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Abstract. In this paper we discuss some growth rates of entire functions of several complex
variables on the basis of the definition of relative order and relative lower order of entire functions
of several complex variables as introduced by Dutta in [4].

1 Introduction, Definitions and Notations

Let f be an entire function of two complex variables holomorphic in the closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}

and Mf (r1, r2) = max {|f (z1, z2)| : |zi| ≤ ri, i = 1, 2}. Then in view of maximum principal
and Hartogs theorem {[7], p. 2, p. 51}, Mf (r1, r2) is an increasing functions of r1, r2.

The following definition is well known:

Definition 1.1. {[7], p. 339, (see also [1])} The order v2ρf and the lower order v2λf of an entire
function f of two complex variables are defined as

v2ρf = lim sup
r1,r2→∞

log[2]Mf (r1, r2)

log (r1r2)
and v2λf = lim inf

r1,r2→∞

log[2]Mf (r1, r2)

log (r1r2)
,

where log[k] x = log
(

log[k−1] x
)

, k = 1, 2, 3, ... and log[0] x = x.

If we consider the above definition for single variable, then the definition coincides with
the classical definition of order (see [13]) which is as follows:

Definition 1.2. [13] The order ρf and the lower order λf of an entire function f are defined in
the following way:

ρf = lim sup
r→∞

log[2]Mf (r)

log r
and λf = lim inf

r→∞

log[2]Mf (r)

log r
,

where Mf (r) = max {|f (z)| : |z| = r}.

If f is non-constant then Mf (r) is strictly increasing and continuous, and its inverse
Mf
−1 : (|f (0)| ,∞) → (0,∞) exists and is such that lim

s→∞
Mf
−1 (s) = ∞. Bernal {[2], [3]}

introduced the definition of relative order of g with respect to f , denoted by ρf (g) as follows :

ρg (f) = inf {µ > 0 : Mf (r) < Mg (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)

log r
.

The definition coincides with the classical one [13] if g (z) = exp z.
During the past decades, several authors ( see [5],[8],[9],[10],[11],[12]) made close in-

vestigations on the properties of relative order of entire functions of single variable. In the case
of relative order, it was then natural for Banerjee and Dutta [4] to define the relative order of
entire functions of two complex variables as follows:



RELATIVE ORDER CONCERNING ENTIRE FUNCTIONS ... 99

Definition 1.3. [4] The relative order between two entire functions of two complex variables
denoted by v2ρg (f) is defined as:

v2ρg (f) = inf
{
µ > 0 : Mf (r1, r2) < Mg (r

µ
1 , r

µ
2 ) ; r1 ≥ R (µ) , r2 ≥ R (µ)

}
= lim sup

r1,r2→∞

logM−1
g Mf (r1, r2)

log (r1r2)

where f and g are entire functions holomorphic in the closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}

and the definition coincides with Definition 1.1 {see [4]} if g (z) = exp (z1z2) .

Extending this notion, Dutta [6] introduced the idea of relative order of entire functions
of several complex variables in the following way:

Definition 1.4. [6] Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two entire functions of n com-
plex variables z1, z2, ..., zn with maximum modulus functions
Mf (r1, r2, ..., rn) and Mg (r1, r2, ..., rn) respectively then the relative order of f with respect
to g, denoted by vnρg (f) is defined by

vnρg (f) = inf
{
µ > 0 : Mf (r1, r2, ..., rn) < Mg (r

µ
1 , r

µ
2 , ..., r

µ
n) ;

for ri ≥ R (µ) , i = 1, 2, ..., n} .

The above definition can equivalently be written as

vnρg (f) = lim sup
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
.

Similarly, one can define the relative lower order of f with respect to g denoted by vnλg (f) as
follows :

vnλg (f) = lim inf
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
.

If we consider g(z1, z2, ..., zn) = exp (z1z2...zn) , then Definition 1.4 reduces to the
following classical definition of order and lower order in connection with several complex vari-
ables:

Definition 1.5. The order vnρf and the lower order vnλf of an entire function f of several com-
plex variables are defined as

vnρf = lim sup
r1,r2,...,rn→∞

log[2]Mf (r1, r2, ..., rn)

log (r1r2...rn)
and

vnλf = lim inf
r1,r2,...,rn→∞

log[2]Mf (r1, r2, ..., rn)

log (r1r2...rn)
.

