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Abstract. Let R be an associative ring and σ, τ two epimorphisms of R. A mapping F :
R → R (not necessarily additive) is said to be a multiplicative (generalized)-(σ, τ)-derivation
if F (xy) = F (x)σ(y) + τ(x)g(y) holds for all x, y ∈ R, where g is any mapping on R. The
main object in this article is to study the situations (1) F (xy) − F (x)F (y) = 0, (2) F (xy) +
F (x)F (y) = 0, (3) F (xy)−F (y)F (x) = 0 and (4) F (xy)+F (y)F (x) = 0; for all x, y in some
nonzero subsets of prime and semiprime rings, where F is a multiplicative (generalized)-(σ, σ)-
derivation of R.

1 Introduction

Let R be an associative ring with center Z(R). For given x, y ∈ R, the symbol [x, y] stands for
commutator xy − yx. Recall that a ring R is prime if for any a, b ∈ R, aRb = (0) implies either
a = 0 or b = 0 and is semiprime if for any a ∈ R, aRa = (0) implies a = 0. An additive
mapping d : R → R is said to be a derivation of R if d(xy) = d(x)y + xd(y) holds for all
x, y ∈ R. The generalized derivation of R is an additive mapping F : R→ R such that F (xy) =
F (x)y + xd(y) for any x, y ∈ R, where d is a derivation of R. If d = 0, then we have F (xy) =
F (x)y for all x, y ∈ R, which is called a left multiplier mapping of R. Thus, generalized
derivation generalizes both the concepts, derivations as well as left multiplier mappings ofR. Let
S be a nonempty subset of a ring R and σ be an endomorphism of R. The mapping F : R → R
is said to be a homomorphism (anti-homomorphism) acting on S if F (xy) = F (x)F (y) holds
for all x, y ∈ S (respectively F (xy) = F (y)F (x) holds for all x, y ∈ S). An additive mapping
f : R → R is said to be σ-commuting (σ-centralizing) on S, if [f(x), σ(x)] = 0 for all x ∈ S
(resp. [f(x), σ(x)] ∈ Z(R) for all x ∈ S). For convenience, we shall write 1-commuting and 1-
centralizing maps as commuting and centralizing maps respectively, where 1 means the identity
map of R.

A multiplicative derivation of R is a mapping D : R→ R which satisfies D(xy) = D(x)y+
xD(y) for all x, y ∈ R. Of course these mappings are not additive. The concept of multiplicative
derivations was introduced by Daif [6]. Further, the complete description of those maps was
given by Goldmann and Semrl in [9].

The notion of multiplicative derivation was extended to multiplicative generalized derivation
in [4]. A mapping F : R → R is called a multiplicative generalized derivation, if there exists
a derivation d such that F (xy) = F (x)y + xd(y) holds for all x, y ∈ R. In this definition, if
we consider d is any map on R (not necessarily additive) then it is called as a multiplicative
(generalized)-derivation. A mapping F : R → R (not necessarily additive) is said to be mul-
tiplicative (generalized)-derivation if F (xy) = F (x)y + xg(y) holds for all x, y ∈ R, where
g is any mapping on R (not necessarily a derivation nor an additive map). Hence, the concept
of multiplicative (generalized)-derivation covers the concept of multiplicative derivation. More-
over, multiplicative (generalized)-derivation with g = 0 covers the concept of multiplicative
centralizers (not necessarily additive).

Obviously, every generalized derivation is a multiplicative (generalized)-derivation on R.
However, the converse is not true in general.

In the present paper, we generalize this concept of multiplicative (generalized)-derivations
as follows: Let σ, τ be any two endomorphisms of R. A mapping F : R → R (not necessarily
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additive) is said to be multiplicative (generalized)-(σ, τ)-derivation if F (xy) = F (x)σ(y) +
τ(x)g(y) holds for all x, y ∈ R, where g is any mapping on R (not necessarily a (σ, τ)-derivation
nor an additive map). In particular, if F is additive and g is (σ, τ)-derivation of R, then F is said
to be a generalized (σ, τ)-derivation of R.

A series of papers have investigated some specific types of additive maps acting as homomor-
phism or anti-homomorphism on some subsets of R and then determined the structure of ring as
well as associated maps (see [1], [2], [3], [7], [8], [10], [12], [13]). In [12], Rehman proved the
following result :

Let R be a 2-torsion free prime ring and I be a nonzero ideal of R. Suppose F : R→ R is a
nonzero generalized derivation associated with a derivation d.

