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This paper is dedicated to Professors P.F. Smith and J. Clark on their 70th birthdays
.

Communicated by Ahmet Sinan Cevik

MSC 2010 Classifications: 16D40, 16D80, 13A15.

Keywords and phrases: Multiplication module, idempotent submodule.

Abstract. A submoduleN ofM is idempotent ifN = N?N = Hom(M,N)N . In this paper
we give some properties of idempotent submodules. Relations between the multiplication, pure,
and idempotent submodules are investigated. We give necessary condition for tensor products of
two idempotent submodules to be idempotent.

1 Introduction

All rings are associative with identity element and all modules are unitary right R-modules.
Recall that [N : M ] = {r ∈ R : Mr ⊆ N}. r(M) is the annihilator ideal of M in R, i.e. the
ideal consisting of all elements x of R such that mx = 0 for all m ∈M . M is said to be faithful,
if r(M) = 0.
When we generalize notions of ring to module, some difficulties come up with the multiplication
in a module. In [5], a product on the lattice of submodules of a module was defined. Let M be
an R-module and N and L submodules of M . Set:

N ? L := Hom(M,L)N =
∑
{f(N) | f : M → L}

N is called idempotent submodule of M if N ? N = N . That is, N is idempotent submodule of
M , if for each element n ∈ N there exist a positive integer k, homomorphisms ϕi : M → N(1 ≤
i ≤ k) and elements ni ∈ N(1 ≤ i ≤ k) such that n = ϕ1(n1) + · · · + ϕk(nk). Idempotent
submodules of any modules have been studied in [8] and [9]. Let I be a right ideal of R. Then
I is an idempotent submodule of RR if and only if I2 = I , that is I is an idempotent ideal of
R. Idempotent submodules of any module generalize the idempotent right ideals of rings. It is
well known that every finitely generated idempotent ideal over a commutative ring is generated
by idempotent in [1, Exercise 12(3), page 103].
An R-module M is called fully idempotent if every submodule of M is idempotent. Clearly
every semisimple module is fully idempotent.
Following [4], an R-module M is called a multiplication module if every submodule N of M
there exists an ideal I of R such that N =MI . A right ideal I of a ring R is called a multiplica-
tion right ideal if IR is a multiplication module. It is clear that MR is a multiplication module⇔
M [N : M ] = N for each submodule N of M ⇔Mr(M/N) = N for each submodule N of M .
A submodule K of M is multiplication if and only if N ∩K = K[N : K] for all submodule N
of M by [12]. A module M is called self-generator if every submodule of M is M -generated.
If M is multiplication module over commutative rings, then M is self generator. The simplest
example of a multiplication module is an arbitrary simple module over an arbitrary ring. In
a commutative ring, the class of multiplication modules contains all projective ideals, all cyclic
modules, all finitely generated distributive modules and all ideals generated by idempotents. The
fundamental theorem of abelian groups can be expressed that any finitely generated Z-module
is a direct of multiplication modules, where Z is the ring of integers. This motivates us to study
multiplication modules.
A submodule N of M is called pure in M if the sequence

0→ N ⊗ E →M ⊗ E

is exact for every R-module E. If N is flat then N is pure in M if and only if NI =MI ∩N for
all ideals I of R.
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2 Idempotent Submodules

It is well known that every direct summand of a module is idempotent. The following example
shows that the converse is not true in general.

Example 2.1. Let K be a field and let R =
∏∞

i=1 Ki with Ki = K for all i ≥ 1. Then the
ring R is commutative von Neumann regular. It is easy to check that Soc(R) = ⊕∞i=1Ki is an
idempotent submodule of RR which is not a direct summand.

Lemma 2.2. Let M = Z⊕ Z be a Z-module. Suppose N = (a, b)Z, where a, b ∈ Z, (a, b) = 1.
Then N is a direct summand of M . Hence N is an idempotent submodule of M .

Proof. Since (a, b) = 1, ra + sb = 1 for some r, s ∈ Z. Now (1, 0) = (a, b)r + (s,−r)b and
(0, 1) = (a, b)s − (s,−r)a. Clearly, Z ⊕ Z = (a, b)Z + (s,−r)Z. Now assume that (a, b)x =
(s,−r)y. Then ax = sy and bx = −ry. Therefore rax + sbx = 0 and hence x = 0. Thus
(a, b)Z ∩ (s,−r)Z = 0. Hence N is a direct summand of M .

Note that any homomorphic image of an idempotent submodule need not be idempotent as we
see in the following example.

Example 2.3. Consider the Z-module M = Z ⊕ Z = (1, 0)Z ⊕ (0, 1)Z and the idempotent
submodule N = (2, 3)Z. Let π2 : M −→ (0, 1)Z be the projection map. Then π2(N) = (0, 3)Z
is not an idempotent submodule of (0, 1)Z.