Also an entire function of several complex variables for which order and lower order are
the same is said to be of regular growth. The function exp (z1z2...zn) is an example of regular
growth of entire function of several complex variables. Further the functions which are not of
regular growth are said to be of irregular growth.

In this paper we wish to prove some results related to the growth properties of composite
entire functions of several complex variables on the basis of relative order and relative lower
order of entire functions of several complex variables. We do not explain the standard definitions
and notations in the theory of entire function of two complex variables as those are available in
[7].

2 Main Results

In this section we present the main results of the paper.

Theorem 2.1. Let f and g be any two entire functions of several complex variables. Then

vnλf

vnρg
≤ vnλg (f) ≤ min

{
vnλf

vnλg
,
vnρf

vnρg

}
≤ max

{
vnλf

vnλg
,
vnρf

vnρg

}
≤ vnρg (f) ≤

vnρf

vnλg
.
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Proof. From the definitions of vnρf and vnλf we have for all sufficiently large values of
r1, r2, ..., rn that

Mf (r1, r2, ..., rn) ≤ exp[2] {(vnρf + ε) log (r1r2...rn)} , (2.1)

Mf (r1, r2, ..., rn) ≥ exp[2] {(vnλf − ε) log (r1r2...rn)} (2.2)

and also for a sequence of values of r1, r2, ..., rn tending to infinity, we get that

Mf (r1, r2, ..., rn) ≥ exp[2] {(vnρf − ε) log (r1r2...rn)} , (2.3)

Mf (r1, r2, ..., rn) ≤ exp[2] {(vnλf + ε) log (r1r2...rn)} . (2.4)

Similarly from the definitions of vnρg and vnλg, it follows for all sufficiently large values of
r1, r2, ..., rn that

Mg (r1, r2, ..., rn) ≤ exp[2] {(vnρg + ε) log (r1r2...rn)}

i.e., (r1r2...rn) ≤ M−1
g

[
exp[2] {(vnρg + ε) log (r1r2...rn)}

]
i.e., M−1

g (r1, r2, ..., rn) ≥ exp

[
log[2] (r1r2...rn)

(vnρg + ε)

]
, (2.5)

Mg (r1, r2, ..., rn) ≥ exp[2] {(vnλg − ε) log (r1r2...rn)}

i.e., (r1r2...rn) ≥ M−1
g

[
exp[2] {(vnλg − ε) log (r1r2...rn)}

]
i.e., M−1

g (r1, r2, ..., rn) ≤ exp

[
log[2] (r1r2...rn)

(vnλg − ε)

]
(2.6)

and for a sequence of values of r1, r2, ..., rn tending to infinity we obtain that

Mg (r1, r2, ..., rn) ≥ exp[2] {(vnρg − ε) log (r1r2...rn)}

i.e., (r1r2...rn) ≥ M−1
g

[
exp[2] {(vnρg − ε) log (r1r2...rn)}

]
i.e., M−1

g (r1, r2, ..., rn) ≤ exp

[
log[2] (r1r2...rn)

(vnρg − ε)

]
, (2.7)

Mg (r1, r2, ..., rn) ≤ exp[2] {(vnλg + ε) log (r1r2...rn)}

i.e., (r1r2...rn) ≤ M−1
g

[
exp[2] {(vnλg + ε) log (r1r2...rn)}

]
i.e., M−1

g (r1, r2, ..., rn) ≥ exp

[
log[2] (r1r2...rn)

(vnλg + ε)

]
. (2.8)

Now from (2.3) and in view of (2.5) , we get for a sequence of values of r1, r2, ..., rn tending to
infinity that

logM−1
g Mf (r1, r2, ..., rn) ≥ logM−1

g

[
exp[2] {(vnρf − ε) log (r1r2...rn)}

]
i.e., logM−1

g Mf (r1, r2, ..., rn) ≥ log exp

[
log[2] exp[2] {(vnρf − ε) log (r1r2...rn)}

(vnρg + ε)

]

i.e., logM−1
g Mf (r1, r2, ..., rn) ≥ (vnρf − ε)

(vnρg + ε)
log (r1r2...rn)

i.e.,
logM−1

g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≥ (vnρf − ε)

(vnρg + ε)
.

