗(yk + yk+1

2

)∥∥∥∥2

Y

, ∀ y0 ∈ Cδ/∆t. (2.14)

(ii) Assume that µn verify (2.9) and, for all y0 ∈ V ×X ,

∃ θ > 0, ∀ l = 1, 2, ∀ n ∈ Al, ∀ ξ ∈ R2, ‖B−1
n φnξ‖Y,2 ≥

θ

µ2β+1
n

‖ξ‖2, (2.15)

then there exist a time T > T1 and a constant C > 0 such that (2.14) holds true.

Remark 2.6. In the last proposition, we have chosen δ/∆t the filtering parameter. Indeed, this
scale is linked with the paper [8]. The question of optimality of this choice, in our case, remains
open.

Proof. We first show that (2.13)=⇒ (2.14).
Simple formal calculations give

yk+1 = (I +
∆t

2
A)−1(I − ∆t

2
A)yk

= eiαj∆tyk,
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where eiαj∆t =
1+ ∆t

2 iµj

1− ∆t
2 iµj

.

Writing

y0 =
∑

|µj |≤δ/∆t

cjϕj =

(
w0

w1

)
=

1√
2


∑

|µj |≤δ/∆t

1
iµj

cjφj∑
|µj |≤δ/∆t

cjφj

 ,

We have ‖w0‖2
X−β

= ‖w1‖2
X−β− 1

2

∼ 1
2

∑
|µj |≤δ/∆t

c2
jη
−2β−1
j .

The solution yk is given by

yk =
∑

|µj |≤δ/∆t

cje
iαjk∆tϕj ,

where

αj =
2
∆t

arctan(
µj∆t

2
).

Consequently

B∗(
yk+1 + yk

2
) =

∑
|µj |≤δ/∆t

cj cos(
αj∆t

2
)eiαj(k+

1
2 )∆tB∗ϕj .

It is easy to check that |αk − αn| ≥ γ′ = γ
2 (for all k 6= n) for ∆t sufficiently small, and

cos2(
αj∆t

2
) = cos2(arctan(

µj∆t

2
)) =

1

1 + (µj∆t)2

4

≥ 1
1 + δ2

4

.

Now, using Ingham’s inequality in Y , for T > T0, we get

∆t
∑

k∆t∈[0,T ]

∥∥∥∥B∗(yk + yk+1

2

)∥∥∥∥2

Y

≥ C1

∑
|µj |≤δ/∆t

c2
j‖B∗φj‖2

Y .

By (2.13), we get

∆t
∑

k∆t∈[0,T ]

∥∥∥∥B∗(yk + yk+1

2

)∥∥∥∥2

Y

≥ C1

∑
|µj |≤δ/∆t

c2
jµ
−2(2β+1)
j

= C1
∥∥y0∥∥2

X−β×X−β− 1
2

.

The proof of (2.15)=⇒ (2.14) is similar to the first one but now we use the other discrete Ingham
type inequality presented in Corollary 2.1.

Applying Proposition 2.2, for any δ > 0 defined as above, choosing a time T ∗ > T2 =
max(T0, T1) there exists a positive constant C = CT∗,δ such that the inequality (2.14) holds for
any solution yk with y0 ∈ Cδ/∆t and where the gap condition (2.6) or (2.9) is satisfied. In the
sequel, we fix T ∗ = 2T2.

Lemma 2.7. If µj verify (2.6) or (2.9) , then there exists a constant c > 0 such that (2.5) holds
with T = T ∗ for all solutions uk of (2.4) uniformly with respect to ∆t.
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Proof. The proof can be done similarly as the one of Lemma 5.2.4. in [8], we decompose the
solution uk of (2.4) into its low and high frequency parts. To be more precise, we consider

ukl = pδ/∆tu
k, ukh = (I − pδ/∆t)u

k,

where δ > 0 is the positive number that we have been chosen above, and pδ/∆tu is the orthogonal
projection on Cδ/∆t.

