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Abstract Mathematical models of population growth have been constructed to provide an
abstract of some significant aspect of true ecological situation. In this paper, we put some mod-
els where the parameters of the biological growth model systematically change over time. The
growth rate of the predator depends upon predation on the modeled and alternate prey. Two
stable equilibrium separated by a saddle point potentially exist for the predatorâĂŞprey system,
and stochastic variability can lead to movement between equilibrium abundance levels. Preda-
tor abundance can increase when the modeled prey abundance is low, due to consumption of
alternate prey. Here we have discussed about some important five growth models.

1 Introduction

The bases for analyzing the dynamics of complex ecological systems, such as food chains, are
the interactions between two species, particularly the dynamical relationship between predators
and their prey. From the seminal LotkaâĂŞVolterra model, several alternatives for modeling
continuous time consumerâĂŞresource interactions have been proposed. Volterra (1926) first
proposed a simple model for the predation of one species by another to explain the oscillatory
levels of certain fish catches in the Adriatic, which is described in model 2. The increasing
study of realistic and practically useful mathematical models in population biology, whether
we are dealing with a human population with or without its age distribution, population of an
endangered species, bacterial or viral growth and so on, is a reflection of their use in helping to
understand the dynamic process involved and in making practical prediction.

2 Some Basic Definitions:

2.1 community

A community in ecology comprises all species populations interacting in an area. An example
of a community is a coral reef, where numerous populations of fishes, crustaceans, and corals
coexist and interact.

2.2 food web

A food web in an ecosystem is an assemblage of various organisms that are interconnected with
each other through their different life history processes, such as feeding and shelter

2.3 trophic level

A trophic level in a food web consists of all the species that prey on the same species and are
also preyed upon by the same species [3].

2.4 Ecological interactions

Ecological interactions are the relationships between two species in anecosystem [2]. Based
on either effects, or on mechanisms, these relationships can be categorized into many different
classes of interactions as shown in Fig. 1.
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Figure 1. Fig: 1 Types of ecological interactions: (i) predation, (ii) competition, (iii) mutualism,
(iv) commensalism, (v) ammensalism.

2.5 Predation

Predation is a biological interaction in which one species feeds on another. Most of the inter-
actions in a food web are predatory. Figure 1(i) shows the network for this interaction, where
species 2 preys on species 1. This interaction enhances the fitness of predators, but reduces the
fitness of the prey species .

Figure 2. Example of Predation. Here the predator cat eats the prey rabbits.

2.6 Parasitism

Parasitism is similar to predation by mechanism, as it enhances the fitness of the parasite, but
impairs the host.
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Figure 3. Example of parasitism. In this picture mosquito is parasite and human body is the
host. Here mosquito decreases the bodyâĂŹs immunity by seeking our blood.

2.7 Competition

Competition between two species occurs when they share a limited resource and each tends to
prevent the other from accessing it. This reduces the fitness of one or both species.This reduces
the fitness of one or both species, as is shown by Fig. 1(ii).

Figure 4.Example of competition. Here in the picture we can see deadly hyena and the tiger
fighting out for a limited resource.

2.8 mutualisim

In mutualism or symbiosis, two species provide resources or services to each other.This enhances
the fitness of both species (shown by Fig. 1(iii)).
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Figure 5.Example of mutualism. Here we can see that the bird sitting on the dearâĂŹs body eats
insects from its body. So both are benefited.

2.9 Commensalism

Commensalism is an interaction, where one species receives a benefit from another species. This
enhances the fitness of one species without any effect on fitness of the other species. (Shown by
Fig. 1(iv)).

Figure 6.Example of commensalism. Here in the picture we see cows eating grasses meanwhile
birds eating insects sharing the same spaces. That means common sharing and interaction of one
species with another without harming each other.

2.10 Ammensalism

In ammensalism, one species impedes or restricts the success of the other without being affected
positively or negatively by its presence.(Shown by Fig. 1(v)).
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Figure 7. Example of ammensalism. In this picture we see that the species lion restricts the
growth of buffalo by eating it where as both species can live without harming the other.

