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Abstract. In this paper, we obtain a spatially homogeneous and anisotropic Bianchi type-
V cosmological model of the universe for perfect fluid distribution with heat flow within the
framework of scalar-tensor theory of gravitation proposed by Sáez and Ballester (Phys. Lett.
113:467, 1986). To prevail the deterministic solutions we consider time-dependent deceleration
parameter (DP) which provides the value of scale factor as a = [sinh(αt)]

1
n , where α and n

are arbitrary positive constants. This acclimates time-dependent DP representing models which
generate a transition of the universe from the early decelerated phase to the recent accelerating
phase. The modified Einstein’s field equations are solved exactly and the derived model is found
to be in good concordance with recent observations. Some physical and geometric properties of
the models are also discussed.

1 Introduction

In the last few decades there has been much interest in alternative theories of gravitation, espe-
cially the scalar-tensor theories proposed by Brans and Dicke [1], Nordvedt [2], Wagoner [3],
Rose [4], Dun [5], Sáez and Ballester [6], Barber [7], Lau and Prokhovnik [8] are most impor-
tant among them. The scalar-tensor theories are the generalizations of Einstein’s of gravitation
in which the metric is generated by a scalar gravitational field together with non-gravitational
field (matter). The scalar gravitational field itself is generated by the non-gravitational fields via
a wave equation in curved space-time. The strength of the coupling between gravity and scalar
field is determined by an arbitrary coupling function ω. Sáez- Ballester [6] developed a scalar-
tensor theory in which the metric is coupled with a dimensionless scalar field in a simple manner.
This coupling gives a satisfactory description of the weak fields. In spite of the dimensionless
character of the scalar field, an anti-gravity regime appears. This theory suggests a possible way
to solve the missing-matter problem in non-flat FRW cosmologies. The Scalar-Tensor theories
of gravitation play an important role to remove the graceful exit problem in the inflation era [9].
In earlier literature, cosmological models within the framework of Sáez-Ballester scalar-tensor
theory of gravitation, have been studied by Singh and Agrawal [10, 11], Reddy and Naidu [12],
Rao et al. [13, 14], Adhav et al. [15], Singh [16], Pradhan and Singh [17]. Recently, Socorro
and Sabido [18] and Naidu et al. [19, 20] (see the references therein) have studied cosmological
models in Sáez and Ballester scalar tensor theory of gravitation in different context.

Ram et al. [21] obtained Bianchi type-V cosmological models with perfect fluid and heat
flow in Sáez and Ballester theory by considering a variation law for Hubble’s parameter with
average scale factor which yields constant value of the deceleration parameter. In literature it is
common to use a constant deceleration parameter as it duly gives a power law for metric function
or corresponding quantity. But it is worth mentioned here that the universe is accelerated expan-
sion at present as observed in recent observations of Type Ia supernova [22]−[26] and CMB
anisotropies [27]−[29] and decelerated expansion in the past. Also, the transition redshift from
deceleration expansion to accelerated expansion is about 0.5. Now for a Universe which was
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decelerating in past and accelerating at the present time, the DP must show signature flipping
[30]−[32]. So, in general, the DP is not a constant but time variable.

Recently, Pradhan et al. [33, 34] investigated some new exact Bianchi type-I cosmological
models in scalar-tensor theory of gravitation with time dependent deceleration parameter. Mo-
tivated by these discussions and current observational facts, in this paper, we propose to study
Bianchi type-V universe with perfect fluid and heat flow in Sáez-Ballester scalar-tensor theory
of gravitation by considering a law of variation of scale factor as increasing function of time
which yields a time dependent DP.

2 The Metric and Basic Equations

We consider anisotropic Bianchi type-V line element, given by

ds2 = dt2 −A2(t)dx2 − e2mx [B2(t)dy2 + C2(t)dz2] , (2.1)

where A, B and C are metric functions and m is a constant.

We define the following parameters to be used in solving Einstein’s modified field equations
for the metric (2.1).

The average scale factor a of Bianchi type-V model (2.1) is defined as

a = (ABC)
1
3 . (2.2)

A volume scale factor V is given by

V = a3 = ABC. (2.3)

In analogy with FRW universe, we also define the generalized Hubble parameter H as

H =
ȧ

a
=

1
3
(H1 +H2 +H3), (2.4)

where H1 = Ȧ
A , H2 = Ḃ

B and H3 = Ċ
C are directional Hubble factors in the directions of x-, y-

and z-axes respectively. Here, and also in what follows, a dot indicates ordinary differentiation
with respect to t.

