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Abstract In this paper we defined the Λ
2q
fp
(∆mnu , A, φ)

η
µ defined by a modulus and exhibit

some general properties of the space with an four dimensional infinite regular matrix.

1 Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued single se-
quences, respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set of positive
integers. Then, w2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4]. Later on, they
were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir and Solankan [2],
Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:

Mu (t) :=
{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn <∞

}
,

Cp (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn − ł|tmn = 1for some ł ∈ C

}
,

C0p (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1

}
,

Lu (t) :=
{
(xmn) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xmn|

tmn <∞
}
,

Cbp (t) := Cp (t)
⋂
Mu (t) and C0bp (t) = C0p (t)

⋂
Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and p −
limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1 for all m,n ∈
N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce to the setsMu, Cp, C0p,Lu, Cbp and
C0bp, respectively. Now, we may summarize the knowledge given in some document related to
the double sequence spaces. Gökhan and Colak [21,22] have proved thatMu (t) and Cp (t) , Cbp (t)
are complete paranormed spaces of double sequences and gave the α−, β−, γ− duals of the
spacesMu (t) and Cbp (t) . Quite recently, in her PhD thesis, Zelter [23] has essentially studied
both the theory of topological double sequence spaces and the theory of summability of double
sequences. Mursaleen and Edely [24] have recently introduced the statistical convergence and
Cauchy for double sequences and given the relation between statistical convergent and strongly
Cesàro summable double sequences. Nextly, Mursaleen [25] and Mursaleen and Edely [26] have
defined the almost strong regularity of matrices for double sequences and applied these matrices
to establish a core theorem and introduced the M−core for double sequences and determined
those four dimensional matrices transforming every bounded double sequences x = (xjk) into
one whose core is a subset of the M−core of x. More recently, Altay and Basar [27] have de-
fined the spaces BS,BS (t) , CSp, CSbp, CSr and BV of double sequences consisting of all double
series whose sequence of partial sums are in the spacesMu,Mu (t) , Cp, Cbp, Cr and Lu, respec-
tively, and also examined some properties of those sequence spaces and determined the α− duals
of the spaces BS,BV, CSbp and the β (ϑ)− duals of the spaces CSbp and CSr of double series.
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Quite recently Basar and Sever [28] have introduced the Banach space Lq of double sequences
corresponding to the well-known space `q of single sequences and examined some properties of
the space Lq. Quite recently Subramanian and Misra [29] have studied the space χ2

M (p, q, u) of
double sequences and gave some inclusion relations.

Spaces are strongly summable sequences were discussed by Kuttner [31], Maddox [32], and
others. The class of sequences which are strongly Cesàro summable with respect to a modulus
was introduced by Maddox [8] as an extension of the definition of strongly Cesàro summable
sequences. Connor [33] further extended this definition to a definition of strong A− summabil-
ity with respect to a modulus where A = (an,k) is a nonnegative regular matrix and established
some connections between strong A− summability, strong A− summability with respect to a
modulus, and A− statistical convergence. In [34] the notion of convergence of double sequences
was presented by A. Pringsheim. Also, in [35]-[38], and [39] the four dimensional matrix trans-
formation (Ax)k,` =

∑∞
m=1

∑∞
n=1 a

mn
k` xmn was studied extensively by Robison and Hamilton.

Let φmn denotes the set of all subsets of N, those do not contain more than (mn) ele-
ments. Further (φmn) will denote a non decreasing sequence of positive real numbers such
that mnφm+1,n+1 ≤ (m+ 1, n+ 1)φmn, for all m,n ∈ N.

Now, if u = (umn) is any sequence such that umn 6= 0 for each m,n and w2 (X) denotes
the space of all sequences with elements in X, where (X, q) denotes a semi normed space, semi-
normed by q, and η, µ is any real number such that η, µ ≥ 0. This will be accomplished by
presenting the following sequence space:
Λ

2q
fp
(∆mnu , A, φ)

η
µ ={

x ∈ w2 : supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
<∞

}
;

where f is a modulus function. Other implications,general properties and variations will also be
presented.