Note both ukl and ukh are solutions of (2.4).
In addition, ukh lies in the space C⊥δ/∆t, in which we have:

∆t‖Ay‖H ≥ δ‖y‖H , ∀ y ∈ C⊥δ/∆t, and also

∆t‖Ay‖X−β×X−β− 1
2
≥ δ‖y‖X−β×X−β− 1

2
, ∀ y ∈ C⊥δ/∆t.

(2.16)

The low frequencies. First we compare ukl with ykl solution of (2.12)
with initial data ykl (0) = ukl (0). Set wkl = ukl − ykl . From (2.14), which is
valid for solutions of (2.12) with initial data in Cδ/∆t, we get

C‖u0
l ‖2
X−β×X−β− 1

2

≤ 2∆t
∑

k∆t∈[0,T∗]

∥∥∥∥∥B∗
(
ukl + ũk+1

l

2

)∥∥∥∥∥
2

Y

+2∆t
∑

k∆t∈[0,T∗]

∥∥∥∥∥B∗
(
wkl + w̃k+1

l

2

)∥∥∥∥∥
2

Y

. (2.17)

Now, we write the equation satisfied by wkl , which can be deduced from (2.4) and (2.12):

w̃k+1
l −wkl

∆t = A
(
wkl +w̃

k+1
l

2

)
, k ∈ N,

wk+1
l −w̃k+1

l

∆t = (∆t)2A2uk+1
l , k ∈ N,

w0
l = 0.

(2.18)

the energy estimates for wkl give:
‖w̃k+1

l ‖2
H = ‖wkl ‖2

H ,

‖wk+1
l ‖2

H = ‖w̃k+1
l ‖2

H − 2(∆t)3
〈
Auk+1

l , A
(
wk+1
l +w̃k+1

l

2

)〉
H
.

(2.19)

Note that wkl and w̃k+1
l belong to Cδ/∆t for all k ∈ N, since ukl and ykl both belong to Cδ/∆t.

Therefore, the energy estimates for wkl lead, for k ∈ N, to

‖wkl ‖2
H = −2∆t

k∑
j=1

(∆t)2

〈
Aujl , A

(
wjl + w̃j+1

l

2

)〉
H

≤ ∆t

k∑
j=1

(∆t)2‖Aujl ‖
2
H + δ2

∆t

k∑
j=1

∥∥∥∥∥wjl + w̃j+1
l

2

∥∥∥∥∥
2

H
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≤ ∆t

k∑
j=1

(∆t)2‖Aujl ‖
2
H + δ2

∆t

k∑
j=1

∥∥∥wjl ‖2
H ,

where we used the first line of (2.19).
Grönwall’s Lemma applies and allows to deduced from (2.17) and the fact that the operatorB

is bounded, the existence of a positive constant (that may change from line to line) independent
of ∆t such that

c‖u0
l ‖2
X−β×X−β− 1

2

≤ ∆t
∑

k∆t∈[0,T∗]

∥∥∥∥∥B∗
(
ukl + ũk+1

l

2

)∥∥∥∥∥
2

Y

+∆t
∑

k∆t∈]0,T∗]

(∆t)2‖Aukl ‖2
H .

Besides,

∆t
∑

k∆t∈[0,T∗]

∥∥∥∥∥B∗
(
ukl + ũk+1

l

2

)∥∥∥∥∥
2

Y

≤ 2∆t
∑

k∆t∈[0,T∗]

∥∥∥∥B∗(uk + ũk+1

2

)∥∥∥∥2

Y

+2∆t
∑

k∆t∈[0,T∗]

∥∥∥∥∥B∗
(
ukh + ũk+1

h

2

)∥∥∥∥∥
2

Y

and, since ukh and ũk+1
h belong to C⊥δ/∆t for all k, we get from (2.16) that

∆t
∑

k∆t∈[0,T∗]

∥∥∥∥∥B∗
(
ukh + ũk+1

h

2

)∥∥∥∥∥
2

Y

≤ K2
B∆t

∑
k∆t∈[0,T∗]

∥∥∥∥∥ukh + ũk+1
h

2

∥∥∥∥∥
2

H

≤ K2
B∆t

∑
k∆t∈[0,T∗]

‖ukh‖2
H

≤ K2
B

δ2 ∆t
∑

k∆t∈]0,T∗]

‖Aukh‖2
H +K2

B∆t‖u0
h‖2
H ,

since, from the first line of (2.4),

‖ũk+1
h ‖2

H = ‖ukh‖2
H , ∀ k ∈ N.