Further, the deceleration parameter q is given by

q = −aä
ȧ2 . (2.5)

We introduce the kinematical quantities such as expansion scalar (θ), shear scalar (σ2) and
anisotropy parameter (Am), defined as follows:

θ = ui;i, (2.6)

σ2 =
1
2
σijσ

ij , (2.7)

Am =
1
3

3∑
i=1

(
Hi −H
H

)2

, (2.8)

where ui = (0, 0, 0, 1) is the matter 4-velocity vector and

σij =
1
2
(
ui;αP

α
j + uj;αP

α
i

)
− 1

3
θPij . (2.9)
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Here the projection tensor Pij has the form

Pij = gij − uiuj . (2.10)

These dynamical scalars, in Bianchi type-V, have the forms

θ = 3H =
Ȧ

A
+
Ḃ

B
+
Ċ

C
, (2.11)

2σ2 =

[(
Ȧ

A

)2

+

(
Ḃ

B

)2

+

(
Ċ

C

)2]
− θ2

3
. (2.12)

3 Field Equations and their Quadrature Solutions

The field equations in the scalar-tensor theory, proposed by Seáz and Ballester [6], are given by

Gij − ωφr
(
φ,iφ,j −

1
2
gijφ,kφ

,k

)
= −Tij , (3.1)

where Gij = Rij − 1
2Rgij and 8πG = c = 1. The scalar field φ satisfies the equation

2φrφ,i;i + rφr−1φ,kφ
,k = 0. (3.2)

Here r is an arbitrary constant and ω is a dimensionless coupling constant. Comma and semi-
colon respectively denote ordinary and covariant derivative with respect to cosmic time t. Tij is
the energy-momentum tensor of the matter.

The energy-momentum tensor is the source of gravitational field through which the effect
of the perfect fluid with heat flow in the evolution of the universe is performed. The energy-
momentum tensor of a perfect fluid with heat flow has the form given by [16, 21].

Tij = (ρ+ p)uiuj − pgij + hiuj + hjui, (3.3)

where ρ is the energy density, p is the thermodynamic pressure, ui is the four-velocity of the
fluid and hi is the heat flow vector satisfying

hiui = 0. (3.4)

We assume that the heat flow is in x direction only so that hi = (h1, 0, 0, 0), h1 being a function
of time. Considering the form of the energy-momentum tensor (3.3), the Einstein’s modified
field equations (3.1), for the Bianchi type-V space-time (2.1) in Sáez-Ballester theory, are given
explicitly as

B̈

B
+
C̈

C
+
Ḃ

B

Ċ

C
− m2

A2 = −p+ 1
2
ωφrφ̇2, (3.5)

Ä

A
+
C̈

C
+
Ȧ

A

Ċ

C
− m2

A2 = −p+ 1
2
ωφrφ̇2, (3.6)

Ä

A
+
B̈

B
+
Ȧ

A

Ḃ

B
− m2

A2 = −p+ 1
2
ωφrφ̇2, (3.7)

Ȧ

A

Ḃ

B
+
Ȧ

A

Ċ

C
+
Ḃ

B

Ċ

C
− 3m2

A2 = ρ− 1
2
ωφrφ̇2, (3.8)

m

(
2
Ȧ

A
− Ḃ

B
− Ċ

C

)
= h1, (3.9)

φ̈+ φ̇

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
+

r

2φ
φ̇2 = 0. (3.10)
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From the energy conservation equation T ji;j = 0, we obtain

ρ̇+ (p+ ρ)

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
=

2m
A2 h1. (3.11)

Equations (3.5)-(3.8) can be written in terms of H , q, σ2 and φ as

p = H2(2q − 1)− σ2 +
m2

A2 +
1
2
ωφrφ̇2. (3.12)

ρ = 3H2 − σ2 − 3m2

A2 +
1
2
ωφrφ̇2, (3.13)