3 Model1

The below figure shows a prey-predator system where the predator species is commensally on
the prey species [9]. In this simple model, in the absence of the predator (Y), the prey species
(X) follows a density-dependent logistic growth with r as its intrinsic growth rate, and K is the
carrying capacity of the environment. However, in the presence of the predator, the growth of
the prey is reduced due to predation of Y on X. This interaction follows a hyperbolic function
with ÏŠ denoting the half saturation coefficient of predation and Îś deciding the strength of in-
teraction, i.e., the per capita consumption rate. In the absence of prey, the predator species dies
out exponentially at a rate d. On predation, the rate at which this food adds to the growth of the
predator population is given by the conversion rate β.The rate of change of the prey (dX/dt) and
predator (dY/dt) populations with time are governed by the following equations:

dX

dt
= rx(1− X

k
)− αxy

γ + x

dy

dt
= y(−d+ βαx

γ + x
)

Figure 8.Food web configurations of Model(1).

4 Model2

If N(t)is the prey population and P(t)that of the predator at time t then Where a, b, c and d are
positive constants. This is known as Lotka-Volterra model[6, 10]. The assumptions in the model
are: (i) The prey in the absence of any predation grows unboundedly in a Malthusian way; this
is the aN term in equ. (1). (ii) The effect of the predation is to reduce the prey per capita growth
rate by a term proportional to the prey and predator populations; this is the -bNP term. (iii) In
the absence of any prey for sustenance the predators death rate results in exponential decay, that
is, the dP term in equ. (2). (iv) The preys contribution to the predators growth rate is cNP; that
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is, it is proportional to the available prey as well as to the size of the predator population. The
NP terms can be to another: bNP is taken from the prey and cNP accrues to the predators.

dN

dt
= N(a− bP )

dP

dt
= P (cN − d)

5 Model3

In this model, the ruling and the opposition parties behave as predator species with the third party
as the prey. Hence, third party members (prey) switch towards ruling and opposition parties
(predator) which is vice-versa to previous models. In the predator-prey models, the predator is
always harmful for the growth of the prey species, but here, when the ruling and the opposition
party members enter into the third party, they strengthen it [9] Tansky considers a general Volterra
type two prey-one predator model that may be expressed as follows:

dx1

dt
= (δ1 −

b1y

1 + (x2
x1
)n

)x1

dx2

dt
= (δ2 −

b2y

1 + (x2
x1
)n

)x2

dy

dt
= (−d+ b1x1

1 + (x2
x1
)n

+
b2x2

1 + (x2
x1
)n

)

Where x1(t), x2(t), and y (t) denote the abundances of the prey species 1 and 2 and the predator
species, respectively. δ1 and delta2 are the specific growth rates of the prey species in the absence
of predation and d is the per capita death rate for the predator. The functions

b1y

1 + (x2
x1
)n

and
b2y

1 + (x2
x1
)n

possess the characteristic property of switching through functional response of relative abun-
dance of the prey species. When n = 1, this is a simple multiplicative effect, where as for n > 1,
the effect is stronger.

6 Model4

This model is LeslieâĂŞGower predatorâĂŞprey model [11] incorporating the Allee effect [12]
phenomenon on prey is described by the Kolmogorov type differential equation system given
by:

dx

dt
= (r(1− x

k
)(x−m)− qy)x

dy

dt
= s(1− y

nx
)y

With x=x (t) and y = y (t), indicating the prey and predators population size, respectively and
the parameters have the following biological meanings: r and s represent the intrinsic prey and
predator growth rates, respectively, k is the prey environment carrying capacity, m is the Allee
threshold or minimum of viable population, q is the maximal per capita consumption rate, i.e.,
the maximum number of prey that can be eaten by a predator in each time unit, n is a measure of
food quality that the prey provides for conversion into predator births.
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7 Model5

