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Abstract. Results on existence of fixed point in K-metric space (where K is cone) are estab-
lished under intimate conditions for two sequences of single and multivalued mappings. Certain
known results are obtained as corollaries.

1 Introduction

With the gradual strength gained by functional analysis, the theory of cones in Banach space is
more thoroughly developed. The reason is that cones in Banach spaces can be studied in op-
timization theory [1]. Hence, the existence results which were proved in several metric space,
one among them is abstract spaces whose neighbourhoods are conic segments. Eisenfeld and
Lakshmikantham [2] have established existence of fixed point in such space. This was further
extended by Som [13] for Jungck [6] contraction condition.

The object of this paper is three fold (i) to consider two sequences of mappings in orbitally
K-complete space (ii) to consider intimate pair condition which is different from compatibility
[6] (iii) to consider a much wider contraction inequality. With these objects we prove existence
of fixed point in K-metric space. We claim that our results improve and extend the results of
Eisenfeld and Lakshmikantham [2] and Som [13] as well.

2 Preliminaries

Definition 2.1. Let E be a real Banach space. A subset K of E is said to be a cone if (i) K is
closed (ii) if u, v ∈ K then αu + βv ∈ K for all α, β > 0 (iii) K ∩ −K = {θ}, where θ is the
zero of the space E. (iv) Ko 6= φ where Ko is the interior of K. We say u ≥ v if u− v ∈ K.

The cone is said to be normal if there is δ > 0 such that ‖u + v‖ > δ for u, v ∈ K and
‖u‖ = ‖v‖ = 1.

Definition 2.2. Let X be a nonempty set and K a cone. A function ρ : X ×X → K is said to
be a K-metric on X if and only if (i) ρ(x, y) = θ if and only if x = y (ii) ρ(x, y) = ρ(y, x) (iii)
ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

Definition 2.3. A sequence {xn} in a K-metric space X is said to converge to x0 ∈ X if for each
u ∈ Ko, there exists a positive integer N such that ρ(xn, x0) ≤ u for n ≥ N .

A sequence {xn} inX is a Cauchy sequence if for each u ∈ Ko, there exists a positive integer
N such that

ρ(xn, xm) ≤ u for n,m ≥ N.
The K-metric space (X, ρ) is said to be complete if every Cauchy sequence in X converges.

Definition 2.4. Let {xn} be a monotonically nondecreasing sequence of the elements of E,
which is partially ordered by means of the cone K, that is, x1 ≤ x2, · · · ≤ xn . . . . Then the
sequence {xn} is said to be bounded if there exists an element y ∈ E such that xn ≤ y (n = 1,2,
. . . ).

In the sequel, the spaces, in which every bounded monotonic sequence has a limit are called
regularly partially ordered. A cone which generates a regular partial ordering is said to be regular.
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Let K be a cone of a real Banach space E. Let ψ be a mapping from K into itself. The
mapping ψ is said to be monotone if ψu > ψv whenever u > v. The ψ is said to be upper semi-
continuous from the right, if whenever {un} and {ψun} are both decreasing and convergent
sequence then limψvn ≤ ψ lim vn.

Definition 2.5. We define a mapping ψ from cone segment 0 < u < u0 into itself satisfying:

(i) ψn+1u0 < ψnu0, u0 6= θ, n = 0, 1, 2, . . . and if ū = limn→∞ ψnu0 exists, then ψū ≤ ū,

(ii) ψ is upper semi-continuous from the right and K is regular,

(iii) ψu0 < u0,

(iv) ψu = u iff u = θ,

(v) ψ is monotone.

Definition 2.6. Let (X, ρ) be a K-metric space. A subset C of X is said to be proximinal if for
each x ∈ X , there exists a point y ∈ C such that ρ(x, y) = D(x,C).

We shall use the following notations.

P (X) =
{
A : A is nonempty proximinal subset of X

}
,

CB(X) =
{
A : A is nonempty closed and bounded subset of X

}
,

C(X) =
{
A : A is nonempty compact subset of X

}
.

For nonempty subsets A and B of X and x ∈ X:

D(X,A) = inf
{
ρ(x, a) : a ∈ A

}
,

H(A,B) = max
{

sup
{
D(a,B) : a ∈ A

}
, sup

{
D(A, b) : b ∈ B

}}
.