As ε (> 0) is arbitrary, it follows that

lim sup
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≥ vnρf

vnρg

i.e., vnρg (f) ≥ vnρf

vnρg
. (2.9)
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Analogously from (2.2) and in view of (2.8) , it follows for a sequence of values of r1, r2, ..., rn
tending to infinity that

logM−1
g Mf (r1, r2, ..., rn) ≥ logM−1

g

[
exp[2] {(vnλf − ε) log (r1r2...rn)}

]
i.e., logM−1

g Mf (r1, r2, ..., rn) ≥ log exp

[
log[2] exp[2] {(vnλf − ε) log (r1r2...rn)}

(vnλg + ε)

]

i.e., logM−1
g Mf (r1, r2, ..., rn) ≥ (vnλf − ε)

(vnλg + ε)
log (r1r2...rn)

i.e.,
logM−1

g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≥ (vnλf − ε)

(vnλg + ε)
.

Since ε (> 0) is arbitrary, we get from above that

lim sup
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≥ vnλf

vnλg

i.e., vnρg (f) ≥ vnλf

vnλg
. (2.10)

Again in view of (2.6) , we have from (2.1) for all sufficiently large values of r1, r2, ..., rn that

logM−1
g Mf (r1, r2, ..., rn) ≤ logM−1

g

[
exp[2] {(vnρf + ε) log (r1r2...rn)}

]
i.e., logM−1

g Mf (r1, r2, ..., rn) ≤ log exp

[
log[2] exp[2] {(vnρf + ε) log (r1r2...rn)}

(vnλg − ε)

]

i.e., logM−1
g Mf (r1, r2, ..., rn) ≤ (vnρf + ε)

(vnλg − ε)
log (r1r2...rn)

i.e.,
logM−1

g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≤ (vnρf + ε)

(vnλg − ε)
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≤ vnρf

vnλg

i.e., ρg (f) ≤ vnρf

vnλg
. (2.11)

Again from (2.2) and in view of (2.5) , we get for all sufficiently large values of r1, r2, ..., rn that

logM−1
g Mf (r1, r2, ..., rn) ≥ logM−1

g

[
exp[2] {(vnλf − ε) log (r1r2...rn)}

]
i.e., logM−1

g Mf (r1, r2, ..., rn) ≥ log exp

[
log[2] exp[2] {(vnλf − ε) log (r1r2...rn)}

(vnρg + ε)

]

i.e., logM−1
g Mf (r1, r2, ..., rn) ≥ (vnλf − ε)

(vnρg + ε)
log (r1r2...rn)

i.e.,
logM−1

g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≥ (vnλf − ε)

(vnρg + ε)
.

As ε (> 0) is arbitrary, it follows from above that

lim inf
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≥ vnλf

vnρg

i.e., vnλg (f) ≥ vnλf

vnρg
. (2.12)
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Also in view of (2.7) , we get from (2.1) for a sequence of values of r1, r2, ..., rn tending to
infinity that

logM−1
g Mf (r1, r2, ..., rn) ≤ logM−1

g

[
exp[2] {(vnρf + ε) log (r1r2...rn)}

]
i.e., logM−1

g Mf (r1, r2, ..., rn) ≤ log exp

[
log[2] exp[2] {(vnρf + ε) log (r1r2...rn)}

(vnρg − ε)

]

i.e., logM−1
g Mf (r1, r2, ..., rn) ≤ (vnρf + ε)

(vnρg − ε)
log (r1r2...rn)

i.e.,
logM−1

g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≤ (vnρf + ε)

(vnρg − ε)
.

Since ε (> 0) is arbitrary, we get from above that

lim inf
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≤ vnρf

vnρg

i.e., vnλg (f) ≤ vnρf

vnρg
. (2.13)

Similarly from (2.4) and in view of (2.6) , it follows for a sequence of values of r1, r2, ..., rn
tending to infinity that

logM−1
g Mf (r1, r2, ..., rn) ≤ logM−1

g

[
exp[2] {(vnλf + ε) log (r1r2...rn)}

]
i.e., logM−1

g Mf (r1, r2, ..., rn) ≤ log exp

[
log[2] exp[2] {(vnλf + ε) log (r1r2...rn)}

(vnλg − ε)

]

i.e., logM−1
g Mf (r1, r2, ..., rn) ≤ (vnλf + ε)

(vnλg − ε)
log (r1r2...rn)

i.e.,
logM−1

g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≤ (vnλf + ε)

(vnλg − ε)
.