This model is called predator-prey situation. That means, a predator-prey situation occurs with
two populations, when encounters between members of the populations benefit the members of
one population (predators) but adversely affect the members of the other population (prey) [9].
For a simple model assume that the prey has an adequate food supply and that in the absence of
interaction there will be a positive rate of increase proportional to the population size. Likewise,
assume that in the absence of the prey, the predators food supply will be inadequate and that
there will be a negative rate of increase proportional to the population size. The incidence of
interaction will depend on the size of both populations and may be taken to be proportional
to their product, and the effect will increase the rate of growth of the predator population and
decrease the rate of growth of the prey population [6]. Letting X, Y denotes the size of the
prey and predator populations respectively, we can write down two simultaneous differential
equations to represent the situation.

dX

dt
= kX − λXY = kX(1− αY )

dY

dt
= −IY + γXY = −IY (1− βX)

8 Result and Discussion

For this study In model 1,the parameter values are taken as r=0.5, K= 5, d= 3,γ = 0.8, and
β = 0.7. The main parameter, α, which indicates the interaction strength of predation, is varied
from 5.5 to 6.5 to describe the change in dynamics in this model network. Here let, X=13, Y=5
and t is varied from 0 to 5.Now for α = 5.5, we plot the figure 9.we can see from the figure
9. When time t=0, the number of prey is maximum and it is 13. On the other hand the number
of predator at time t=0.4 is maximum and it is becoming approximately 5.6. This shows that
initially number of prey is higher than predator but gradually it decreases than no. of predators.
Moreover predator is highest when prey is nearly minimum and gradually predator becomes less
with the decrease in number of prey, and ultimately predator finishes as there is no prey left:

Figure 9.Population growth rate forms for prey and predator in case of α = 5.5. Here blue color
denotes the growth rate of prey(X) and green denote the growth rate of predator(Y).

Now, for α = 6.4 we plot this graph 10 and other values remaining same. Here in figure 10 the
number of predator is maximum at time t=0.4 and it is becoming approximately 6.8. Otherwise
figure 9 and 10 almost similar, the only difference between the highest point of predator:
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Figure 10.Population growth forms for prey and predator in case of α = 6.4. Here blue color
denotes the growth rate of prey(X)and green denote the growth rate of predator(Y).

Now let, X=1; Y=0.5; and t is varied from 0 to 10.Now for α = 5.5 we plot the figure 11
and We can see from the figure 2(c) that at time t=10 the number of prey is maximum and it is
becoming approximately 4.2. On the other hand the number of Predator at time t=0 is maximum
and it is 0.5. This shows that there is competition between predator and prey.

Figure 11.Population growth rate forms for prey and predator in case of α = 5.5. Here blue
color denotes the growth rate of prey(X) and green denote the growth rate of predator(Y).

Now for α = 6.4 we plot this graph 12 and other values are remaining same. We can see from
the figure 12 that at time t=10 the number of prey is maximum and it is becoming approximately
3.8. On the other hand the number of Predator at time t=0 is maximum and it is 0.5. This shows
that there is competition between predator and prey.
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Figure 12.Population growth rate forms for prey and predator in case of α = 6.4. Here blue
color denotes the growth rate of prey(X) and green denote the growth rate of predator(Y).

Figure13.Diagram of the prey with increasing predation strength α.

Figure 14.Diagram of the predator with increasing predation strength Îś.α.

In model 2, the parameter values are taken as, a=0.5471; b=0.0281; c=0.0266; d=0.8439.
Here let t=13 and P=21 and for these values we plot the Fig.15. We can see from the Fig.15 that
at time t=6 the number of prey is maximum and it is becoming approximately 63. On the other
hand the number of Predator at time t=8 is maximum and it is becoming approximately 42. This
shows that there is competition between predator and prey.

Figure 15.Population growth rate forms for prey and predator. Here blue color denotes the
growth rate of prey(X) and green denote the growth rate of predator(Y).