Remark 2.7. It is well known that CB(X) is a metric space with distance function H . Thus
(CB(X), H) is complete metric space in the event that (X, ρ) is K-complete.

It is obvious that P (X) ⊂ CB(X). Therefore P (X) is also complete induced by distance
function H .

Definition 2.8. Let {Ai}i∈N : X → P (X) and {Si}i∈N : X → X be two sequences of map-
pings.

If, for x0 ∈ X , there exist sequences {xn} and {yn} in X such that

y2n+1 = Sjx2n+1 ∈ Aix2n

y2n+2 = Six2n+2 ∈ Ajx2n+1

for fixed i, j ∈ N and all n = 0, 1, 2, . . . . Then O(Ai, Aj , Si, Sj ;x0) = {yn : n ∈ N} is said
to be orbit at x0 for the mappings {Ai, Aj , Si, Sj}. Further O(Ai, Aj , Si, Sj ;x0)} is said to be
regular orbit for mappings {Ai, Aj , Si, Sj} if

ρ(yn, yn+1) ≤

{
H(Aixn−1, Ajxn) when n is odd
H(Ajxn−1, Aixn) when n is even

Definition 2.9. If, for x0 ∈ X there exist sequences {xn} and {yn} inX such that every sequence
of the formO(Ai, Aj , Si, Sj ;x0)} converges inX , thenX is said to be {Ai, Aj , Si, Sj}−orbitally
K-complete with respect to x0 or simply {Ai, Aj , Si, Sj}−orbitally K-complete.

Definition 2.10. [11] Let A and S be two self maps of K-metric space (X, ρ). The pair {A,S} is
said to be S-intimate iff

αρ(SAxn, Sxn) ≤ αρ(AAxn, Axn),



EXISTENCE RESULTS FOR CONES. . . 99

where α = lim sup or lim inf and {xn} is a Cauchy sequence in X such that

lim
n→∞

Sxn = lim
n→∞

Axn = t for some t ∈ X.

Definition 2.11. Let (X, ρ) be a K-metric space and {Ai}i∈N : X → P (X) and {Si}i∈N :
X → X be two sequences of multivalued and single valued mappings respectively. Then the
pair {Ai, Si} is said to be Si-intimate iff

αρ(Siyn, Sixn) ≤ αD(Aiyn, yn).

For all sequences {xn} and {yn} inX such that yn ∈ Aixn, Sixn ∈ X and limn→∞ ρ(Aixn, Sixn) =
0 for fixed i ∈ N , where α = lim sup or lim inf.

Remark 2.12. If Ai = A and Si = S are single valued mappings, then Definition 2.11 reduces
to those of Sahu et al. [11].

Example 2.13. Let X = [0, 1] with ρ(x, y) = |x − y| and A,S are self mappings of X defined
as follows:

Ax =
1

1 + x
and Sx =

2
x+ 2

for all x ∈ [0, 1].

Now the sequence {xn} in X is defined as xn = 1
n , n ∈ N ,. Then we have

lim
n→∞

Sxn = lim
n→∞

2
1/n+ 2

= 1

and
lim

n→∞
Axn = lim

n→∞

2
1 + 1/n

= 1.

Now,

|SAxn − Sxn| →
1
3

and |AAxn −Axn| →
1
2

as n→∞.

Thus, we have
lim

n→∞
|SAxn − Sxn| < lim

n→∞
|AAxn −Axn|.

Hence {A,S} is S-intimate.