It follows that there exists c > 0 independent of ∆t such that

c‖u0
l ‖2
X−β×X−β− 1

2

≤ ∆t
∑

k∆t∈[0,T∗]

∥∥∥∥B∗(uk + ũk+1

2

)∥∥∥∥2

Y

+∆t
∑

k∆t∈]0,T∗]

(∆t)2‖Aukl ‖2
H + ∆t‖u0

h‖2
H . (2.20)

The high frequencies. We now discuss the decay properties of solutions of (2.4) with initial
data u0

h ∈ C⊥δ/∆t. It is easy to check that for all k ∈ N, ukh ∈ C⊥δ/∆t. But, simple calculations give:
‖(I − (∆t)3A2)uk+1

h ‖2
X−β×X−β− 1

2

= ‖uk+1
h ‖2

X−β×X−β− 1
2

+ 2(∆t)3‖Auk+1
h ‖2

X−β×X−β− 1
2

+(∆t)6‖A2uk+1
h ‖2

X−β×X−β− 1
2
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= ‖ũk+1
h ‖2

X−β×X−β− 1
2

= ‖ukh‖2
X−β×X−β− 1

2

, k ∈ N. (2.21)

Due to (2.16), we get:

(1 + 2(∆t)δ2)‖uk+1
h ‖2

X−β×X−β− 1
2

≤ ‖ukh‖2
X−β×X−β− 1

2

.

We deduce that

‖uk+1
h ‖2

X−β×X−β− 1
2

≤ 1
1 + 2(∆t)δ2 ‖u

k
h‖2
X−β×X−β− 1

2

, k ∈ N,

which implies

‖ukh‖2
X−β×X−β− 1

2

≤
(

1
1 + 2(∆t)δ2

)k
‖u0

h‖2
X−β×X−β− 1

2

, k ∈ N. (2.22)

Taking k∗ = [T ∗/∆t], we get a constant τ < 1 independent of ∆t > 0 such that

‖uk
∗

h ‖2
X−β×X−β− 1

2

≤ τ‖u0
h‖2
X−β×X−β− 1

2

.

From (2.21), we have that, for k ∈ N,

‖u0
h‖2
X−β×X−β− 1

2

= ‖ukh‖2
X−β×X−β− 1

2

+ 2∆t

k−1∑
j=0

(∆t)2‖Auj+1
h ‖

2
X−β×X−β− 1

2

+∆t

k−1∑
j=0

(∆t)5‖A2uj+1
h ‖

2
X−β×X−β− 1

2

,

taking k = k∗, we deduce the existence of a positive constant c1, which depends only on T ∗ and
δ such that

c1‖u0
h‖2
X−β×X−β− 1

2

≤ ∆t

k∗−1∑
j=0

(∆t)2‖Auj+1
h ‖

2
X−β×X−β− 1

2

+∆t

k∗−1∑
j=0

(∆t)5‖A2uj+1
h ‖

2
X−β×X−β− 1

2

.

Using the fact thatH ⊂ X−β×X−β− 1
2
, with continuous embedding, we deduce the existence

of a positive constant c2, which depends only on T ∗ and δ such that

c2‖u0
h‖2
X−β×X−β− 1

2

≤ ∆t

k∗−1∑
j=0

(∆t)2‖Auj+1
h ‖

2
H + ∆t

k∗−1∑
j=0

(∆t)5‖A2uj+1
h ‖

2
H , (2.23)

holds uniformly with respect to ∆t > 0 for any solution of (2.4) with initial data u0 ∈ C⊥δ/∆t.