As ε (> 0) is arbitrary, we obtain from above that

lim inf
r1,r2,...,rn→∞

logM−1
g Mf (r1, r2, ..., rn)

log (r1r2...rn)
≤ vnλf

v2λg

i.e., vnλg (f) ≤ vnλf

vnλg
. (2.14)

Thus the theorem follows from (2.9) , (2.10) , (2.11) , (2.12) , (2.13) and (2.14) . 2

Corollary 2.2. Let f and g be any two entire functions of several complex variables such that g
is of regular growth. Then

vnλg (f) =
vnλf

vnρg
and vnρg (f) =

vnρf

vnρg
.

In addition, if vnρf = vnρg, then

vnρg (f) = vnλf (g) = 1 .

Corollary 2.3. Let f and g be any two entire functions of several complex variables with regular
growth respectively . Then

vnλg (f) = vnρg (f) =
vnρf

vnρg
.

Corollary 2.4. Let f and g be any two entire functions of several complex variables with regular
growth respectively. Also suppose that vnρf = vnρg. Then

vnλg (f) = vnρg (f) = vnλf (g) = vnρf (g) = 1 .
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Corollary 2.5. Let f and g be any two entire functions of several complex variables with regular
growth respectively. Then

vnρg (f) · vnρf (g) = vnλg (f) · vnλf (g) = 1 .

Corollary 2.6. Let f and g be any two entire functions of several complex variables such that
either f is not of regular growth or g is not of regular growth. Then

vnλg (f) · vnλf (g) < 1 < vnρg (f) · vnρf (g) .

Corollary 2.7. Let f and g be any two entire functions of several complex variables. Then

(i) vnλg (f) = ∞ when vnρg = 0 ,

(ii) vnρg (f) = ∞ when vnλg = 0 ,

(iii) vnλg (f) = 0 when vnρg =∞

and
(iv) vnρg (f) = 0 when vnλg =∞ .

Corollary 2.8. Let f and g be any two entire functions of several complex variables. Then

(i) vnρg (f) = 0 when vnρf = 0 ,

(ii) vnλg (f) = 0 when vnλf = 0 ,

(iii) vnρg (f) = ∞ when vnρf =∞

and
(iv) vnλg (f) =∞ when vnλf =∞ .

Theorem 2.9. Let f, g and h be any three entire functions of several complex variables such that
vnρh (f) <∞ and vnλh(f ◦ g) =∞. Then

lim
r1,r2,...,rn→∞

logM−1
h Mf◦g(r1, r2, ..., rn)

logM−1
h Mf (r1, r2, ..., rn)

=∞ .

Proof. Let us suppose that the conclusion of the theorem do not hold. Then we can find a
constant β > 0 such that for a sequence of values of r1, r2, ..., rn tending to infinity,

logM−1
h Mf◦g(r1, r2, ..., rn) ≤ β logM−1

h Mf (r1, r2, ..., rn) . (2.15)

Again from the definition of v2ρh (f) , it follows for all sufficiently large values of r1, r2, ..., rn
that

logM−1
h Mf (r1, r2, ..., rn) ≤ (vnρh (f) + ε) log (r1r2...rn) . (2.16)

Thus from (2.15) and (2.16) , we have for a sequence of values of r1, r2, ..., rn tending to infinity
that

logM−1
h Mf◦g(r1, r2, ..., rn) ≤ β (vnρh (f) + ε) log (r1r2...rn)

i.e.,
logM−1

h Mf◦g(r1, r2, ..., rn)

log (r1r2...rn)
≤ β (vnρh (f) + ε) log (r1r2...rn)

log (r1r2...rn)

i.e., lim inf
r1,r2,...,rn→∞

logM−1
h Mf◦g(r1, r2, ..., rn)

log (r1r2...rn)
= vnλh(f ◦ g) <∞ .

This is a contradiction.
Thus the theorem follows. 2

Remark 2.10. Theorem 2.9 is also valid with “limit superior” instead of “limit” if vnλh(f ◦g) =
∞ is replaced by vnρh(f ◦ g) =∞ and the other conditions remain the same.