3 Main Results

Theorem 3.1. Let (X, ρ) be a K-metric space. Let {Ai}i∈N : X → P (X) and {Si}i∈N : X → X
be two sequences of multivalued and single valued mappings respectively such that the following
conditions hold:

(i)

Aix ⊂ Sj(X) and Ajx ⊂ Si(X), for all x ∈ X; i, j ∈ N, (3.1)

where i is even when j is odd and i is odd when j is even,

(ii)

H(Aix,Ajy) ≤ ψ
(

max
{
ρ(Six, Sjy), (3.2)

D(Aix, Six) +D(Ajy, Sjx)

2
,
D(Aix, Sjy) +D(Ajy, Six)

2

})
for all x, y ∈ X and ψ is defined as Definition 2.5,

(iii)

orbit O(Ai, Aj , Si, Sj , x0) is regular and for fixed i ∈ N (3.3)

Si(X) is (Ai, Aj , Si, Sj , x0)−orbitally K-complete,

(iv)

the pairs {Ai, Si} and {Aj , Sj}are Si and Sj − intimate respectively. (3.4)

Then there exists a unique point z in X such that

z = Siz = Sjz ∈ Aiz ∩Ajz for i, j ∈ N.
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Proof. Let for x0 ∈ X and fixed i, j ∈ N , there exists x1 ∈ X such that y1 = Sjx1 ∈ Aix0 and
for x1 ∈ X , there exists x2 ∈ X such that y2 = Six2 ∈ Ajx1. Thus continuing this process, there
exist two sequences {xn} and {yn} in X such that

y2n+1 = Sjx2n+1 ∈ Aix2n

y2n+2 = Six2n+2 ∈ Ajx2n+1

for n = 0, 1, 2, . . . and fixed i, j ∈ N , which is possible by virtue of (3.1). If x0 ∈ X is such that

ρ(y2, y1) ≤ H(Ajx1, Aix0) < ψ(u0).

Then we shall show that the sequence {yn} generated in X is a Cauchy sequence. Now for this,

ρ(y3, y2) ≤ H(Aix2, Ajx1)

≤ ψ
(

max
{
ρ(Six2, Sjx1),

D(Aix2, Six2) +D(Ajx1, Sjx1)

2
D(Aix2, Sjx1) +D(Ajx1, Six2)

2

})
≤ ψ

(
max

{
ρ(y2, y1),

ρ(y3, y2) + ρ(y2, y1)

2
,
ρ(y3, y1)

2

})
≤ ψ

(
max

{
ρ(y2, y1),

ρ(y3, y2) + ρ(y2, y1)

2
,
ρ(y3, y2) + ρ(y2, y1)

2

})
≤ ψ

(
max

{
ρ(y2, y1), ρ(y3, y2)

})
.

Suppose that ρ(y3, y2) > ρ(y2, y1) in above inequality, then we obtain

ρ(y3, y2) ≤ ψ(ρ(y3, y2)),

which is a contradiction by definition of ψ. Therefore,

ρ(y3, y2) ≤ ψ(ρ(y2, y1)).

Again for,

ρ(y2n+1, y2n) ≤ H(Aix2n, Ajx2n−1)

≤ ψ
(

max
{
ρ(Six2n, Sjx2n−1),

D(Aix2n, Six2n) +D(Ajx2n−1, Sjx2n−1)

2
D(Aix2n, Sjx2n−1) +D(Ajx2n−1, Six2n)

2

})
≤ ψ

(
max

{
ρ(y2n, y2n−1),

ρ(y2n+1, y2n) + ρ(y2n, y2n−1)

2
,
ρ(y2n+1, y2n−1)

2

})
≤ ψ

(
max

{
ρ(y2n, y2n−1), ρ(y2n+1, y2n)

})
.

Suppose that ρ(y2n+1, y2n) > ρ(y2n, y2n−1) in above inequality, then we obtain

ρ(y2n+1, y2n) ≤ ψ(ρ(y2n+1, y2n))

which is a contradiction by definition of ψ.

Hence ρ(y2n+1, y2n) ≤ ψ(ρ(y2n, y2n−1)). So, in general ρ(yn+1, yn) ≤ ψ(ρ(yn, yn−1)) for all
n ≥ 1.

Consider un = ψnu0. Thus in view of Lemma 3.1, 3.2 of [2], {un} decreases and con-
verges to a fixed point of ψ, which is, θ by Definition 2.5. Since by the monotinicity of ψ and
H(Ajxi, Aix0) < ψ(u0), we obtain

ρ(y2, y1) < u1

and
ρ(y3, y2) ≤ ψ(ρ(y2, y1)) < ψu1 = u2.
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Similarly, one can show further that

ρ(yn+1, yn) < un;n = 1, 2, 3, . . .

letting n→∞, we obtain
lim

n→∞
ρ(yn+1, yn) = θ.