We need the following inequality in the sequel of the paper. For a, b,≥ 0 and 0 < p < 1, we
have

(a+ b)p ≤ ap + bp (1.1)

The double series
∑∞
m,n=1 xmn is called convergent if and only if the double sequence (smn) is

convergent, where smn =
∑m,n
i,j=1 xij(m,n ∈ N) (see[1]).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|1/m+n
< ∞. The vector

space of all double analytic sequences will be denoted by Λ2. A sequence x = (xmn) is called
double gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as m,n → ∞. The double gai sequences
will be denoted by χ2. Let φ = {allfinitesequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence is defined
by x[m,n] =

∑m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes the double sequence whose only

non zero term is a 1
(i+j)! in the (i, j)

th place for each i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (=mn) is a Schauder basis
for X . Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metrizable; locally
convex topology under which the coordinate mappings x = (xk) → (xmn)(m,n ∈ N) are also
continuous.

Orlicz[13] used the idea of Orlicz function to construct the space
(
LM
)
. Lindenstrauss and

Tzafriri [7] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz
sequence space `M contains a subspace isomorphic to `p (1 ≤ p <∞) . subsequently, different
classes of sequence spaces were defined by Parashar and Choudhary [14], Mursaleen et al. [11],
Bektas and Altin [3], Tripathy et al. [18], Rao and Subramanian [15], and many others. The
Orlicz sequence spaces are the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6], an Orlicz function is a function M : [0,∞) → [0,∞) which is con-
tinuous, non-decreasing, and convex with M (0) = 0, M (x) > 0, for x > 0 and M (x)→∞ as
x→∞. If convexity of Orlicz function M is replaced by subadditivity of M, then this function
is called modulus function, defined by Nakano [12] and further discussed by Ruckle [16] and
Maddox [8], and many others.
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An Orlicz function M is said to satisfy the ∆2− condition for all values of u if there ex-
ists a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0) . The ∆2− condition is equivalent to
M (`u) ≤ K`M (u) , for all values of u and for ` > 1.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz sequence
space

`M =
{
x ∈ w :

∑∞
k=1 M

(
|xk|
ρ

)
<∞, for someρ > 0

}
,

The space `M with the norm

‖x‖ = inf
{
ρ > 0 :

∑∞
k=1 M

(
|xk|
ρ

)
≤ 1
}
,

becomes a Banach space which is called an Orlicz sequence space. ForM (t) = tp (1 ≤ p <∞) ,
the spaces `M coincide with the classical sequence space `p.

If X is a sequence space, we give the following definitions:
(i)X

′
= the continuous dual of X;

(ii)Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| <∞, for eachx ∈ X

}
;

(iii)Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, foreachx ∈ X

}
;

(iv)Xγ =
{
a = (amn) : supmn ≥ 1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ <∞, foreachx ∈ X} ;

(v)letX beanFK − space ⊃ φ; thenXf =
{
f(=mn) : f ∈ X ′

}
;

(vi)Xδ =
{
a = (amn) : supmn |amnxmn|1/m+n

<∞, foreachx ∈ X
}

;

Xα.Xβ , Xγ are called α − (orKöthe − Toeplitz)dual of X,β − (or generalized − Köthe −
Toeplitz)dual ofX, γ − dual of X, δ − dual ofX respectively.Xα is defined by Gupta and
Kamptan [20]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ , but Xβ ⊂ Xγ does not hold, since the
sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz
[30] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and `∞ denote the classes of convergent,null and bounded sclar valued single se-
quences respectively. The difference space bvp of the classical space `p is introduced and studied
in the case 1 ≤ p ≤ ∞ by Baar and Altay in [42] and in the case 0 < p < 1 by Altay and Baar
in [43]. The spaces c (∆) , c0 (∆) , `∞ (∆) and bvp are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk| and ‖x‖bvp = (
∑∞
k=1 |xk|

p)
1/p

, (1 ≤ p <∞) .