Corollary 2.11. Under the assumptions of Theorem 2.9 and Remark 2.10,

lim
r1,r2,...,rn→∞

M−1
h Mf◦g(r1, r2, ..., rn)

M−1
h Mf (r1, r2, ..., rn)

=∞ and lim sup
r1,r2,...,rn→∞

M−1
h Mf◦g(r1, r2, ..., rn)

M−1
h Mf (r1, r2, ..., rn)

=∞

respectively hold.
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The proof is omitted.
Analogously one may also state the following theorem, remark and corollary without

their proofs as those may be carried out in the line of Remark 2.10, Theorem 2.9 and Corollary
2.11 respectively.

Theorem 2.12. Let f, g and h be any three entire functions of several complex variables with
vnρh(g) <∞ and vnρh(f ◦ g) =∞. Then

lim sup
r1,r2,...,rn→∞

logM−1
h Mf◦g(r1, r2, ..., rn)

logM−1
h Mg(r1, r2, ..., rn)

=∞ .

Remark 2.13. Theorem 2.12 is also valid with “limit” instead of “limit superior” if vnρh (f ◦ g) =
∞ is replaced by vnλh (f ◦ g) =∞ and the other conditions remain the same.

Corollary 2.14. Under the assumptions of Theorem 2.12 and Remark 2.13,

lim sup
r1,r2,...,rn→∞

M−1
h Mf◦g(r1, r2, ..., rn)

M−1
h Mg(r1, r2, ..., rn)

=∞ and lim
r1,r2,...,rn→∞

M−1
h Mf◦g(r1, r2, ..., rn)

M−1
h Mg(r1, r2, ..., rn)

=∞

respectively hold.

References
[1] A. K. Agarwal, On the properties of entire function of two complex variables, Canad. J.

Math. 20, 51–57 (1968).
[2] L. Bernal, Crecimiento relativo de funciones enteras.Contribución al estudio de las-

funciones enteras con índice exponencial finito,Doctoral Dissertation, University of
Seville,Spain (1984).

[3] L. Bernal, Orden relativo de crecimiento de funciones enteras, Collect. Math. 39, 209–229
(1988).

[4] D. Banerjee and R. K. Dutta, Relative order of entire functions of two complex vari-
ables,International J. of Math Sci & Engg. Appls.(IJMSEA) 1 (1),141–154 (2007).

[5] B. C. Chakraborty and C. Roy, Relative order of an entire function, J.Pure Math. 23, 151–
158 (2006).

[6] R. K. Dutta, Relative order of entire functions of several complex variables, Matematiqki
Vesnik 65 (2), 222-233 (2013).

[7] A. B. Fuks, Theory of analytical functions of several complex variables, Moscow (1963).
[8] S. Halvarsson, Growth properties of entire functions depending on a parameter, Annales

Polonici Mathematici 14 (1),71–96 (1996).
[9] C. O. Kiselman, Order and type as measure of growth for convex or entire functions,Proc.

Lond. Math. Soc. 66 (3), 152–186 (1993).
[10] C. O. Kiselman, Plurisubharmonic functions and potential theory in several complex vari-

able,a contribution to the book project,Development of Mathematics, 1950-2000,edited by
Hean- Paul Pier.

[11] B. K. Lahiri and D. Banerjee, A note on relative order of entire functions,Bull. Cal. Math.
Soc. 97 (3), 201–206 (2005).

[12] C. Roy, On the relative order and lower relative order of an entire function, Bull. Cal. Math.
Soc,102 (1), 17–26 (2010).

[13] E. C. Titchmarsh, The Theory of functions, 2nd ed. Oxford University Press,Oxford (1968).

Author information
Sanjib Kumar Datta, Department of Mathematics, University of Kalyani, P.O. Kalyani, Dist-Nadia,PIN-
741235, West Bengal, India.
E-mail: sanjib_kr_datta@yahoo.co.in

Tanmay Biswas, Rajbari, Rabindrapalli, R. N. Tagore Road, P.O. Krishnagar,Dist-Nadia,PIN- 741101, West
Bengal, India.
E-mail: tanmaybiswas_math@rediffmail.com

Debasmita Dutta, Mohanpara Nibedita Balika Vidyalaya (HIgh), P.o - Amrity, Block - English Bazar, Dist.-
District - Malda, PIN- 732208, West Bengal, India.
E-mail: debasmita.dut@gmail.com

Received: December 29, 2014.

Accepted: April 9, 2015