(i) If F acts as a homomorphism on I and if d 6= 0, then R is commutative.
(ii) If F acts as an anti-homomorphism on I and if d 6= 0, then R is commutative.

Then Gusic in [10] showed that the result of Rehman is not in complete form. Gusic [10]
proved the result in more complete form as follows :

LetR be an associative prime ring, let d be any function onR (not necessary a derivation nor
an additive function), let F be any function on R (not necessarily additive) satisfying F (xy) =
F (x)y + xd(y) for all x, y ∈ R, and let I be a non-zero ideal in R.

(a) Assume that F (xy) = F (x)F (y) for all x, y ∈ I . Then d = 0, and F = 0 or F (x) = x
for all x ∈ R.

(b) Assume that F (xy) = F (y)F (x) for all x, y ∈ I . Then d = 0, and F = 0 or F (x) = x
for all x ∈ R (in this case R should be commutative).

In [1], Ali and Huang studied the case when a generalized Jordan (α, β)-derivation F acts as
homomorphism or anti-homomorphism on a square closed Lie ideal U in prime ring R. More
precisely, they obtained the following result :

Let R be a 2-torsion free prime ring and U a square-closed Lie ideal of R. Suppose that
α and β are two automorphisms of R and (F, d) is a generalized Jordan (α, β)-derivation of R
such that F 6= β on U . If (F, d) acts as a homomorphism or anti-homomorphism on U , then
either d = 0 or U ⊆ Z(R).

The above result of Gusic [10] for prime rings motivates us to study the situations when
F (xy) = ±F (x)F (y) holds for all x, y ∈ I and F (xy) = ±F (y)F (x) holds for all x, y ∈ I ,
where F is a multiplicative (generalized)-(σ, σ)-derivation, I is a nonzero left sided ideal in
semiprime ring R and σ is an epimorphism of R.

2 Preliminaries

Let R be a ring. We need the following basic identities which will be used in the proof of our
results. For any x, y, z ∈ R,

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z.

Moreover,
[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

For any subset S of R, we will denote by rR(S) the right annihilator of S in R, that is,
rR(S) = {x ∈ R|Sx = 0} and by lR(S) the left annihilator of S in R, that is, lR(S) = {x ∈
R|xS = 0}. If rR(S) = lR(S), then rR(S) is called an annihilator ideal of R and is written as
annR(S). We know that if R is a semiprime ring and I is an ideal of R, then rR(I) = lR(I). A
right ideal ρ of R is said to be large, if ρ has zero left annihilator in R, that is lR(ρ) = 0. Note
that any nonzero ideal in prime rings is large.

The next statements are well-known results which will be used in the next section.

Lemma 2.1. [5, Lemma 2] (a) If R is a semiprime ring, then the center of a nonzero one-sided
ideal is contained in the center ofR. In particular, any commutative one-sided ideal is contained
in the center of R.

(b) If R is prime with a nonzero central ideal, then R is commutative.

Lemma 2.2. [11, Corollary 2] Let R be a semiprime ring and σ, τ two epimorphisms of R. If
d : R → R is a nonzero (σ, τ)-derivation of R such that [d(x), σ(x)] = 0 for all x ∈ R, then
d(R) is contained in a central ideal of R.



242 Basudeb Dhara, Sukhendu Kar and Deepankar Das

Lemma 2.3. [11, Corollary 4] Let R be a prime ring and ρ a nonzero right ideal of R and σ, τ
two epimorphisms of R. Let d : R → R be a nonzero (σ, τ)-derivation of R such that σ(ρ)
and τ(ρ) contain some large right ideals of R. If [d(x), σ(x)] = 0 for all x ∈ ρ, then R is
commutative.

Lemma 2.4. Let R be a prime ring and I an ideal of R. Suppose that σ is an epimorphism of R
such that σ(I) 6= (0). If d is a nonzero (σ, σ)-derivation of R such that [d(x), σ(x)] = 0 for all
x ∈ I , then R is commutative.

Proof. Since σ is an epimorphism of R such that σ(I) 6= (0), we have (0) 6= Rσ(I)R =
σ(RIR) ⊆ σ(I). Thus σ(I) contains some nonzero ideals of R. Since each nonzero ideal in
prime rings are large, we can apply Lemma 2.2 and conclude that R must be commutative. 2

3 Main Results

Theorem 3.1. Let R be a semiprime ring, I a nonzero left ideal of R and σ any epimorphism
of R. Suppose that F : R → R be a multiplicative (generalized)-(σ, σ)-derivation associated
with the map d. If F (xy) − F (x)F (y) = 0 holds for all x, y ∈ I , then σ(I)d(I) = (0) and
σ(I)[F (x), σ(x)] = (0) for all x ∈ I .