Later on the notion was further investigated by many others. We now introduce the following
difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn − xmn+1 −
xm+1n + xm+1n+1 for all m,n ∈ N

2 Definitions and Preliminaries

Λ
2q
fp
(∆mnu , A, φ)

η
µ denote the Pringscheims sense of double analytic sequence space of modulus.

2.1 Definition

A modulus function was introduced by Nakano [12]. We recall that a modulus f is a function
from [0,∞)→ [0,∞) , such that
(1) f (x) = 0 if and only if x = 0
(2) f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(3) f is increasing,
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(4) f is continuous from the right at 0. Since |f (x)− f (y)| ≤ f (|x− y|) , it follows from here
that f is continuous on [0,∞) .

2.2 Defintion

Let A =
(
amnk,`

)
denote a four dimensional summability method that maps the complex double

sequences x into the double sequence Ax where the k, `− th term to Ax is as follows:

(Ax)k` =
∑∞
m=1

∑∞
n=1 a

mn
k` xmn

such transformation is said to be nonnegative if amnk` is nonnegative.
The notion of regularity for two dimensional matrix transformations was presented by Silver-

man [40] and Toeplitz [41]. Following Silverman and Toeplitz, Robison and Hamilton presented
the following four dimensional analog of regularity for double sequences in which they both
added an adiditional assumption of boundedness. This assumption was made because a double
sequence which is P− convergent is not necessarily bounded.

2.3 Definition

For a subspace ψ of a linear space is said to be sequence algebra if x, y ∈ ψ, implies that
x · y = (xmnymn) ∈ ψ.

2.4 Definition

A sequence E is said to be solid (Or normal) if (λmnxmn) ∈ E, whenever (xmn) ∈ E for all
sequences of scalars (λmn = k) with |λmn| ≤ 1.

2.5 Definition

A double sequence space E is said to be monotone if it contains the canonical pre-images of all
its step spaces.

2.6 Remark

From the above, it is clear that a sequence space E is solid implies that E is monotone.

2.7 Definition

Let X be a real or complex linear space, g be a function from X to the set R of real numbers.
Then, the pair (X, g) is called a paranormed space and g is a paranorm for X, if the following
axioms are satisfied for all elements x, y ∈ X and for all scalars α :
(PN.1) g (x) = 0 if x = θ.
(PN.2) g (−x) = g (x) .
(PN.3) g (x+ y) ≤ g (x) + g (y) .
(PN.4) If (αn) is a sequence of scalars with αn → α as n→∞ and xn, x ∈ X for all n ∈ N with
xn → x as n→∞ then αnxn → αx as n→∞, in the sense that g (αxn − αx)→ 0 as n→∞.

3 Main Results

3.1 Theorem

Λ
2q
fp
(∆mnu , A, φ)

η
µ is linear space over the complex field C

Proof: It is easy. Therefore omit the proof.

3.2 Theorem

Λ
2q
fp
(∆mnu , A, φ)

η
µ is a paranormed space with

g (x) = supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ

(rs)
−ηµ

f

(
q
(
|Ars (∆mnu x)|1/m+n

)prs/M)
(3.1)

if and only if h = infprs > 0, where M = max (1, H) and H = suppmn.
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(ii) Λ
2q
fp
(∆mnu , A, φ)

η
µ is a complete paranormed linear metric space if the condition p in (3.1)

is satisfied.
Proof(i): sufficiency: Let h > 0. It is trivial that g (θ) = 0 and g (−x) = g (x) .

The inequality g (x+ y) ≤ g (x) + g (y) follows from the inequality (3.1), since prs/M ≤
1 for all positive integers r, s. We also may write g (λx) ≤ max

(
|λ| , |λ|h/M

)
g (x) , since

|λ|pmn ≤ max
(
|λ|h , |λ|M

)
for all positive integers r, s and for any λ ∈ C, the set of com-

plex numbers. Using this inequality, it can be proved that λx → θ, when x is fixed and λ → 0,
or λ→ 0 and x→ θ, or λ is fixed and x→ θ.
necessity:Let Λ

2q
fp
(∆mnu , A, φ)

η
µ be a paranormed space with the paranorm

g (x) = supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f

(
q
(
|Ars (∆mnu x)|1/m+n

)prs/M)
and suppose that h = 0. Since |λ|prs/M ≤ |λ|h/M = 1 for all positive integers r, s and λ ∈ C
such that 0 < |λ| ≤ 1, we have

g (x) = supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q (|λ|)prs/M

)
= 1.

