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Abstract. The aim of this paper is to present new arithmetic progressions among squares, i.e.,
more than three squares. Moreover we will introduce arithmetic progression of higher power.

1 Introduction

Referring to my research [3] it is possible to produce triplets of the type (a, b, c) of positive
integers so that a2, b?, ¢? are in Arithmetic Progression (AP) such that : b*> — a?> = ¢ — b.

In 2008 [2] Peth’o and Ziegler have found an arithmetic progression of length 4 that lies on
some curve X> — dY? = m and they have found an arithmetic progression such that there does
not exist such a curve.

In 2010 [1] Enrique Gonz and J. ADorn Steuding gave a partial answer to this question: Let d
be a squarefree integer. Does there exist four squares in arithmetic progression over Q(v/d) de-
pending on the value of d? In the affirmative case, they construct explicit arithmetic progressions
consisting of four squares over Q(v/d).

It is well known that the right triangles whose sides are integers X, Y, Z(a Pythagorean triple)
formed Arithmetical Progressions (AP) among three squares such that the following equation
holds:

(X+Y) 4+ (X -Y)? =277

For example the Pythagorean triple (3,4, 5) represents the AP (1,5,7),i.e. 7* + 12 = 2(5)?,
or more familiars 52 — 12 = 72 — 52, in fact equation (X +Y)? + (X — Y)? = 222 has infinitely
many solutions, and chains with common difference 24.

2 The Extension of (X +Y)?>+ (X —Y)? =227

We begin with the following important extension of (X +Y)? + (X — Y )2 =222

Theorem 2.1. With slight modification of (X +Y)? + (X — Y)? = 222, we got the following
new equation:

(X+Y)P P+ (X Y+ (- X+Y) +(-X-Y) =42

Proof. Assume that X = 2mn, Y = m? —n?, and Z = m? + n?, then by direct substitutions we
got (2mn +m? — n2)2 +(2mn — (m? —n?))? + (—2mn +m?2—n?)?+ (=2mn — (m?—n?))? =
4(m? +n?)? =422

We show the first sixteen consecutive AP of this equation in the following table , for ex-
amples: i) 72 + 12 + (=7)% + (=1)2 = 100 = 4(25) = 4(5)%,i.e. 7> + (=7)> — (5)> — (5)> =
(5)24(5)>—(—1)2—12 ;so we have the AP (-7, —1,1,5,7). ii) 137>+ 7>+ (~7)>+(—137)> =
37636 = 4(9409) = 4(97)? ,i.e. 137%+ (—137)%? — (97)> — (97)? = (97)> 4+ (97)* — (-7)> - 7*
, so we have the AP (—137,-7,7,97,137).
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(X[ Y| Z [ | XY | XY | (XY | 42) |
314]5s 7 1 1 7 4(5)
512113 17 7 7 17 | 4(13)
7 [24125] 31 17 17 31 | 4025)
8 1517 ] 23 7 7 23 | 4(17)
9 [ 40 | 41| 49 31 31 49 | 441)
1mleo|e61| 71 49 -49 71| 461)
1213537 47 23 23 47 | 437)
13]84]8 | 97 71 71 97 | 4(85)
166365 79 47 47 79 | 4(65)
20 [ 21 (29| 41 1 -1 41 | 4029)
28 [ 4553 73 17 17 73| 4(53)
33(56]65]| 89 23 23 89 | 4(65)
36 |77 ]85 | 113 41 41 113 | 4(85)
39 (80 [ 8 | 119 41 41 119 | 4(89)
48 [ 5573 103 7 7 103 | 4(73)
65| 72197 137 7 7 137 | 4(97)

Theorem 2.2. If X, Y, Z are the sides of right triangle then;
(X+Y+ 2P+ (X =Y+ 22+ (X +Y 22+ (X +Y + 2)> =82?

Proof. Assume that X = 2mn,Y = m? — n?, and Z = m? + n2. Then by direct substitutions
we got: (2mn +m? —n? +m? +n?)? + 2mn — m? +n> +m? +n?)> + 2mn +m? —n? —

m? —n?)? + (=2mn + m? — n? + m? + n?)? = 8(m? + n?)? = 87>

Table below shows the first sixteen AP of (X +Y +Z)? + (X - Y + Z)? + (X +Y — Z)* +
(-X4+Y+2)?=82%

| X | Y| Z | X+Y+2) | X-Y+2) | X+Y-2) | (X+Y+2) | 8(2) |

31475 12 4 2 6 8(5)
511213 30 6 4 20 8(13)
7 12425 56 8 6 42 8(25)
8 |15 17 40 10 6 24 8(17)
9 |40 | 41 90 10 8 72 8(41)
11| 60 | 61 132 12 10 110 8(61)
1235 ] 37 84 14 10 60 8(37)
13 | 84 | 85 182 14 12 156 8(85)
16 | 63 | 65 144 18 14 112 8(65)
20 | 21 | 29 70 28 12 30 8(29)
28 [ 45 [ 53 126 36 20 70 8(53)
33|56 |65 154 42 24 88 8(65)
36 | 77 | 85 198 44 28 126 8(85)
39 | 80 | 89 208 48 30 130 8(89)
48 [ 55 | 73 176 66 30 80 8(73)
65 | 72 | 97 234 90 40 104 8(97)

For example the Pythagorean triple (3,4, 5) represents the AP (2,4,6,12),i.e.2> +4> + 6 +
122 = 8(5)%, hence: 122 + 6% — 52 — 52 — 52 — 52 = 52 + 52 4+ 52 4 52 — 22 — 42 if we cancel 2
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from the AP (2,4,6,12) , then we get (1,2,3,6) , which is of course AP (12 + 22 + 32 + 6% =
2(5)?) , this example has new ideas that maybe provoke for more new results which is open for
Mathematicians . Table above shows the first sixteen AP of equation:

