On some new analytic function spaces in polyball

Olivera R. Mihić and Romi F. Shamoyan

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary Primary 32A18.

Keywords and phrases: polyball, Bergman metric ball, mixed norm spaces.

The first-named author was Supported by MNTR Serbia, Project 174017.

Abstract. In this note we extend in two directions known classical results for Bergman spaces in their unit ball to polyballs and mixed norm spaces simultaneously.

1 Introduction

The intention of this note is to extend some results from [4] for analytic spaces on polydisk to analytic function spaces in polyballs.

Note the first results of this type were obtained by authors in [5]. The intention of this paper to continue that investigation. For formulation of main result of this note we need several basic definitions taken from [5].

Let \mathbb{C} denote the set of complex numbers and let $\mathbb{C}^n = \mathbb{C} \times \cdots \times \mathbb{C}$ denote the Euclidean space of complex dimension n. The open unit ball in \mathbb{C}^n is the set $B_n = \{z \in \mathbb{C}^n : |z| < 1\}$. We denote by $H(B_n)$ the space of holomorphic functions on the open unit ball in \mathbb{C}^n .

For every function $f \in H(B_n)$ having a series expansion $f(z) = \sum_{|k| \ge 0} a_k z^k$, we define the operator of fractional differentiation by

$$D^{\alpha}f(z) = \sum_{|k| \ge 0} (|k| + 1)^{\alpha} a_k z^k,$$

where α is any real number. It is obvious that for any α , D^{α} operator is acting from $H(B_n)$ to $H(B_n)$.

We will apply this derivative to analytic functions in polyballs by each variable separately and here α will be also as vector $\vec{\alpha} = (\alpha_1, \dots, \alpha_n)$.

Moreover, let $d\nu$ denote the Lebesgue measure on B_n normalized such that $\nu(B_n) = 1$ and for any $\alpha \in R$, let $d\nu_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha}d\nu(z)$ for $z \in B_n$. Here, if $\alpha \leq -1$, $c_{\alpha} = 1$ and if $\alpha > -1$, $c_{\alpha} = \frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)\Gamma(\alpha+1)}$ is the normalizing constant so that ν_{α} has unit total mass. The Bergman metric on B_n is

$$\beta(z,w) = \frac{1}{2}\log\frac{1+|\varphi_z(w)|}{1-|\varphi_z(w)|},$$

where φ_z is the Möbius transformation of B_n that interchanges 0 and z. Let $\mathcal{D}(a, r) = \{z \in B_n : \beta(z, a) < r\}$ denote the Bergman metric ball centered at $a \in B_n$ with radius r > 0.

Throughout the paper, we write C (sometimes with indexes) to denote a positive constant which might be different at each occurrence (even in a chain of inequalities) but is independent of the functions or variables being discussed.

The following lemmas is the key result, a base for all our proofs.

Lemma 1. [7] (a) There exists a positive number $N \ge 1$ such that for any $0 < r \le 1$ we can find a sequence $\{v_k\}_{k=1}^{\infty}$ in B_n to be r-lattice in the Bergman metric of B_n . This means that $B_n = \bigcup_{k=1}^{\infty} \mathcal{D}(v_k, r), \ \mathcal{D}(v_l, r/4) \cap \mathcal{D}(v_k, r/4) = \emptyset$ if $k \ne l$ and each $z \in B_n$ belongs to at most N of the sets $\mathcal{D}(v_k, 2r)$.

(b) For any r > 0 there is a constant C > 0 so that $\frac{1}{C} \leq |\frac{1 - \langle z, w \rangle}{1 - \langle z, v \rangle}| \leq C$ for all $z \in B_n$ and all w, v with $\beta(w, v) < r$.

(c) For any $\alpha > -1$ and r > 0, $\int_{\mathcal{D}(z,r)} (1 - |w|^2)^{\alpha} d\nu(w)$ is comparable with $(1 - |z|^2)^{n+1+\alpha}$ for all $z \in B_n$.