Now, we follow the approaches of Ram et al. [21] and Pradhan et al. [33, 34] to solve the field
equations (3.5)-(3.8). Subtracting Eq. (3.5) from (3.6), Eq. (3.5) from (3.7) and Eq. (3.6) from
(3.7) and taking second integral of each expression, we get the following relations respectively:

A

B
= d1 exp

(
k1

∫
dt

a3

)
, (3.14)

A

C
= d2 exp

(
k2

∫
dt

a3

)
, (3.15)

B

C
= d3 exp

(
k3

∫
dt

a3

)
, (3.16)

where d1, d2, d3 and k1, k2, k3 are constants of integration. From eqs.(3.14)-(3.16), the metric
functions can be obtained explicitly as

A(t) = l1a exp
(
X1

3

∫
dt

a3

)
, (3.17)

B(t) = l2a exp
(
X2

3

∫
dt

a3

)
, (3.18)

C(t) = l3a exp
(
X3

3

∫
dt

a3

)
, (3.19)

where
l1 =

3
√
d1d2, l2 =

3
√
d−1

1 d3, l3 =
3
√
(d2d3)−1,

X1 = k1 + k2, X2 = k3 − k1, X3 = −(k2 + k3),

where the constants X1, X2, X3 and l1, l2,l3 satisfy the relations

X1 +X2 +X3 = 0, l1l2l3 = 1. (3.20)

The quadrature expression for the dimensionless scalar field function φ, from eq. (3.10), is found
as

φ =

[
φ0(r + 2)

2

∫
dt

a3

]2/(r+2)

, (3.21)

where φ0 is a constant.

It is clear from Eqs. (3.17)-(3.21) that once we get the value of the average scale factor a, we
can easily calculate the metric functions A, B, C and the scalar function φ.

We define the deceleration parameter q as

q = −aä
ȧ2 = −

(
Ḣ +H2

H2

)
= b(t) say. (3.22)
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Figure 1. The plot of deceleration parameter q versus t.

The equation (3.22) may be rewritten as

ä

a
+ b

ȧ2

a2 = 0. (3.23)

In order to solve the Eq. (3.23), we assume b = b(a). It is important to note here that one can
assume b = b(t) = b(a(t)), as a is also a time dependent function. It can be done only if there is
a one to one correspondences between t and a. But this is only possible when one avoid singu-
larity like big bang or big rip because both t and a are increasing function.

Following Pradhan et al. [35], the general solution of Eq. (3.23) with assumption b = b(a),
is given by

a = (sinh(αt))
1
n , (3.24)

where α is an arbitrary constant and n is a positive constant.

From (2.5) and (3.24), we obtain the time varying deceleration parameter as

q = n
[
1− (tanh(αt))2]− 1. (3.25)

From Eq. (3.25), we observe that q > 0 for t < 1
α tanh−1(1 − 1

n)
1
2 and q < 0 for t >

1
α tanh−1(1 − 1

n)
1
2 . It is also observed that for 0 < n ≤ 1, our model is in accelerating phase

but for n > 1, our model is evolving from decelerating phase to accelerating phase. Also, recent
observations of SNe Ia, expose that the present universe is accelerating and the value of DP lies
to some place in the range −1 ≤ q < 0. It follows that in our derived model, one can choose the
value of DP consistent with the observations. Figure 1 depicts the variation of the deceleration
parameter (q) versus time (t) which gives the behavior of q for different values of n. It is also
clear from the figure that for n ≤ 1, the model is evolving only in accelerating phase whereas for
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Figure 2. The plot of isotropic pressure p versus t. Here ω = α = β2 = X1 = m = φ0 = 1.

n > 1 the model is evolving from the early decelerated phase to the present accelerating phase.

Using (3.24) in Eqs. (3.17)-(3.19), we obtain the following expressions for scale factors:

A(t) = l1(sinh(αt))1/n exp
(
X1

3

∫
dt

(sinh(αt))3/n

)
, (3.26)

B(t) = l2(sinh(αt))1/n exp
(
X2

3

∫
dt

(sinh(αt))3/n

)
, (3.27)

C(t) = l3(sinh(αt))1/n exp
(
X3

3

∫
dt

(sinh(αt))3/n

)
. (3.28)

Hence the geometry of the universe (2.1) is reduced to

ds2 = dt2 − l21(sinh(αt))2/n exp
(

2X1

3

∫
dt

(sinh(αt))3/n

)
dx2−

e2mx

[
l22(sinh(αt))2/n exp

(
2X2

3

∫
dt

(sinh(αt))3/n

)
dy2+

l23(sinh(αt))2/n exp
(

2X3

3

∫
dt

(sinh(αt))3/n

)
dz2

]
. (3.29)

4 Some Physical and Geometric Properties

The solution for scalar function φ, from (3.21), is obtained as

φ =

[
φ0(r + 2)

2

∫
dt

(sinh(αt))3/n

]2/(r+2)

. (4.1)
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Figure 3. The plot of energy density ρ versus t. Here ω = α = β2 = X1 = m = φ0 = 1.