Combining (2.20) and (2.23) yields Lemma 2.1, since uh and ul lie in orthogonal spaces with
respect to the scalar product 〈., .〉X−β×X−β− 1

2
and 〈A.,A.〉H .

Remark 2.8. The assumptions (2.6) and (2.13) or (2.9) and (2.15) hold true if we have (1.7) (
see [20]).
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3 Polynomial stability via a "weakened" observability inequality and main
result

The main result of this paper reads as follows:

Theorem 3.1. Assume that there exist positive constants T and c and β > − 1
2 such that for all

initial data z0 ∈ D(A) = D(A)× V , we have (2.5).
Then there exists M > 0 such that

Ek ≤ M

(1 + tk)
1

1+2β
‖z0‖2

D(A), ∀k ≥ 0, (3.1)

holds uniformly with respect to 0 < ∆t < 1, with tk = k∆t.

For the proof of this theorem, we need a technical lemma ( see Lemma 4.4 in [2]).

Lemma 3.2. Let (Ek) be a sequence of positive real numbers satisfying

Ek+1 ≤ Ek − CE2+α
k+1 , ∀k ≥ 0,

where C > 0 and α > −1 are constants. Then there exists a positive constant M (depending
only on C and α) such that

Ek ≤
M

(k + 1)
1
α+1

, ∀k ≥ 0.

Proof. We decompose the solution zk of (2.1) as zk = wk + uk with z0 = u0 where uk is the
solution of (2.4) and wk is the solution of

w̃k+1−wk
∆t = A

(
wk+w̃k+1

2

)
−BB∗

(
zk+z̃k+1

2

)
, k ∈ N,

wk+1−w̃k+1

∆t = (∆t)2A2wk+1, k ∈ N,

w0 = 0.

(3.2)

Applying Lemma 2.1 to uk = zk−wk, we get: c‖z0‖2
X−β×X−β− 1

2

≤ 2

(
∆t

∑
k∆t∈[0,T∗]

∥∥∥∥B∗(zk + z̃k+1

2

)∥∥∥∥2

Y

+∆t
∑

k∆t∈[0,T∗]

(∆t)2 ∥∥Azk+1∥∥2
H
+ ∆t

∑
k∆t∈[0,T∗]

(∆t)5 ∥∥A2zk+1∥∥2
H

)

+2

(
∆t

∑
k∆t∈[0,T∗]

∥∥∥∥B∗(wk + w̃k+1

2

)∥∥∥∥2

Y

+ ∆t
∑

k∆t∈[0,T∗]

(∆t)2 ∥∥Awk+1∥∥2
H

+∆t
∑

k∆t∈[0,T∗]

(∆t)5 ∥∥A2wk+1∥∥2
H

)
. (3.3)

Now we follow the same approach as in the proof of Theorem 1.1 in [8], there exists a constant
G > 0 (independent of ∆t) such that

∆t
∑

k∆t∈[0,T∗]

∥∥∥∥B∗(wk + w̃k+1

2

)∥∥∥∥2

Y

+ ∆t
∑

k∆t∈[0,T∗]

(∆t)2 ∥∥Awk+1∥∥2
H
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+∆t
∑

k∆t∈[0,T∗]

(∆t)5 ∥∥A2wk+1∥∥2
H

≤ G∆t
∑

j∆t∈[0,T∗]

∥∥∥∥B∗(zj + z̃j+1

2

)∥∥∥∥2

Y

.

Combining this inequality and (3.3)), we get the existence of a constant c such that

c‖z0‖2
X−β×X−β− 1

2

≤ ∆t
∑

k∆t∈[0,T∗]

∥∥∥∥B∗(zk + z̃k+1

2

)∥∥∥∥2

Y

+∆t
∑

k∆t∈[0,T∗]

(∆t)2 ∥∥Azk+1∥∥2
H

+∆t
∑

k∆t∈[0,T∗]

(∆t)5 ∥∥A2zk+1∥∥2
H
.