Hence it follows that

g (λx) = supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q (|λ|)prs/M

)
= 1.

for x = (α) ∈ Λ
2q
fp
(∆mnu , A, φ)

η
µ as λ→ 0. But this contradicts the assumption Λ

2q
fp
(∆mnu , A, φ)

η
µ

is a paranormed space with g (x) .

(ii) The proof is clear.

3.3 Corollary

Λ
2q
fp
(∆mnu , A, φ)

η
µ is a complete paranormed space with the natural paranorm if and only if

Λ
2q
fp
(∆mnu , A, φ)

η
µ = Λ

2q
f (∆mnu , A, φ)

η
µ

3.4 Theorem

Λ
2q
fp

(
∆mnu , A, φ1

)η
µ
⊆ Λ

2q
fp

(
∆mnu , A, φ2

)η
µ

if and only if supmn≥1
φ1
mn

φ2
mn

<∞.

Proof: Let x ∈ Λ
2q
fp

(
∆mnu , A, φ1

)η
µ

and T = supmn≥1
φ1
mn

φ2
mn
. Then

supm,n≥1,σ∈φmn

1
φ2
mn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
≤

supmn≥1
φ1
mn

φ2
mn

supm,n≥1,σ∈φmn

1
φ1
mn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
=

T × supm,n≥1,σ∈φmn

1
φ1
mn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
.

Therefore x ∈ Λ
2q
fp
(∆mnu , A, φ)

η
µ .

Conversely, let Λ
2q
fp

(
∆mnu , A, φ1

)η
µ
⊆ Λ

2q
fp

(
∆mnu , A, φ2

)η
µ

and x ∈ Λ
2q
fp

(
∆mnu , A, φ1

)η
µ
. We have

supm,n≥1,σ∈φmn

1
φ1
mn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
<∞.

Suppose that supmn≥1
φ1
mn

φ2
mn

< ∞. Then there exists a sequence of positive natural numbers

(minj) such that limi,j→∞
φ1
minj

φ2
minj

=∞. Hence we can write

supm,n≥1,σ∈φmn

1
φ2
mn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
≥

supm,n≥1,σ∈φmn

1
φ1
mn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
= ∞. Therefore x /∈

Λ
2q
fp

(
∆mnu , A, φ2

)η
µ

which is a contradiction. Hence supmn≥1
φ1
mn

φ2
mn

<∞.

3.5 Theorem

Let f be an modulus function which satisfies the ∆2− condition. Then Λ
2q
fp

(
∆mnu , A, φ1

)η
µ
=

Λ
2q
fp

(
∆mnu , A, φ2

)η
µ

if and only if supmn≥1
φ1
mn

φ2
mn

<∞ and supmn≥1
φ2
mn

φ1
mn

<∞.
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3.6 Theorem

Let f and f1 be modulus functions which satisfies the ∆2− condition. Then Λ
2q
fp
(∆mnu , A, φ)

η
µ ⊆

Λ
2q
(f◦f1)p

(∆mnu , A, φ)
η
µ .

Proof: Let x ∈ Λ
2q
fp
(∆mnu , A, φ)

η
µ and ε > 0 be given and choose δ with 0 < δ < 1 such that

f (t) < ε for 0 ≤ t ≤ δ. Therefore we have write

supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs))
=

supm,n≥1,σ∈φmn

1
φmn

∑∑
1 (rs)

−ηµ
f
(
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs))
+

supm,n≥1,σ∈φmn

1
φmn

∑∑
2 (rs)

−ηµ
f
(
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs))
.

where the summation
∑∑

1 is over f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
≤ δ and the summation

∑∑
2

is over f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
> δ. Since f is continuous, we have

supm,n≥1,σ∈φmn

1
φmn

∑∑
1 (rs)

−ηµ
f
(
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs))
≤ max

{
1, f (1)H

}
supm,n≥1,σ∈φmn

1
φmn

∑∑
1 (rs)

−ηµ
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
≤

max
{

1, f (1)H
}
supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
. For

f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
> δ, we use the fact that

f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
< f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
δ−1 ≤

1 + f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
δ−1.