Proof. We have

F (xy) = F (x)F (y) (3.1)

for all x, y ∈ I . We put y = yz, in above relation and then obtain that

F (x(yz)) = F (x)F (yz) (3.2)

for all x, y, z ∈ I; which gives

F (xy)σ(z) + σ(xy)d(z) = F (x){F (y)σ(z) + σ(y)d(z)}. (3.3)

By (3.1), above relation reduces to

(F (x)− σ(x))σ(y)d(z) = 0 (3.4)

for all x, y, z ∈ I . Since I is a left ideal and σ an epimorphism of R, it follows that

F (y)(F (x)− σ(x))Rσ(y)d(z) = 0 (3.5)

for all x, y, z ∈ I .
Again, from (3.1) we can write F (x)σ(y) + σ(x)d(y) = F (x)F (y), that is

F (x)(F (y)− σ(y)) = σ(x)d(y) (3.6)

for all x, y ∈ I . Using (3.6), we can write from (3.5) that σ(y)d(x)Rσ(y)d(x) = 0 for all x, y ∈ I
and F (y)(F (x) − σ(x))RF (y)(F (x) − σ(x)) = 0 for all x, y ∈ I . Since R is semiprime, we
conclude that σ(y)d(x) = 0 for all x, y ∈ I , that is σ(I)d(I) = (0) and F (y)(F (x)− σ(x)) = 0
for all x, y ∈ I . Thus we have F (xy) = F (x)σ(y) + σ(x)d(y) = F (x)σ(y) for all x, y ∈ I .

Now replacing y with yx and x with x2 in F (y)(F (x)− σ(x)) = 0 for all x, y ∈ I , we get

F (y)σ(x)(F (x)− σ(x)) = 0 (3.7)

and

F (y)(F (x)σ(x)− σ(x)2) = 0 (3.8)

for all x, y ∈ I. Subtracting one from another, we get F (y)[F (x), σ(x)] = 0 for all x, y ∈
I . Putting y = yz, we get F (y)σ(z)[F (x), σ(x)] = 0 for all x, y, z ∈ I . Since I is a left
ideal of R, it follows that [F (y), σ(y)]σ(z)[F (x), σ(x)] = 0 for all x, y, z ∈ I which yields
[F (y), σ(y)]Rσ(z)[F (x), σ(x)] = (0) and so σ(z)[F (y), σ(y)]Rσ(z)[F (x), σ(x)] = (0) for all
x, y, z ∈ I . In particular, σ(z)[F (x), σ(x)]Rσ(z)[F (x), σ(x)] = (0) for all x, z ∈ I . By the
semiprimeness of R, σ(I)[F (x), σ(x)] = (0) for all x ∈ I .2

Theorem 3.2. Let R be a semiprime ring, I a nonzero left ideal of R and σ any epimorphism
of R. Suppose that F : R → R be a multiplicative (generalized)-(σ, σ)-derivation associated
with the map d. If F (xy) + F (x)F (y) = 0 holds for all x, y ∈ I , then σ(I)d(I) = (0) and
σ(I)[F (x), σ(x)] = (0) for all x ∈ I .
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Proof. If F is a multiplicative (generalized)-(σ, σ)-derivation associated with the map d, then−F
is a multiplicative (generalized)-(σ, σ)-derivation associated with the map −d. Thus replacing F
with −F and d with −d in Theorem 3.1, we get our conclusions here.2

Corollary 3.3. Let R be a semiprime ring and σ be any epimorphism of R. Suppose that F :
R→ R is a multiplicative (generalized)-(σ, σ)-derivation associated with the map d. If F (xy)±
F (x)F (y) = 0 for all x, y ∈ R, then d(R) = 0, F is a multiplicative σ-centralizer mapping on
R and σ-commuting on R.

In particular, if R is a prime ring, then d = 0 and F (x) = ∓σ(x) for all x ∈ R.