The next result shows that the homomorphic image of an idempotent submodules is again idem-
potent in a special case.

Lemma 2.4. Let M be a multiplication module and K ⊆ N ⊆ M . If N is an idempotent
submodule of M , then N/K is an idempotent submodule of M/K.

Proof. By [15, Lemma 1.2], each submodules of M is fully invariant. Then it is clear by [8,
Lemma 2.2].

Since MZ = Z ⊕ Z is not a multiplication module, multiplication assumption in Lemma 2.4
is not superfluous. The following example shows that the transitivity property of idempotent
submodules is not true in general.

Example 2.5. Let MZ = Z ⊕ Z, K = (2, 3)Z and L = (1, 0)Z. Then K and L are direct
summands of M and hence they are idempotent submodules of M . K + L = (1, 0)Z⊕ (0, 3)Z
is an idempotent submodule of M , but it is not a direct summand of M . Also (0, 3)Z is a direct
summand of K + L. But (0, 3)Z is not an idempotent submodule of M .

Now we can show that transitivity property of idempotent submodules is inherited in a special
case.

Theorem 2.6. Let M be a self generator multiplication R-module with N ≤ K ≤ M and K be
a self generator multiplication submodule of M . If N is idempotent in K and K is idempotent
in M , then N is idempotent in M .

Proof. Since K is idempotent in M and M is multiplication, we have
K ?K =M [K : M ] ? M [K : M ]

=M [K : M ]2 =M [K : M ][K : M ] = K[K : M ] = K
by [9, Corollary 3.2]. Since N is idempotent in K and K is multiplication submodule of M , we
have
N ? N = K[N : K] ? K[N : K]

= K[N : K]2 = K[N : K][N : K] = N [N : K] = N

by [9, Corollary 3.2]. These imply that N = K[N : K] = K[K : M ][N : K] ⊆ K[K[N : K] :
M ] = K[N : M ] ⊆ K[N : K] = N . Hence we get N = K[N : M ]. By [9, Corollary 3.2], we
have
N ? N =M [N : M ] ? M [N : M ]

=M [N : M ]2 =M [N : M ][N : M ] = N [N : M ].

Since K is multiplication submodule of M , we have N [N : M ] ∩ K = N [N : M ] = K[[N :
M ]N : K] ⊇ K[N [N : M ] : M ] ⊇ K[N : M ][N : M ] ⊇ K[N : M ][N : K] ⊇ N [N : K] = N .
Hence N is idempotent in M .
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In Example 2.5, multiplication condition of M is necessary for Theorem 2.6. Since multiplica-
tion modules over commutative rings are self generator, we get the following corollary.

Corollary 2.7. Let M be a multiplication module with N ≤ K ≤ M over a commutative ring
R and K be a multiplication submodule of M . If N is idempotent in K, K is idempotent in M ,
then N is idempotent in M .

Now we construct new idempotent submodule by using idempotent ideals in the following result.

Theorem 2.8. Let M be a module and N idempotent submodule of M and I idempotent ideal
of R. Then NI is an idempotent submodule of M .

Proof. Let r ∈ I and n ∈ N . Since N is an idempotent submodule of M , there exist homo-
morphisms fi : M → N and ni ∈ N for every 1 ≤ i ≤ t such that n = f1(n1) + · · · + ft(nt).
Since I is an idempotent ideal of R, there exist ai, bi ∈ I for every 1 ≤ i ≤ k such that
r = a1b1 + · · ·+ akbk. Define homomorphism

ϕij : M → NI by ϕij(m) = fi(m)bj

Clearly ϕij is homomorphism for every 1 ≤ i ≤ t and 1 ≤ j ≤ k. Then

nr =
∑

1≤i≤t,1≤j≤k

fi(ni)ajbj =
∑

1≤i≤t,1≤j≤k

fi(niaj)bj =
∑

1≤i≤t,1≤j≤k

ϕij(niaj).

Hence NI is an idempotent submodule of M .

Clearly every module is an idempotent submodule of itself. Then we have the following as a
corollary of [8, Proposition 3.8].

Corollary 2.9. LetM be a module and I idempotent submodule ofR. ThenMI is an idempotent
submodule of M .

Recall that a module M is called fully idempotent if every submodule of M is idempotent.

Example 2.10. (i) If R is a von Neumann regular ring, then every right principal ideal of R is a
direct summand. So every principal right ideal of R is idempotent. Hence every submodule of
RR is idempotent (as a sum of idempotent submodules). That is RR is fully idempotent. Note
that by [16, 3.15], in the case of commutative rings, they are the same.
(ii) Following [16, 23.5], if R is a right V -ring, then RR is fully idempotent .

Theorem 2.11. Let M be a multiplication module and M = M1 ⊕M2 be a direct sum of fully
idempotent submodules M1 and M2. Then M is also fully idempotent.