Since f satisfies the ∆2− condition, then there exists L > 1 such that
f
(
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)))
< f

(
1 + f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
δ−1
)
≤

1
2f (2)+

1
Lf
(

2f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
δ−1
)
+ 1

2Lf (2) f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
δ−1 =

Lf (2) δ−1f1

(
q
(
|Ars (∆mnu x)|1/m+n

))
.

supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs))
≤

max
{

1, f (1)H
}
supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
+

max
{

1,
(
Lf (2) δ−1

)H}
supm,n≥1,σ∈φmn

1
φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f1

(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
.

Therefore x ∈ Λ
2q
fp
(∆mnu , A, φ)

η
µ .

3.7 Theorem

Λ
2q
fp
(∆mnu , A, φ)

η
µ is not separable

Proof: f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
→ 0asm, n → ∞, so it may so happen that first row

or column may not be convergent, even may not be bounded. Let S be the set that has double
sequences such that the first row is built up of sequences of zeros and ones. Then S will be
uncountable. Consider open balls of radius 3−1 units. Then these open balls will not cover
Λ

2q
fp
(∆mnu , A, φ)

η
µ . Hence is not separable.

3.8 Remark

Let f = (fmn) be a modulus function q1 and q2 be two seminorms on X, we have
(i) Λ

2q1
fp

(∆mnu , A, φ)
η
µ

⋂
Λ

2q2
fp

(∆mnu , A, φ)
η
µ ⊆ Λ

2(q1+q2)
fp

(∆mnu , A, φ)
η
µ

(ii) If q1 is stronger than q2 then Λ
2q1
fp

(∆mnu , A, φ)
η
µ ⊆ Λ

2q2
fp

(∆mnu , A, φ)
η
µ

(iii) if q1 is equivalent to q2 then Λ
2q1
fp

(∆mnu , A, φ)
η
µ = Λ

2q2
fp

(∆mnu , A, φ)
η
µ .

3.9 Proposition

For every p = (prs) ,
{

Λ
2q
fp
(∆mnu , A, φ)

η
µ

}β
=
{

Λ
2q
fp
(∆mnu , A, φ)

η
µ

}α
=
{

Λ
2q
fp
(∆mnu , A, φ)

η
µ

}γ
={

η2q
fp
(∆mnu , A, φ)

η
µ

}
, where η2q

fp
(∆mnu , A, φ)

η
µ =⋂

N∈N−{1}
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{
x = xmn : 1

φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
<∞

}
Proof(1): First we show that

{
η2q
fp
(∆mnu , A, φ)

η
µ

}
⊂
{

Λ
2q
fp
(∆mnu , A, φ)

η
µ

}β
Let x ∈

{
η2q
fp
(∆mnu , A, φ)

η
µ

}
and y ∈

{
Λ

2q
fp
(∆mnu , A, φ)

η
µ

}β
. Then we can find a positive integer

N such that
(
|ymn|1/m+n

)
<

max
(

1, supm,n≥1
1

φmn

∑
r∈σ

∑
s∈σ (rs)

−ηµ
f
(
q
(
|Ars (∆mnu x)|1/m+n

)prs)
<∞

)
< N, for all

m,n.
Hence we may write∣∣∣∑m,n xmnymn

∣∣∣ ≤∑m,n |xmnymn| ≤
∑
mn (f (|xmnymn|)) ≤

∑
m,n (f (|∆mnu x|Nm+n)) .