(d) Suppose r > 0 and p > 0 and $\alpha > -1$. Then there is a constant C > 0 such that

$$|f(z)|^p \le \frac{C}{(1-|z|^2)^{n+1+\alpha}} \int_{\mathcal{D}(z,r)} |f(w)|^p d\nu_{\alpha}(w),$$

for all $f \in H(B_n)$ and all $z \in B_n$.

Lemma 2. [7] Suppose that c > 0 and t > -1. Then there are positive constants C_1 , C_2 such that $e = 1 |au|^2 t$ 1) T

$$C_1 \frac{\Gamma(t+1)\Gamma(c)}{(1-|z|^2)^c} \le \int_{B_n} \frac{1-|w|^2}{|1-\langle z,w\rangle|^{n+1+t+c}} d\nu(w) \le C_2 \frac{\Gamma(t+1)\Gamma(c)}{(1-|z|^2)^c},$$

for all $z \in B_n$. The constants C_1 and C_2 depend on n, c and t and they are bounded as $t \to -1$ and $s \rightarrow 0$.

Let B_n^m denote the polyball $B_n^m = B_n \times \ldots \times B_n$. Let also $S_n^m = S_n \times \ldots \times S_n$, where $S_n = \{z \in \mathbb{C}^n : |z| = 1\}$. As usual, we denote by $H(B_n^m)$ the space of all analytic functions in B_n^m by each variable separately.

Let $dm(\xi)$ be Lebesque measure on B_n^m and $d\xi$ be Lebesque measure on S_n^m .

In this paper from one hand we extend known classical results on Bergman spaces in unit ball to mixed norm spaces in polyballs. From the other hand our results for n = 1 coincide with results taken from [4]. The properties of r-lattice are the base of all mentioned results and results of this paper. Arguments for our proofs we take from [4] where the case of polydisk was considered.

2 Main results

We now introduce the mixed norm classes in polyballs

$$A_{\alpha_{1},\dots,\alpha_{m}}^{p_{1},\dots,p_{m}}(B_{n}^{m}) = \{f \in H(B_{n}^{m}) : \|f\|_{A_{\alpha_{1},\dots,\alpha_{m}}^{p_{1},\dots,p_{m}}} := (\int_{B_{n}} (1-|z_{m}|)^{\alpha_{m}} (\int_{B_{n}} (1-|z_{m-1}|)^{\alpha_{m-1}} \cdots \int_{B_{n}} |f(z_{1},\dots,z_{m})|^{p_{1}} (1-|z_{1}|)^{\alpha_{1}} d\nu(z_{1}))^{\frac{p_{2}}{p_{1}}} \cdots d\nu(z_{m-1}))^{\frac{p_{m}}{p_{m-1}}} d\nu(z_{m}))^{\frac{1}{p_{m}}} < \infty\},$$

where $0 < p_i < \infty, \alpha_i > -1, i = 1, \dots, m$. Note that for n = 1 these classes were studied in [4]. For m = 1 we have the classical Bergman spaces on the unit ball. Formally replacing B_n by \mathbb{R}^n we arrive at well studied function classes in \mathbb{R}^n (see [1], [3]).

Let $L^{p_1,\ldots,p_m}_{\alpha_1,\ldots,\alpha_m}(B^m_n)$ denote the space of all measurable functions $f: B^m_n \to \mathbb{C}$ such that $\|f\|_{A^{p_1,\dots,p_m}_{\alpha_1,\dots,\alpha_m}} < \infty$. It is not difficult to show that $A^{p_1,\dots,p_m}_{\alpha_1,\dots,\alpha_m}(B^m_n)$ is a Banach space for $1 \le p_i < \infty$ $\infty, i = 1, \dots, m$. Moreover, it can be shown that $A^{p_1, \dots, p_m}_{\alpha_1, \dots, \alpha_m}(B^m_n)$ is a complete metric space for $0 < p_i < 1, i = 1, ..., m.$ For $f \in A^{p_1,...,p_m}_{\alpha_1,...,\alpha_m}(B^m_n)$, we have the following estimate

$$|f(z_1,\ldots,z_m)| \le C \frac{||f||_{A^{p_1,\ldots,p_m}_{\alpha_1,\ldots,\alpha_m}}}{\prod_{k=1}^m (1-|z_k|)^{\frac{\alpha_k}{p_k}+\frac{n+1}{p_k}}},$$
(2.1)

where $z_j \in B_n$, j = 1, ..., m. The proof of (2.1) can be obtained by modification of standard arguments from [7].