Combining this inequality and (2.3), it follows that:

El+1 ≤ E0 − c‖z0‖2
X−β×X−β− 1

2

.

By using a simple interpolation inequality ( see Proposition 2.3 in [17]) and the fact that the
function Ek is nonincreasing, we obtain the existence of a constant C > 0 such that

El+1 ≤ E0 − C {E
l+1}2(1+β)

‖z0‖2(1+2β)
D(A)

. (3.4)

Estimate (3.4) remains valid in successive intervals [k(l+ 1), (k + 1)(l+ 1)], so, we have

E(k+1)(l+1) ≤ Ek(l+1) − C {E
(k+1)(l+1)}2(1+β)

‖z0‖2(1+2β)
D(A)

.

If we adopt the notation

Hk = Ek(l+1)

‖z0‖2
D(A)

,

the last inequality gives

Hk+1 ≤ Hk − C(Hk+1)2(1+β), ∀k ≥ 0.

By using Lemma 3.1, we obtain the existence of a constant M > 0 such that

Hk ≤ M

(1 + k)
1

1+2β
, ∀k ≥ 0,

and consequently, for all ∆t < 1, we have

Ek(l+1) ≤ M

(1 + tk)
1

1+2β
‖z0‖2

D(A), ∀k ≥ 0,

which obviously implies (3.1).
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4 Applications

4.1 Two coupled wave equations

We consider the following system

utt(x, t)− uxx(x, t) + αy(x, t) = 0, 0 < x < 1, t > 0,

ytt(x, t)− yxx(x, t) + αu(x, t) + γyt(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = y(0, t) = y(1, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < 1.

with γ > 0 and α > 0 small enough. Take H = L2(0, 1)4, the operator B defined by

B =


0
0
0
√
γ

 , (B∗ = (0, 0, 0,
√
γ))

which is a bounded operator from Y = L2(0, 1) into H and the operator A as follows

A =


0 0 I 0
0 0 0 I

∂xx − α 0 0
−α ∂xx 0 0

 ,

with D(A) = (H1
0 (0, 1) ∩H2(0, 1))2 × L2(0, 1)2.

If α is small enough, namely if α < π2, this operator A is a skew-adjoint operator in H , then

the above system is equivalent to system (1.6) where Z =


u

y

ut

yt

. We use the same method

in [1], we show that the eigenvalues of A are

sp(A) = {iµ+,k} ∪ {iµ−,k} k ∈ Z∗,

with µ+,k =
√
α+ k2π2, µ−,k =

√
−α+ k2π2 and µ+,−k = −µ+,k µ−,k = −µ−,k, ∀k ∈ N∗.

The corresponding eigenvectors are, respectively, given by

w+,k =


1

iµ+,k
sin(kπx)

1
iµ+,k

sin(kπx)
sin(kπx)
sin(kπx)

 , w−,k =


1

iµ−,k
sin(kπx)

− 1
iµ−,k

sin(kπx)
sin(kπx)
− sin(kπx)

 k ∈ Z∗,

with w+,−k = w+,k and w−,−k = w−,k, ∀ k ∈ N∗.

(2.9) is satisfied and (2.15) holds with β = 0 (see [1] for more details), thus the above system
is weakly observable [20], and consequently polynomially stable. Now, according to Theorem
3.1 we have
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Proposition 4.1. The solutions of

Z̃k+1−Zk
∆t = A

(
Zk+Z̃k+1

2

)
−BB∗

(
Zk+Z̃k+1

2

)
, k ∈ N,

Zk+1−Z̃k+1

∆t = (∆t)2A2Zk+1, k ∈ N,

Z0 = (u0, y0, u1, y1).

are polynomially uniformly decaying in the sense of (3.1) with β = 0.