Since x ∈
{
η2q
fp
(∆mnu , A, φ)

η
µ

}
. the series on the right side of the above inequality is convergent,

whence x ∈
{

Λ
2q
fp
(∆mnu , A, φ)

η
µ

}
. Hence

{
η2q
fp
(∆mnu , A, φ)

η
µ

}
⊂
{

Λ
2q
fp
(∆mnu , A, φ)

η
µ

}β
Now we show that

{
Λ

2q
fp
(∆mnu , A, φ)

η
µ

}β
⊂
{
η2q
fp
(∆mnu , A, φ)

η
µ

}
For this, let x ∈

{
Λ

2q
fp
(∆mnu , A, φ)

η
µ

}β
and suppose that x /∈

{
Λ

2q
fp
(∆mnu , A, φ)

η
µ

}
. Then

there exists a positive integer N > 1 such that
∑
m,n (f (|∆mnu x|Nm+n)) =∞.

If we define ymn = Nm+nSgn∆mnu m,n = 1, 2, · · · , then y ∈
{

Λ
2q
fp
(∆mnu , A, φ)

η
µ

}
.

But, since∣∣∣∑m,n xmnymn

∣∣∣ =
∑
mn (f (|xmnymn|)) =

∑
m,n (f (|∆mnu x|Nm+n)) = ∞, we get x /∈{

Λ
2q
fp
(∆mnu , A, φ)

η
µ

}β
, which contradicts to the assumption x ∈

{
Λ

2q
fp
(∆mnu , A, φ)

η
µ

}β
. There-

fore x ∈
{
η2q
fp
(∆mnu , A, φ)

η
µ

}
. Therefore

{
Λ

2q
fp
(∆mnu , A, φ)

η
µ

}β
=
{
η2q
fp
(∆mnu , A, φ)

η
µ

}
.

(ii)and (iii) can be shown in a similar way of (i). Therefore we omit it.

4 Result

4.1 Proposition

The space Λ
2q
fp
(∆mnu , A, φ)

η
µ is not monotone and such are not solid.

Proof: The space Λ
2q
fp
(∆mnu , A, φ)

η
µ is not monotone follows from following examples. Since

the space Λ
2q
fp
(∆mnu , A, φ)

η
µ is not monotone, is not solid is clear from the remark 2.6.

Example: Let X = C and consider the sequence (xmn) defined by if

(xmn) =



1, 1, ...1
1, 1, ...1
.

.

.

1, 1, ...1


for all m,n ∈ N.

Consider the sequence (ymn) in the preimage space defined as

ymn =

{
i2, if m = n, i ∈ N,
0, otherwise .

Then (xmn) /∈ Λ
2q
fp
(∆mnu , A, φ)

η
µ but (ymn) ∈ Λ

2q
fp
(∆mnu , A, φ)

η
µ . Hence Λ

2q
fp
(∆mnu , A, φ)

η
µ are

not monotone.
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4.2 Proposition

The space Λ
2q
fp
(∆mnu , A, φ)

η
µ are not convergence free in general

Proof: The proof follows from the following example:
Example: Consider the sequences (xmn) , (ymn) ∈ Λ

2q
fp
(∆mnu , A, φ)

η
µ . Defined by (∆mnu x) =( 1

m+n

)1/m+n
and (∆mnu y) =

(
m−n
m+n

)1/m+n
. Hence supm,n≥1

( 1
m+n

)1/m+n
<∞. which implies

supm,n≥1 |xmn|1/m+n
< ∞. Also supm,n≥1

(
m−n
m+n

)1/m+n
= 0. Hence supm,n≥1 |ymn|1/m+n =

0. Therefore the space Λ
2q
fp
(∆mnu , A, φ)

η
µ are not convergence free.

4.3 Proposition

Λ
2q
fp
(∆mnu , A, φ)

η
µ is not sequence algebra

Proof This result is clear the following example:
Example: Let (xmn) =

(
m

m+n

)1/m+n and (ymn) =
( −n
m+n

)1/m+n for all m,n ∈ N. Then we
have x, y ∈ Λ

2q
fp
(∆mnu , A, φ)

η
µ but x · y /∈ Λ

2q
fp
(∆mnu , A, φ)

η
µ .
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