Proof. Applying Theorem 3.1 and Theorem 3.2, we may conclude that d(R) = (0) and [F (x), σ(x)] =
0 for all x ∈ R. Again since d(R) = (0), we have for all x, y ∈ R, F (xy) = F (x)σ(y) +
σ(x)d(y) = F (x)σ(y), that is, F is a multiplicative σ-centralizer mapping on R.

In particular, if R is a prime ring, then by our hypothesis, we have F (x)(F (y) ± σ(y)) = 0
for all x, y ∈ R. Replacing x with xr for r ∈ R, we have F (x)σ(r)(F (y) ± σ(y)) = 0 for all
x, y, r ∈ R. Since σ is an epimorphism of R, F (x)R(F (y) ± σ(y)) = 0 for all x, y ∈ R. Since
R is prime ring, either F = 0 or F (x) = ∓σ(x) for all x ∈ R. 2

Corollary 3.4. Let R be a prime ring, σ an epimorphism of R and J a nonzero ideal of R such
that σ(J) 6= (0). Suppose that F : R → R is a nonzero generalized (σ, σ)-derivation of R. If
F (xy)± F (x)F (y) = 0 for all x, y ∈ J , then F (x) = ∓σ(x) for all x ∈ R.

Proof. Let d be the associated (σ, σ)-derivation of F . Then by Theorem 3.1 and Theorem 3.2, we
have that σ(J)d(J) = (0) and σ(J)[F (x), σ(x)] = (0) for all x ∈ J . Since R is prime ring and
σ(J) is a nonzero ideal of R, d(J) = (0) and [F (x), σ(x)] = 0 for all x ∈ J . Now d(J) = (0)
yields (0) = d(RJ) = d(R)σ(J) + σ(R)d(J) = d(R)σ(J) implying d(R) = (0). Then we
have for all x, y ∈ R, F (xy) = F (x)σ(y) + σ(x)d(y) = F (x)σ(y). Then by our hypothesis,
we have F (x)(F (y) ± σ(y)) = 0 for all x, y ∈ J . Replacing x with xr for r ∈ R, we have
F (x)σ(r)(F (y±σ(y)) = 0 for all x, y ∈ J and r ∈ R. Since σ is an epimorphism ofR, it follows
that F (x)R(F (y)± σ(y)) = (0) for all x, y ∈ J . Since R is a prime ring, either F (J) = (0) or
F (x) = ∓σ(x) for all x ∈ J . If F (J) = (0), then (0) = F (RJ) = F (R)σ(J) which implies
F (R) = (0), a contradiction. On the other hand if F (x) = ∓σ(x) for all x ∈ J , then replace
x with rx, where r ∈ R, and then we get 0 = F (rx) ± σ(rx) = F (r)σ(x) ± σ(r)σ(x) =
(F (r)± σ(r))σ(x). This yields that F (r) = ∓σ(r) for all r ∈ R.2

Theorem 3.5. Let R be a semiprime ring, I a nonzero left ideal of R and σ any epimorphism of
R. Suppose that F : R → R is a multiplicative (generalized)-(σ, σ)-derivation associated with
the map d. If F (xy)− F (y)F (x) = 0 holds for all x, y ∈ I , then σ(I)[d(x), σ(x)] = (0) for all
x ∈ I .

Proof. We have

F (xy) = F (y)F (x) (3.9)

for all x, y ∈ I . Now replacing x with xy in (3.9) and then using the fact F (xy) = F (x)σ(y) +
σ(x)d(y) for all x, y ∈ R, we obtain

F (xy)σ(y) + σ(xy)d(y) = F (y){F (x)σ(y) + σ(x)d(y)}. (3.10)

By using (3.9), it reduces to σ(xy)d(y) = F (y)σ(x)d(y), that gives

(σ(xy)− F (y)σ(x))d(y) = 0 (3.11)

for all x, y ∈ I . Now replacing x with rx in the above relation, we get

(σ(r)σ(xy)− F (y)σ(r)σ(x))d(y) = 0 (3.12)

for all x, y ∈ I and for all r ∈ R. Since σ is an epimorphism of R, σ(R) = R and hence from
above we have

(rσ(xy)− F (y)rσ(x))d(y) = 0 (3.13)

for all x, y ∈ I . Replacing r with F (z), where z ∈ I , in (3.13), we get

(F (z)σ(xy)− F (y)F (z)σ(x))d(y) = 0. (3.14)
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Left multiplying (3.11) by F (z) and then subtracting from (3.14), we get

{F (y)F (z)− F (z)F (y)}σ(x)d(y) = 0. (3.15)

By (3.9), above relation reduces to

{F (zy)− F (yz)}σ(x)d(y) = 0 (3.16)

for all x, y, z ∈ I . Now we put z = zy and then calculate

0 = {F (zy)σ(y) + σ(zy)d(y)− F (yz)σ(y)− σ(yz)d(y)}σ(x)d(y)
= (F (zy)− F (yz))σ(yx)d(y) + σ([z, y])d(y)σ(x)d(y).