Now, for m > n,

ρ(yn, ym) ≤ ρ(yn, yn+1) + ρ(yn+1, yn+2) + · · ·+ ρ(ym−1, ym)

< un + un+1 + · · ·+ um−1

which tends to θ as n→∞.

Hence {yn} is a Cauchy sequence in X. As the subsequence {y2n} is in Si(X), it is also
Cauchy. Since Si(X) is {Ai, Aj , Si, x0}-orbitally K-complete, {y2n} converges to a point z in
Si(X). Let z = Siu for some u ∈ X and fixed i ∈ N . Therefore yn → z.

Now (3.2) implies that

D(z,Aiu) ≤ ρ(z, y2n+2) +D(y2n+2, Aiu)

≤ ρ(z, y2n+2) +H(Aiu,Ajx2n+1) ≤ ρ(z, y2n+2) + ψ
(

max
{
ρ(Siu, Sjx2n+1),

D(Aiu, Siu) +D(Ajx2n+1, Sjx2n+1)

2
,
D(Aiu, Sjx2n+1) +D(Ajx2n+1, Siu)

2

})
≤ ρ(z, y2n+2) + ψ

(
max

{
ρ(z, y2n+1),

D(Aiu, z) + ρ(y2n+2, y2n+1)

2
,

D(Aiu, y2n+1) + ρ(y2n+1, z)

2

})
letting n→∞, we get

D(z,Aiu) ≤ ψ
(

max
{

0,
D(Aiu, z)

2

})
D(z,Aiu) ≤ ψ

(D(Aiu, z)

2

)
,

which is a contradiction, so that z ∈ Aiu for fixed i ∈ N .

Since z ∈ Aiu ⊂ Sj(X) for fixed i, j ∈ N , then there exists a point v in X such that

z = Sjv ∈ Aiu.

Again (3.2) implies that

D(z,Ajv) ≤ H(Aiu,Ajv)

≤ ψ
(

max
{
ρ(Siu, Sjv),

D(Aiu, Siu) +D(Ajv, Sjv)

2
,

D(Aiu, Sjv) +D(Ajv, Siu)

2

})
≤ ψ

(
max

{
0,
D(Ajv, z)

2

})
≤ ψ

(D(Ajv, z)

2

)
,

which is a contradiction, so that z ∈ Ajv.

Thus, we obtained z = Siu ∈ Aiu and z = Sjv ∈ Ajv. Since {Ai, Si} is Si−intimate, then

ρ(Siz, z) ≤ D(Aiz, z). (3.5)
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Now from (3.2)

D(z,Aiz) ≤ H(Ajv,Aiz) = H(Aiz,Ajv)

≤ ψ
(

max
{
ρ(Siz, Sjv),

D(Aiz, Siz) +D(Ajv, Sjv)

2
,
D(Aiz, Sjv) +D(Ajv, Siz)

2

})
≤ ψ

(
max

{
ρ(z, Siz),

D(Aiz, Siz)

2
,
D(Aiz, z) + ρ(z, Siz)

2

})
≤ ψ

(
max

{
D(z,Aiz),

D(Aiz, z) + ρ(z, Siz)

2
,
D(Aiz, z) + ρ(z, Siz)

2

})
≤ ψ

(
D(z,Aiz)

)
which is a contradiction, therefore z ∈ Aiz. From (3.5) z = Siz ∈ Aiz.

Similarly, when the pair {Aj , Sj} is Sj−intimate. We obtain z = Sjz ∈ Ajz. Therefore,

z = Siz = Sjz ∈ Aiz ∩Ajz for all i, j ∈ N.

UNIQUENESS. Let we consider w as another common fixed point of Ai, Aj , Si and Sj such
that z 6= w. Therefore,

ρ(z, w) ≤ H(Aiz,Ajw)

≤ ψ
(

max
{
ρ(Siz, Sjw),

D(Aiz, Siz) +D(Ajw, Sjw)

2
,

D(Aiz, Sjw) +D(Ajw, Siz)

2

})
≤ ψ

(
max

{
ρ(z, w), 0,

ρ(z, w) + ρ(z, w)

2

})
≤ ψ(ρ(z, w))

which is a contradiction. Therefore, z = w.

