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Abstract It is well known that Diophantine equations can be solved by two methods, namely
elementary methods, such as decomposition, modular arithmetic, mathematical induction, and
Fermat’s infinite descent, the second method is an advanced method involving Gaussian integers,
quadratic rings, divisors of certain forms, and quadratic reciprocity (see [1], and [2]).

1 Introduction

It is well known that Diophantine equations can be solved by two methods, namely elementary
methods , such as decomposition, modular arithmetic, mathematical induction, and Fermat’s in-
finite descent, the second method is an advanced method involving Gaussian integers, quadratic
rings, divisors of certain forms, and quadratic reciprocity (see [1]).

In this paper, we will use Summation Notation Method (SNM), which may be not used
before.

Consider the equation

x2 − y2 = z3

where z = x− y
This equation solved by Dorin Andrica and Gheorghe M. Tudor[1], by using decomposition

method by finding the identity

(u(u2 + 3v2))2 − (v(3u2 + v2))2 = (u2 − v2)3

Now before solving equation by SNM, I would like to present it geometrically to see the
different solution cases

2 The solution of x2 − y2 = z3

We begin with the following result.

Theorem 2.1. The solution of x2 − y2 = z3, where z = x− y is: x =
n∑

i=0
i, and,y =

n−1∑
i=0

i

Proof. ⇒ x2 − y2 = (
n∑

i=0
i)2 − (

n−1∑
i=0

i)2 =
n∑

i=0
i3 −

n−1∑
i=0

i3 = (n(n+1)
2 )2-(n(n−1)

2 )2 = n3.

⇐ z3 = (x− y)3 = (
n∑

i=0
i−

n−1∑
i=0

i)3 = (n(n+1)
2 − n(n−1)

2 ))3 = n3.

3 Table

The first ten solutions of x2 − y2 = z3 are in the following table
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Figure 1. From the above figure we can notice three cases of solutions , case one : when y > x(
the upper branch of parabola ), the second case when x = y ( the middle part of parabola ), and
the third case when x > y ( the lower branch of the parabola ).So I will consider the third case
because of the symmetry property.

x y z

1 0 1
3 1 2
6 3 3
10 6 4
15 10 5
21 15 6
28 21 7
36 28 8
45 36 9
55 45 10

In fact, the solutions above are not the only one, I have generated more solutions .

Theorem 3.1. The solution of x2 − y2 = z3 is

x = 2((
n∑

i=0

i)2 − (
n−1∑
i=0

i)2) + 1, y = 2((
n∑

i=0

i)2 − (
n−1∑
i=0

i)2)− 1, and; z = 2n

Proof. ⇒ x2 − y2 = (2((
n∑

i=0
i)2 − (

n−1∑
i=0

i)2) + 1)2 − (2((
n∑

i=0
i)2 − (

n−1∑
i=0

i)2)− 1)2= (2n)3.

⇐ z3 = (x− y)3 = (2((
n∑

i=0
i)2 − (

n−1∑
i=0

i)2) + 1− 2((
n∑

i=0
i)2 − (

n−1∑
i=0

i)2)− 1)3 = (2n)3.

4 Table

The first ten solution of x2 − y2 = z3 are in the following table
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x y z

3 1 2
17 15 4
55 53 6
129 127 8
251 249 10
433 431 12
687 685 14
1025 1023 16
1459 1457 18
2001 1999 20

Theorem 4.1. The solution of x2 − y2 = z3 is

x = 4((
n∑

i=0

i)2−(
n−1∑
i=0

i)2)+6n2+3n+1, y = 4((
n∑

i=0

i)2−(
n−1∑
i=0

i)2)+6n2+3n, and; z = 2n+1

Proof. ⇒ x2−y2 = (4((
n∑

i=0
i)2−(

n−1∑
i=0

i)2)+6n2+3n+1)2−(4((
n∑

i=0
i)2−(

n−1∑
i=0

i)2)+6n2+3n)2

= (2n+ 1)3.

⇐ z3 = (x−y)3 = (4((
n∑

i=0
i)2−(

n−1∑
i=0

i)2)+6n2+3n+1−(4((
n∑

i=0
i)2−(

n−1∑
i=0

i)2)+6n2+3n))3 =

(2n+ 1)3.

5 Table

The first ten solutions of x2 − y2 = z3 are in the following table

x y z

14 13 3
63 62 5
172 171 7
365 364 9
666 665 11
1099 1098 13
1688 1687 15
2457 2456 17
3430 3429 19
4631 4630 21

Remark 5.1. if we reduce x2 − y2 = z3, then we have :

x+ y = z2

Hence x+ y = z2 has infinitely many solutions with x =
n∑

i=0
i, and,y =

n−1∑
i=0

i.

Remark 5.2. From the above theorems, we can see many relationship between the solutions
, which of course generate new chains of identities. For examples we can see the following
important notes :

62 − 32 = 142 − 132

102 − 162 = 172 − 152
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152 − 102 = 632 − 622

212 − 152 = 552 − 532, etc

Solution system in the above examples , represented the solution of arithmetic progression
among four squares of the form x2 − y2 = z2 − w2, which need more studies.

Remark 5.3. with slight modification of x2− y2 = z2, I have founded only two solutions for the
equation x3 − y3 = z2, namely:

103 − 63 = 282

2952963 − 2945283 = 141557802

Remark 5.4. The equation x2 + y2 − 2xy + x + y = 0 has infinitely many solutions with

x =
n∑

i=0
i, and,y =

n−1∑
i=0

i.

Conjecture 5.5. Conjecture :
x3 − y3 = z4

, has no solution in integers (has only trivial solutions) .
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