By using (3.16), it yields σ([z, y])d(y)σ(x)d(y) = 0 for all x, y, z ∈ I . Since for r ∈ R,
r[z, y] ∈ I , we put x = r[z, y] and get

σ([z, y])d(y)σ(r)σ([z, y])d(y) = 0 (3.17)

for all y, z ∈ I and for all r ∈ R. Since σ(R) = R and R is semiprime,

σ([z, y])d(y) = 0 (3.18)

for all z, y ∈ I . Replacing z with rz, where r ∈ R we get

0 = σ([rz, y])d(y) = σ(r)σ([z, y])d(y) + σ([r, y])σ(z)d(y)

= σ([r, y])σ(z)d(y)

= [σ(r), σ(y)]σ(z)d(y) (3.19)

for all y, z ∈ I and r ∈ R. Right multiplying in (3.19) by σ(y) and replacing z with zy in (3.19),
we get respectively [σ(r), σ(y)]σ(z)d(y)σ(y) = 0 and [σ(r), σ(y)]σ(z)σ(y)d(y) = 0 for all
y, z ∈ I and for all r ∈ R. Subtracting one from another yields [σ(r), σ(y)]σ(z)[d(y), σ(y)] = 0
for all y, z ∈ I and for all r ∈ R. Since σ(R) = R, we have [R, σ(y)]σ(z)[d(y), σ(y)] = (0)
for all y, z ∈ I . Replacing z with rz, where r ∈ R, we get [R, σ(y)]σ(r)σ(z)[d(y), σ(y)] = (0)
which gives [R, σ(y)]Rσ(z)[d(y), σ(y)] = (0) for all y, z ∈ I . In particular, it follows that
[d(y), σ(y)]Rσ(z)[d(y), σ(y)] = (0). This implies that σ(z)[d(y), σ(y)]Rσ(z)[d(y), σ(y)] = (0)
for all y, z ∈ I . Since R is semiprime, we conclude that σ(I)[d(x), σ(x)] = (0) for all x ∈ I , as
desired.2

Theorem 3.6. Let R be a semiprime ring, I a nonzero left ideal of R and σ any epimorphism of
R. Suppose that F : R → R is a multiplicative (generalized)-(σ, σ)-derivation associated with
the map d. If F (xy) + F (y)F (x) = 0 holds for all x, y ∈ I , then σ(I)[d(x), σ(x)] = (0) for all
x ∈ I .

Proof. If F is a multiplicative (generalized)-(σ, σ)-derivation associated with the map d, then−F
is a multiplicative (generalized)-(σ, σ)-derivation associated with the map −d. Thus replacing F
with −F and d with −d in Theorem 3.5, we get our conclusions here.2

Corollary 3.7. Let R be a semiprime ring and σ be any epimorphism of R. Suppose that F :
R→ R is a multiplicative (generalized)-(σ, σ)-derivation associated with the map d. If F (xy)±
F (y)F (x) = 0 for all x, y ∈ R, then d is σ-commuting onR. Moreover, if d is a (σ, σ)-derivation
of R, then d(R) is contained in a nonzero central ideal of R, provided d(R) 6= 0.

In particular, if R is a prime ring and d is a (σ, σ)-derivation of R, then d(R) = 0, R is
commutative and F (x) = ∓σ(x) for all x ∈ R.

Proof. By Theorem 3.5 and Theorem 3.6, we have [d(x), σ(x)] = 0 for all x ∈ R. Then, by
Lemma 2.2, if d(R) 6= (0), d(R) is contained in a nonzero central ideal of R.