Our intention is to prove projection theorems and theorems on representation of functionals on these spaces. For n = 1 or m = 1 (polydisk case) all our results are known (see [4], [7]).

Theorem 1. Let $p_j \in (1, \infty)$, $\alpha_j > -1$, $j = 1, \ldots, m$. Then the Bergman type $T_{\overrightarrow{\alpha}}$ operator

$$T_{\overrightarrow{\alpha}}f(z) = \int_{B_n^m} \frac{f(\xi) \prod_{j=1}^m (1 - |\xi_j|)^{\alpha_j}}{\prod_{j=1}^m (1 - z_j \overline{\xi_j})^{\alpha_j + n + 1}} dm(\xi), \ z \in B_n^m,$$

maps $L^{\overrightarrow{p}}(\overrightarrow{\alpha})$ to $A^{\overrightarrow{p}}(\overrightarrow{\alpha})$ and $\|T_{\overrightarrow{\alpha}}f\|_{A^{\overrightarrow{p}}_{\overrightarrow{\alpha}}} \leq C \|f\|_{L^{\overrightarrow{p}}_{\overrightarrow{\alpha}}}$.

Theorem 2. Let Φ be bounded linear functional on $A_{\overrightarrow{\alpha}}^{\overrightarrow{p}}$, $1 < p_j < \infty$, $\alpha_j > -1$, $j = 1, \ldots, m$. Let $g(z) = \Phi(l_z) = \Phi\left(\prod_{j=1}^m \frac{1}{1-z_j\xi_j}\right), \ z \in B_n^m$. Then d

(A)
$$g \in H(B_n^m), D_{z_1...z_m}^{\alpha+1} g \in A_{\overline{\alpha}}^q, \frac{1}{p_j} + \frac{1}{q_j} = 1, \ j = 1, ..., m$$
 and

$$\Phi(f) = \lim_{\rho \to 1-0} \int_{S_n^m} f(\rho\xi) g(\rho\xi) d\xi \text{ and}$$

(B) $\|\Phi\| \simeq \|D_{z_1,\ldots,z_m}^{\alpha+1}g\|_{A_{\alpha}^{\overrightarrow{q}}},$

and the reverse is also true: each g function so that $D^{\alpha+1}g \in A_{\overrightarrow{\alpha}}^{\overrightarrow{q}}$ by (A) produce a bounded linear functional on $A_{\overrightarrow{\alpha}}^{\overrightarrow{p}}$, $\alpha_j > -1$, $1 < p_j < \infty$, $j = 1, \ldots, m$ for which estimate (B) holds.

Let $0 < p_j \leq 1, \ j = 1, \dots, m$. Let us denote

$$\lambda_{\overrightarrow{\alpha}}^{\overrightarrow{p}} = \left\{ f \in H(B_n^m) : |D_{z_1,\dots,z_m}^{\widetilde{\alpha}+1} g(z_1,\dots,z_m)| \le C \prod_{j=1}^m (1-|z_j|)^{(\alpha_j+n+1)/p_j-\widetilde{\alpha}-(n+1)}, \ z_j \in B_n \right\},$$

where $\tilde{\alpha} > \frac{\alpha_j + n + 1}{p_j} - (n + 1), \ j = 1, \dots, m$. It can be shown as in case of polydisk (see [4]) these spaces are independent from $\tilde{\alpha}$.

Theorem 3. Let Φ be bounded linear functional on $A_{\overrightarrow{\alpha}}^{\overrightarrow{p}}$, $0 < p_j \leq 1, \alpha_j > -1, j = 1, \ldots, m$. Let $g(z) = \Phi(l_z) = \Phi\left(\prod_{j=1}^m \frac{1}{1-z_j\overline{\xi_j}}\right), \ z \in B_n^m$. Then (A) $g \in \lambda_{\overrightarrow{\alpha}}^{\overrightarrow{p}}$ and $\Phi(f) = \lim_{\rho \to 1-0} \int_{S_n^m} f(\rho\xi)g(\rho\xi)d\xi$ and $(\mathbf{B}) \|\Phi\| \asymp \|g\|_{\lambda \overrightarrow{p}},$

and the reverse is also true: each g function $g \in \lambda_{\overrightarrow{\alpha}}^{\overrightarrow{p}}$ by (A) produce a bounded linear functional on $A_{\overrightarrow{\alpha}}^{\overrightarrow{p}}$, $\alpha_j > -1$, $0 < p_j < 1$, $j = 1, \ldots, m$ for which estimate (B) holds.