Remark 3.2. In light of above fact, generalization and improvement of the results of Fisher [3],
Hadzic [4], Jungck [5], Kang et al. [8], Sessa et al. [12] can be obtained in abstract spaces from
our Theorem 3.1 by only simple modification in condition (3.2).

Remark 3.3. It is well known that if A is multivalued mapping from X into C(X), then for every
x, y ∈ X and u ∈ Ax, there exists a point v ∈ Ay such that

ρ(u, v) ≤ H(Ax,Ay).

Hence, if Ai and Aj are multivalued mappings form X into C(X) then orbital regularity in
Theorem 3.1 can be dropped.

Corollary 3.4. Let (X, ρ) be a K-metric space. Let A,B : X → P (X) and S, T : X → X such
that the following conditions hold:

(i)

Ax ⊂ T (X) and Bx ⊂ S(X) for all x ∈ X, (3.6)

(ii)

H(Ax,By) ≤ ψ
(

max
{
ρ(Sx, Ty),

D(Ax, Sx) +D(By, Ty)

2
,

D(Ax, Ty) +D(By, Sx)

2

})
(3.7)

for all x, y ∈ X ,
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(iii)

orbit O(A,B, S, T, x0) is regular and S(X) is {A,B, S, T, x0)− orbitally K-complete, (3.8)

(iv)

the pairs {A,S} and {B, T} are S and T-intimate respectively. (3.9)

Then there exists a point z in X such that

z = Sz = Tz ∈ Az ∩Bz.

Proof. If we consider
Ai = A,Aj = B,Si = S and Sj = T.

Then Corollary 3.4 follows from Theorem 3.1.

Corollary 3.5. Let A, B, S and T be self mappings of K-metric space (X, ρ) such that the follow-
ing conditions hold:

(i)

A(X) ⊂ T (X) and B(X) ⊂ S(X) for all x ∈ X, (3.10)

(ii)

ρ(Ax,By) ≤ ψρ(Sx, Ty) for all x, y ∈ X, (3.11)

(iii)

S(X) is K-complete, (3.12)

(iv)

the pairs {A,S} and {B, T} are S and T-intimate respectively. (3.13)

Then there exists a point z in X such that z = Sz = Tz = Az = Bz.

Proof. If we define

max
{
ρ(Sx, Ty),

ρ(Ax, Sx) + ρ(By, Ty)

2
,
ρ(Ax, Ty) + ρ(By, Tx)

2

}
= ρ(Sx, Ty)

in corollary 3.4. Then we have the corollary 3.5.

Remark 3.6. If we consider A = B and S = T in corollary 3.5. Then the Theorem 1 of Som
[13] is same as our corollary 3.5.

Remark 3.7. If we take S = T = I (identity map) then the Theorem 3 of Som [13] is same as
our corollary 3.5.

Remark 3.8. In case A = B and S = T = I (identity map). Then Theorem 4.1 of [2] is same as
our corollary 3.5.

Theorem 3.9. Let (X, ρ) be a K-metric space. Let {Ai}i∈N : X → P (X) and {Si}i∈N : X → X
be two sequences of mappings such that the conditions (3.1), (3.3), (3.4) are satisfied and

H(Aix,Ajy) ≤ ψ
(√{

max
{
ρ2(Six, Sjy), (3.14)

D(Six,Aix).D(Sjy,Ajy), D(Six,Ajy).D(Sjy,Aix),

D(Six,Aix).D(Sjy,Aix), D(Six,Ajy).D(Sjy,Ajy)
}})

for all x, y ∈ X . Then there exists a point z in X such that

z = Siz = Sjz ∈ Aiz ∩Ajz.

Proof. If we define max{t21, t1t2, 0, 0, (t1+t2).t2} = t21 or max{0, 0, 0, t21, 0} = t21 or max{t21, 0, t21, 0, t1t2}
= t21, where t1, t2 and t1 + t2 < u0.

Then Theorem 3.9 can be obtained by proceeding in the same fashion as in Theorem 3.1.
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