In particular, ifR is a prime ring and d is a (σ, σ)-derivation ofR, then by Lemma 2.1(a) either
d = 0 or R is commutative. If d 6= 0, then R is commutative and so F (xy) ± F (x)F (y) = 0
for all x, y ∈ R. Then by Corollary 3.3, we get d = 0, a contradiction. Hence, we conclude that
d = 0. Therefore, for all x, y ∈ R, F (xy) = F (x)σ(y), that is, F is a multiplicative σ-centralizer
mapping of R. Then by our assumption, we get

F (x)σ(y)± F (y)F (x) = 0 (3.20)
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for all x, y ∈ R. Now replacing x with xr, we get

F (x)σ(r)σ(y)± F (y)F (x)σ(r) = 0 (3.21)

for all x, y ∈ R. Right multiplying (3.20) by σ(r) and then subtracting from (3.21) we have
F (x)[σ(r), σ(y)] = 0 for all x, y, r ∈ R, that is F (x)[σ(R), σ(R)] = (0) for all x ∈ R. Since σ
is an epimorphism of R, it leads to F (x)[R,R] = (0) for all x ∈ R. This gives

(0) = F (x)[R2, R] = F (x)R[R,R] + F (x)[R,R]R = F (x)R[R,R]

for all x ∈ R. By the primeness of R, we get F (R) = (0) or R is commutative. Since F 6= 0, R
is commutative and then by Corollary 3.3, we conclude that F (x) = ∓σ(x) for all x ∈ R.2

Corollary 3.8. Let R be a prime ring, σ an epimorphism of R and J a nonzero ideal of R such
that σ(J) 6= (0). Suppose that F : R → R is a nonzero generalized (σ, σ)-derivation of R. If
F (xy) ± F (y)F (x) = 0 for all x, y ∈ J , then R is commutative and F (x) = ∓σ(x) for all
x ∈ R.

Proof. Let d be the (σ, σ)-derivation of R associated to F . Then by Theorem 3.5 and Theorem
3.6, we find that σ(J)[d(x), σ(x)] = (0) for all x ∈ J . Since R is prime ring and σ(J) is
a nonzero ideal of R, we have [d(x), σ(x)] = 0 for all x ∈ J . Then by Lemma 2.4, R is
commutative. Thus by Corollary 3.4, we obtain our conclusions. 2

4 Examples

In this section we construct some examples to show that the semiprimeness condition of the ring
in our results are essential.

Example 4.1. Consider the ring R =

{(
a b

0 c

)
: a, b, c ∈ Z

}
, where Z is the set of all inte-

gers. Let I =

{(
a b

0 0

)
: a, b ∈ Z

}
be the left ideal of R. We define maps F, d, σ : R→ R,

by F

(
a b

0 c

)
=

(
a 2b
0 0

)
, d

(
a b

0 c

)
=

(
0 3b
0 0

)
and σ

(
a b

0 c

)
=

(
a −b
0 c

)
.

It is easy to verify that F is a multiplicative (generalized)-(σ, σ)-derivation associated with
the map d. Note that F acts as homomorphism on I .

Since

(
0 1
0 0

)
R

(
0 1
0 0

)
= (0), R is not semiprime ring. We see that σ(I)d(I) 6= (0)

and σ(I)[F (x), x] 6= (0) for all x ∈ I , because σ

(
1 1
0 0

)
d

(
1 1
0 0

)
=

(
0 3
0 0

)
6= (0)

and σ

(
1 1
0 0

)[
F

(
1 1
0 0

)
,

(
1 1
0 0

)]
=

(
0 −1
0 0

)
6= (0).

Hence, the semiprimeness hypothesis in Theorem 3.1 is crucial.

Example 4.2. Consider the ring R =


 0 a b

0 0 c

0 0 0

 : a, b, c ∈ Z

, where Z is the set of all

integers. We define maps F, d, σ : R→ R, by F

 0 a b

0 0 c

0 0 0

 =

 0 a 0
0 0 0
0 0 0

, d

 0 a b

0 0 c

0 0 0

 =

 0 0 b

0 0 c

0 0 0

 and σ

 0 a b

0 0 c

0 0 0

 =

 0 −a −b
0 0 c

0 0 0

 . Then F satisfies F (xy) = F (x)σ(y)+

σ(x)d(y) for all x, y ∈ R, where σ is an epimorphism of R. Then F acts as homomorphism as
well as anti-homomorphism on R.

Since

 0 1 1
0 0 0
0 0 0

R

 0 1 1
0 0 0
0 0 0

 = (0); R is not semiprime ring. It is easy to verify

that d(R) 6= (0), F is neither a multiplicative σ-centralizer nor a σ-commuting on R and d is not
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σ-commuting on R. Hence, the semiprimeness hypothesis in Corollary 3.3 and Corollary 3.7
can not be omitted.
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