In model 3, the parameter values are taken as δ1 = 0.02, δ2 = 0.03, d=0.06,b 1=0.131,b
2=0.17,x 1=3,x 2=9, y=1 and t is varied from 0 to 20. Now for n=1; we plot figure 16. and here
we plot two prey and one predator. We can see from the figure 16. that at time t=0 the number of
preys (x 1 and x 2) are maximum and it is 3 and 9 respectively. On the other hand the number of
Predator at time t=5.5 is maximum and it is becoming approximately 8.This shows that initially
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number of preys is higher than predator but gradually it decreases than the no. of predators.
Moreover predator is highest when prey is nearly minimum and gradually predator becomes less
with the decrease in number of prey.

Figure 16.Population growth forms for two prey and one predator in case of n=1. Here blue and
green color denotes the growth rates of two prey and red denote the growth rate of predator(Y).

Now for n>1 we plot the figure 17 and other values are remaining same. Here figure 17 and
18 both graphs are almost similar, the only difference between the highest point of predator. In
this figure the number of predator is maximum at time t=5 and it is becoming 9.

Figure 17.Population growth forms for two prey and one predator in case of n>1. Here blue and
green color denotes the growth rates of two prey and red denote the growth rate of predator(Y).

In model 4, the parameter values are taken as, r=0.03; k=0.052; n=0.15; m=13; q=0.05;
s=0.09; x=5; y=7 and for these values we plot figure 18. Here we can see from the figure 18.
that at time t=10 the number of prey is maximum and it is becoming approximately 53. On the
other hand the number of Predator at time t=10 is maximum and it is becoming approximately
55. This shows that there is competition between predator and prey.
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Figure 18.Population growth forms for prey and predator. Here blue color denotes the growth
rates of prey (X) and green denote the growth rate of predator(Y).

In model 5, the parameter values are taken as α = 0.02; β = 0.07; k=0.12, l=0.8 .Now for
X=3 and Y=4 we plot the figure 19. Here we can see from the figure 19 that at time t=10 the
number of prey is maximum and it is becoming approximately 10. On the other hand the number
of Predator at time t=0 is maximum and it is 4.This shows that when predator is maximum at
that moment prey is minimum and when predator decreases comparatively prey increases. That
means there is competition between predator and prey.

Figure 19.This figure presents a predator-prey situation. Here blue color denotes the growth
rates of prey (X) and green denote the growth rate of predator(Y).

Now for X=45, Y=42 we plot the figure 20 and other values are remaining same.We can
see from the figure 20 that at time t=0 the number of prey is maximum and it is becoming
approximately 45. On the other hand the number of Predator at time t=2.5 is maximum and it is
500.
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Figure 20.This figure presents a predator-prey situation. Here blue color denotes the growth
rates of prey (X) and green denote the growth rate of predator(Y).

9 Conclusions

In this paper we formulated five basic mathematical models which is based on the existence of
different Prey - Predator. Most of the recent research on food web theory in ecology centres
around the local dynamics of a community, but the evolution of food web dynamics across dif-
ferent spatial scales has also received considerable attention [12, 8]. Such research on ecological
network theory in the future would involve rigorous modelling approaches, both analytical and
through simulations, in combination with field and laboratory experimental studies, to resolve
the crucial questions in conservation and restoration ecology. In this work we have analyzed the
significant impact produced by the phenomenon known as Allee effect in a simple Leslie preda-
torâĂŞprey model also called LeslieâĂŞGower model [11].Ecologically speaking, the prey and
predator species coexist for any parameter values.The simplest models of population dynamics
reveal the delicate balance that exists in almost all ecological systems. Refined Lotka-Volterra
models appear to be the appropriate level of mathematical sophistication to describe simple
predator-prey models.
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Acad. Sci.USA (Szeged) 105, 4079–4080 (2008).

[4] Camacho, J. et al. Quantitative analysis of the local structure of food webs. J. Theor.Biol., 246, 260âĂŞ268
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