4.2 Two boundary coupled wave equations

We consider the following system

utt(x, t)− uxx(x, t) = 0, 0 < x < 1, t > 0,

ytt(x, t)− yxx(x, t) + γyt(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = y(0, t) = 0, t > 0,

yx(1, t) = αu(1, t), t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < 1.
when α, β ∈ R with γ > 0 and α > 0 small enough. Hence it is written in the form (1.6)

with the following choices: Take H = L2(0, 1)4, the operator B as follows:

B =


0
0
0
√
γ

 , (B∗ = (0, 0, 0,
√
γ))

which is a bounded operator from Y = L2(0, 1) into H and the operator A defined by

D(A) = {(u, y, ut, yt) ∈ (V ∩H2(0, 1))2 × L2(0, 1)2 : yx(1) = αu(1);ux(1) = αy(1)}

when V = {v ∈ H1(0, 1); v(0) = 0} and

AZ =


ut

yt

uxx

yxx

 ,

when Z =


u

y

ut

yt

.

If α is small enough, namely if α < 1, this operator A is skew-adjoint in H .
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As in [1], the eigenvalues of A are

sp(A) = {iµ+,k} ∪ {iµ−,k} k ∈ Z∗,

with µ+,k = π
2 +kπ+ε+,k, µ−,k = π

2 +kπ−ε−,k and µ+,−k = −µ+,k µ−,k = −µ−,k, ∀k ∈ N∗,
where ε+,k = arctan( α

µ+,k
) and ε−,k = arctan( α

µ−,k
).

The corresponding eigenvectors are, respectively, given by

w+,k =


− 1
iµ+,k

b+,k sin(µ+,k.)
1

iµ+,k
b+,k sin(µ+,k.)

−b+,k sin(µ+,k.)
b+,k sin(µ+,k.)

 , w−,k =


1

iµ−,k
b−,k sin(µ−,k.)

1
iµ−,k

b−,k sin(µ−,k.)
b−,k sin(µ−,k.)
b−,k sin(µ−,k.)

 k ∈ Z∗,

with w+,−k = w+,k and w−,−k = w−,k, ∀ k ∈ N∗, and where b+,k and b−,k are chosen to
normalize the eigenvectors.

(2.9) is satisfied and (2.15) holds with β = 0 (see [1] for more details), thus the above system
is weakly observable [20], and consequently polynomially stable. Now, applying Theorem 1.3
we get

Proposition 4.2. The solutions of

Z̃k+1−Zk
∆t = A

(
Zk+Z̃k+1

2

)
−BB∗

(
Zk+Z̃k+1

2

)
, k ∈ N,

Zk+1−Z̃k+1

∆t = (∆t)2A2Zk+1, k ∈ N,

Z0 = (u0, y0, u1, y1).

are polynomially uniformly decaying in the sense of (3.1) with β = 0.

5 Further comments

(i) As we mentioned in the introduction, our methods and results require the assumption that
the damping operatorB is bounded. We use the fact that the polynomial decay of the energy
is a consequence of the observability properties of the conservative system. That is the case,
even in the continuous setting. However, in several relevant applications when the feedback
law is unbounded [2], our method does not apply.

(ii) Another drawback of our method is that it is restrictive for a class of operators, that is
the spectrum of the operator A associated with the undamped problem satisfies such a gap
condition. This is due to the method we employ, which is based on a discrete Ingham
type inequalities. One could ask if we have some results about polynomial stability for the
time semi-discrete scheme when the following generalized gap condition wk+N − wk ≥
Nγ, k ∈ N, is satisfied for N ≥ 3. To our knowledge, we don’t have a discrete Ingham
type inequalities when the last gap condition is verified, and this issue is widely open.

In our context, it would be also relevant to ask if our methods allow to deal with stabiliza-
tion properties of fully discrete approximation scheme with numerical viscosity or under
a suitable CFL type condition on the time and space discretization parameters as in the
exponential case [8].

(iii) Other question arise when discretizing in time semilinear wave equations. For instance,
in [12], under suitable properties of the nonlinearity it is proved that the polynomial decay
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property of solutions holds. It would be interesting to analyze whether the same polynomial
decay property holds, uniformly with respect to the time-step, for the numerical schemes
analyzed in this article in this semilinear setting.
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