Proof. SinceM is multiplication every submodule ofM is fully invariant. LetA be a submodule
of M . Then we have A = (A ∩M1)⊕ (A ∩M2). By assumption A ∩M1 and A ∩M2 are idem-
potent submodules of M1 and M2 respectively. Then by [8, Corollary 2.5], A is an idempotent
submodule of M .

Proposition 2.12. Let M be a multiplication module and N submodule of M . If M is fully
idempotent, then so is M/N .

Proof. It is clear by Lemma 2.4.

This lemma is taken from [7, Lemma 2.2]. It is given for the sake of completeness.

Lemma 2.13. Let M be a fully idempotent module. Let N ≤ M and I an ideal of R. Then
N ∩MI = NI .

Proof. Let n ∈ N ∩MI . Then there exist the homomorphisms ϕi : M −→ N ∩MI and the
elements ni ∈ N ∩MI for some k ≥ 1 and 1 ≤ i ≤ k such that n = ϕ1(n1) + · · · + ϕk(nk).
Let 1 ≤ i ≤ k. Then ni = x1u1 + · · ·+ xtut for some t ≥ 1, xj ∈ M and uj ∈ I (1 ≤ j ≤ t).
Therefore ϕi(ni) = ϕi(x1)u1 + · · ·+ϕi(xt)ut ∈ NI . Hence n ∈ NI and so NI = N ∩MI .
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3 Modules over Commutative Rings

In this section all rings are commutative with identity and all modules are unital. In [2, Corollary
2,7], finitely generated faithful multiplication modules are flat. By using Lemma 2.13, idempo-
tent submodule of a flat modules is pure. In this section, we consider when pure submodule is
idempotent.
In [3], M.M. Ali and D.J. Smith defined idempotent submodules as follows which are different
our idempotent definition: A submodule N of M is called idempotent submodule of M , if N =
N [N : M ]. Let N = N [N : M ] for any submodule N of M and n ∈ N . Then there exist
ri ∈ [N : M ] and ni ∈ N for every 1 ≤ i ≤ k, such that n = n1r1 + · · · + nkrk. Define
homomorphisms,

fi : M → N (1 ≤ i ≤ k)

with fi(m) = mri. Then n = f1(n1) + · · ·+ fk(nk). Therefore in the sense of our idempotent
submodule is a generalization of the M.M. Ali and D.J. Smith’s sense. But the converse is
not true in general. Consider the example in Lemma 2.2. Clearly [N : M ] = 0, and hence
N [N : M ] = 0 6= N . Therefore N is not idempotent submodule in M.M. Ali and D.J. Smith’s
sense but N is idempotent in our sense. For the converse; let M be a finitely generated faithful
multiplication module, N an idempotent submodule of M in our sense. Then by [8, Theorem
3.9], [N : M ] is idempotent. Since M is multiplication, N = M [N : M ] = M [N : M ]2 =
M [N : M ][N : M ] = N [N : M ]. This implies that N is idempotent in the sense of M.M Ali
and D. J. Smith. In [3, Theorem 1.1], authors characterized pure submodules of multiplication
modules by using idempotent submodules in the sense of M.M. Ali and D.J. Smith. In the
following theorem we give a relation between pure submodules, multiplication modules and
idempotent submodules by motivation of some idea in [3, Theorem 1.1].

Theorem 3.1. Let M be a finitely generated faithful multiplication module and N a submodule
of M .Then the following are equivalent:
(i) N is a pure submodule of M .
(ii) N is multiplication and is idempotent in M .
(iii) I[N : M ] = I ∩ [N : M ] for every ideal I of R.

Proof. (i) ⇒ (ii) Assume that N is a pure submodule of M . Let K be a submodule of M . We
will show that N ∩K = N [K : N ]. Since M is multiplication K = M [K : M ]. Since N is a
pure submodule of M , we have N [K : N ] = N ∩M [K : N ].

N [K : N ] = N ∩M [K : N ] ⊇ N ∩M [K : M ] = N ∩K ⊇ N [K : N ]

Hence we get N [K : N ] = K ∩ N . This implies that N is a multiplication submodule of M .
Since N is pure, we have N [N : M ] = N ∩M [N : M ] = N .

N = N [N : M ] =M [N : M ][N : M ] =M [N : M ]2.