(XY + 22+ (X =Y+ 22+ (X +Y = 2+ (-X +Y + 2)* =82

Theorem 2.3. If X, Y, Z are the sides of right triangle then; (X +Y )2+( Y+2Z)2+(X+
Y =224 (—X4+Y 4+ 22+ (- X Y =2+ (- X +Y - Z2)*+(X 2P+ (-X-Y+2)* =
162>

Proof. Assume thatX = 2mn,Y = m? —n?, and Z = m? + n?, then by direct substitutions we

got: (2mn +m? —n? +m? +n?)? + 2mn — m? +n? +m? +n?)% + 2mn +m? —n? —m? —
n2)? + (=2mn+m? —n?+m? +n?)? + (=2mn —m? +n? —m? —n?)? + (=2mn+m? —n? —

m?—n?)2+(2mn—m24+n?—m?—n?)?+(=2mn—m>+n’+m?+n?)? = 16(m*+n?)> = 162°.

Table below shows selected solutions of equation : (X +Y +2)?+ (X -Y +2)*+ (X +Y —
2P+ (—X4Y 42+ (X =Y =24+ (=X +Y - 2> +(X =Y -2+ (=X -Y +2)* = 1622
For the following tabular: t; = (X+Y +2),t, = (X-Y+2),t3 = (X+Y —2),t4 = (- X+
Y42),ts = (~X—Y=2),tg = (—X+Y ~2Z),t; = (X=Y =2),tg = (—X-Y+2),to = 162

|

x| yl[zlu [ttt [ttt 6] t |
3lafs[2fa[2]6 124 6 [2]165
5[12[13]30 [ 6] 4|20 30| -6 20 -4 |16(13)
7 (242556 8] 6| 42| 56| 8| 42616025
8 6
9 8

15117 | 40 | 10 24 | -40 | -10 | -24 | -6 | 16(17)
40 | 41| 90 | 10 72 | 90 | -10 | -72 | -8 | 16(41)
60 | 61 | 132 | 12 | 10 | 110 | -132 | -12 | -110 | -10 | 16(61)
12 |35 |37 | 84 | 14| 10| 60 | -84 | -14 | -60 | -10 | 16(37)
13 | 84 | 85 | 182 | 14 | 12 | 156 | -182 | -14 | -156 | -12 | 16(85)
16 | 63 | 65 | 144 | 18 | 14 | 112 | -144 | -18 | -112 | -14 | 16(65)
20121 (29| 70 | 28| 12| 30 | -70 | -28 | -30 | -12 | 16(29)
28 1 45|53 1126 |36 | 20| 70 | -126 | -36 | -70 | -20 | 16(53)
33 (56| 65| 154 | 42 | 24 | 88 | -154 | -42 | -88 | -24 | 16(65)
36 | 77 | 85 | 198 | 44 | 28 | 126 | -198 | -44 | -126 | -28 | 16(85)
39 1 80 | 89 | 208 | 48 | 30 | 130 | -208 | -48 | -130 | -30 | 16(89)
48 | 55|73 | 176 | 66 | 30 | 80 | -176 | -66 | -80 | -30 | 16(73)
65| 72|97 | 234 | 90 | 40 | 104 | -234 | -90 | -104 | -40 | 16(97)

—_
p—

It seems that equation 4 is the general form of the previous equations, so we may plug some
variables by zero to get them.

Theorem 2.4. If X, Y, Z are the sides of right triangle then;
XE4+Yt+ 28 =2w?
Proof. Let m, n integers, with (m,n) = 1, then the solution of equation X8 + Y?® + 78 = 2%

X =2mn,Y =m?> —n?, Z=m>+n?,and W = (m* + 2m>n + 2m?n? — 2mn> + n*)(m* —
2m3n + 2m?n? + 2mn> + n*) It can be proved by direct substitution .

Table below shows selected solutions of equation X3 + Y8 + 78 = 212
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(XY |z] (X)"8 \ ()8 (Z)"8 \ 2WA2
31415 6,561 65,536 390,625 2(481)"2
511213 390,625 429,981,696 815,730,721 2(24961)"2
7 |24 ]25] 5,764,801 110,075,314,176 152,587,890,625 2(362401)"2
8 |15 17| 16,777.216 2,562,890,625 6,975,757,441 2(69121)"2
9 |40 | 41 | 43,046,721 6,553,600,000,000 7,984,925,229,121 2(2696161)2
11|60 ] 61| 214,358,881 | 167,961,600,000,000 | 191,707,312,997,281 | 2(13410241)*2
12 [ 35|37 | 429,981,696 2,251,875,390,625 3,512,479,453,921 2(1697761)2
13 | 84 | 85 | 815,730,721 | 2,478,758,911,082,500 | 2,724,905,250,390,620 | 2(51008161)*2
16 | 63 | 65 | 4,294,967,296 | 248,155,780,267,521 | 318,644,812,890,625 | 2(16834561)"2

Conclusion: From the equations above we can conclude such a sequence of patterns that
began from equation (X + Y)? + (X — Y)? = 22? with 222, continuo in equation (X + Y)? +
(X =Y+ (-X +Y)?+ (-X —Y)? = 42 with 472, same of equation (X +Y + Z)> +
(X-Y+2ZP?+(X4+Y -2+ (—X+Y + Z)*> = 82* with 872, and 162 with equation
(X+Y+ 2P+ (X Y42+ (X+Y -2+ (- X+Y+ 2+ (- X -Y -2 + (- X +
Y-Z)P+(X-Y -2)P2+(-X -Y + Z)* = 1622, so what about 3272, 6472, and so on.
Are there common pattern connected AP with 2nZ2?
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