Let us denote by S the class of all slowly varying functions, i.e. the class of all positive measurable functions $\omega(t)$ on (0,1] such that there are constants $m = m_{\omega}$, $M = M_{\omega}$ and $= q_{\omega}$ satisfying: 0 < m, q < 1 and

$$m \le \frac{\omega(\lambda r)}{\omega(r)} \le M, \quad 0 < r < 1, \quad q \le \lambda \le 1,$$

see [2], [6] for detailed study of such functions. The constants m, M, q are the structural constants of the slowly varying function ω . We note that functions $\omega(r) = r^{\alpha}, \alpha \in \mathbb{R}$ are in class S. In fact, for any $\omega \in S$ there is an $\beta \geq 0$ depending on the structural constants of ω such that $\omega(r) \ge Cr^{\beta}, 0 < r \le 1.$ Let $A_{\omega}^{\overrightarrow{p}}, 1 < p_j < \infty, j = 1, \dots, m$ denote mixed norm space:

$$A_{\omega}^{\overrightarrow{p}}(B_{n}^{m}) = \{f \in H(B_{n}^{m}) : \|f\|_{A_{\omega}^{\overrightarrow{p}}} := (\int_{B_{n}} \omega(1-|z_{m}|)(\int_{B_{n}} \omega(1-|z_{m-1}|) \cdots \int_{B_{n}} |f(z_{1},\ldots,z_{m})|^{p_{1}} \omega(1-|z_{1}|) d\nu(z_{1}))^{\frac{p_{2}}{p_{1}}} \cdots d\nu(z_{m-1}))^{\frac{p_{m}}{p_{m-1}}} d\nu(z_{m}))^{\frac{1}{p_{m}}} < \infty \}.$$

Some results of this paper can be extended to more general spaces $A_{\omega}^{\overrightarrow{p}}$.

Remarks. Using nice properties of recently invented r-lattices of pseudoconvex domains with smooth boundary projection results of this note can be partially extended to bounded strongly pseudoconvex domains with smooth boundary by similar arguments.

References

- [1] O. I. Besov, V. P. Ilin and S. M. Nikolski, Integral representation of functions and embedding theorems, Moscow, Nauka (Russian), 480 pages (1975).
- [2] V. Mazya, Sobolev Spaces, Springer-Verlag, New York, (1985).
- [3] S. M. Nikolski, The approximation of functions of several variables, Moscow Nauka (Russian), 455 pages (1977).
- [4] F. Shamoian, O. Yaroslavceva, Bounded projections, duality and diagonal map in some spaces of analytic functions with mixed norm, Zapiski POMI (Russian) 247, 268-275 (1997).
- [5] R. Shamoyan, O. Mihić, On traces of analytic Q_p type spaces, mixed norm spaces and harmonic Bergman classes on certain polydomains, Filomat 25(1), 1-19 (2011).
- [6] R. Shamoyan, O. Mihić, On some new theorems on certain analytic and meromorphic classes of Nevanlinna type on the complex plane, Kragujevac Journal of Mathematics 37(1), 65–85 (2013).
- [7] K. Zhu, Spaces of Holomorphic Functions in the unit ball, Springer-Verlag, New York, (2005).

Author information

Olivera R. Mihić, Fakultet organizacionih nauka, Jove Ilića 154, Belgrade, Serbia. E-mail: oliveradj@fon.rs

Romi F. Shamoyan, Department of Mathematics, Bryansk State Technical University, Bryansk, Russia. E-mail: rshamoyan@gmail.com

Received: July 20, 2013.

Accepted: December 22, 2013.