Hence we getM [N : M ]2 =M [N : M ]. By [14, Theorem 9], we have [N : M ] is an idempotent
ideal of R. Then [8, Theorem 3.9], N is idempotent in M .
(ii) ⇒ (iii) Assume that N is multiplication and idempotent in M . By [8, Theorem 3.9],
[N : M ] is an idempotent submodule, then we have N = M [N : M ] = M [N : M ]2 = M [N :
M ][N : M ] = N [N : M ]. For any submodule K of M we have,

N [K : N ] = N [K : N ][N : M ] ⊆ N [K : M ] ⊆ N [K : N ]

implies that N [K : N ] = N [K : M ]. Since N is multiplication submodule of M , for every ideal
I of R

MI ∩N = N [MI : N ]

= N [MI : M ]

= NI =MI ∩M [N : M ]

Also we haveNI = N [N : M ]I =M [N : M ]I implies that;MI∩M [N : M ] =M [N : M ]I
for any ideal I ofR. By [6, Theorem 1.6],MI∩M [N : M ] =M(I∩[N : M ]). By [14, Theorem
9], M is a cancellation module. Then we have I[N : M ] = I ∩ [N : M ].
(iii) ⇒ (i) Let I be an ideal of R. By [6, Theorem 1.6], we have M [N : M ] ∩MI = M([N :
M ] ∩ I). By assumption, [N : M ] ∩ I = I[N : M ] implies that

N ∩MI =M [N : M ] ∩MI =M([N : M ] ∩ I) =M [N : M ]I = NI.

Then we have desired result.
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In Example 2.5, (2, 3)Z and (0, 1)Z are idempotent submodules of MZ = Z⊕ Z. But (0, 1)Z ∩
(2, 3)Z = (0, 3)Z is not idempotent in MZ. Hence intersection of two idempotent submod-
ule need not be idempotent again. In below proposition we give a result about intersection of
idempotent module is again idempotent in a special case.

Proposition 3.2. Let M be a finitely generated faithful multiplication module. If N and K are
finitely generated idempotent submodules of M , then N ∩K is also idempotent in M .

Proof. By [8, Theorem 3.9], [N : M ] and [K : M ] are idempotent ideals of R. By [10, Lemma
1.4], [N : M ] and [K : M ] are finitely generated. Clearly there exist idempotent elements
e1, e2 ∈ R such that [N : M ] = e1R and [K : M ] = e2R. We also have [N ∩K : M ] = [N :
M ] ∩ [K : M ] = e1R ∩ e2R = e1e2R. Hence [N ∩K : M ] is also idempotent ideal in R. Then
N ∩K is idempotent in M by [8, Theorem 3.9].

Lemma 3.3. Let M be a finitely generated faithful multiplication module and N be a finitely
generated submodule of M .Then N is an idempotent submodule of M if and only if nR =
n[N : M ] for each n ∈ N .

Proof. (⇒:) By [8, Theorem 3.9], [N : M ] is an idempotent ideal of R. By [10, Lemma 1.4],
[N : M ] is finitely generated. Clearly there exists an idempotent element e ∈ R such that
[N : M ] = eR. Since M is multiplication, we have M [N : M ] = N . Let ns ∈ nR for s ∈ R
and n ∈ N . Then there exist ri ∈ [N : M ] and mi ∈ M for every 1 ≤ i ≤ k such that
n = m1r1 + · · · +mkrk. Since [N : M ] = eR, there exist si ∈ R such that ri = esi for every
1 ≤ i ≤ k. Then

ns = m1r1s+ · · ·+mkrks

= m1es1s · · ·+mkesks

= (m1s1 + · · ·+mksk)es

= (m1s1 + · · ·+mksk)ees

= (m1es1 + · · ·+mkesk)es

= (m1r1 + · · ·+mkrk)es

= nes ∈ neR = n[N : M ].

(⇐:) Let N be a submodule of M . We assume that nR = n[N : M ] for each n ∈ N . We will
show that N ? N = N . Take n ∈ N . By assumption, there exist r ∈ [N : M ] such that n = nr.
Define a homomorphism ϕ : M → N with ϕ(m) = mr. Clearly ϕ is homomorphism. Then
ϕ(n) = n. Hence N is an idempotent submodule of M .

Theorem 3.4. Let M1 and M2 are finitely generated faithful multiplication modules and N1 and
N2 are finitely generated idempotent submodules of M1 and M2 respectively. Then N1 ⊗ N2 is
an idempotent submodule of M1 ⊗M2.

Proof. By Lemma 3.3, it is enough to show that

(n1 ⊗ n2)R = (n1 ⊗ n2)[N1 ⊗N2 : M1 ⊗M2]

for any n1 ∈ N1 and n2 ∈ N2. By assumption, we have n1R = n1[N1 : M1] and n2R = n2[N2 :
M2]. Then

(n1 ⊗ n2)R = n1R⊗ n2R = n1[N1 : M1]⊗ n2[N2 : M2] = (n1 ⊗ n2)[N1 : M1][N2 : M2]

Clearly we have [N1 : M1][N2 : M2] ⊆ [N1 ⊗N2 : M1 ⊗M2]. This implies that

(n1 ⊗ n2)R ⊆ (n1 ⊗ n2)[N1 ⊗N2 : M1 ⊗M2] ⊆ (n1 ⊗ n2)R.

Then we have desired result.
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