By using the values of the metric functions from Eqs. (3.26)-(3.28) into Eq. (3.9), the expression
for the heat flow function h1 is given by

h1 =
mβ1

3(sinh(αt))3/n , (4.2)

where β1 = 2X1 −X2 −X3.

From Eqs. (3.12) and (3.13), the energy density and pressure for the model (3.29) are given
by

p =
(2n− 3)α2

n2 (coth(αt))2 +

[(
1
2
ωφ2

0 −
β2

18

)
1

(sinh(αt))6/n

]
−2α2

n
+

[
m2

l21(sinh(αt))2/n
exp

(
−2X1

3

∫
dt

(sinh(αt))3/n

)]
, (4.3)

ρ =
3α2

n2 (coth(αt))2 +

[(
1
2
ωφ2

0 −
β2

18

)
1

(sinh(αt))6/n

]
−[

3m2

l21(sinh(αt))2/n
exp

(
−2X1

3

∫
dt

(sinh(αt))3/n

)]
. (4.4)

In view of (3.20), it is observed that the above set of solutions satisfy the energy conservation
equation (3.11) identically and hence represent exact solutions of the Einstein’s modified field
equations (3.5)-(3.10). From Eqs. (4.3) and (4.4), we observe that isotropic pressure p and the
energy density ρ are always positive and decreasing function of time and both approach to zero
as t → ∞. Figures 2 and 3 depict p and ρ, respectively, versus time t showing the positive
decreasing function of t and approaching to zero at t→∞.
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Figure 4. The plot of anisotropic parameter Am versus t. Here α = β2 = 1.

The physical parameters such as spatial volume (V ), directional Hubble factors (Hi), Hubble
parameter (H), expansion scalar (θ), shear scalar (σ) and anisotropy parameter (Am) for the
model (3.29) are given by

V = (sinh(αt))
3
n , (4.5)

Hi =
α

n
coth(αt) +

Xi

3(sinh(αt))3/n , (4.6)

θ = 3H =
3α
n

coth(αt), (4.7)

σ2 =
β2

18(sinh(αt))6/n , (4.8)

Am =
β2n

2

27α2
(tanh(αt))2

(sinh(αt))6/n , (4.9)

where β2 = X2
1 +X2

2 +X2
3 .

From Eqs. (4.5) and (4.7), we observe that the spatial volume is zero at t = 0 and the ex-
pansion scalar is infinite, which show that the universe starts evolving with zero volume at t = 0
which is big bang scenario. From Eqs. (3.26)-(3.28), we observe that the spatial scale factors
are zero at the initial epoch t = 0 and hence the model has a point type singularity [36]). We
observe that proper volume increases with time.

The dynamics of the mean anisotropy parameter depends on the constant β2 = X2
1 +X

2
2 +X

2
3 .

From Eq. (4.9), we observe that at late time when t→∞, Am → 0. Thus, our model has transi-
tion from initial anisotropy to isotropy at present epoch which is in good harmony with current
observations. Figure 4 depicts the variation of anisotropic parameter (Am) versus cosmic time t.
From the figure, we observe that Am decreases with time and tends to zero as t→∞. Thus, the
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Figure 5. The plot of heat flow function h1 versus t. Here β1 = m = α = 1.

observed isotropy of the universe can be achieved in our model at present epoch.

It is important to note here that limt→0
(
ρ
θ2

)
spread out to be constant. Therefore the model

of the universe goes up homogeneity and matter is dynamically negligible near the origin. This
is in good agreement with the result already given by Collins [37].

The flow of heat along the x-direction was maximum in early universe, and it diminishes as
t→∞. Figure 5 describe the variation of heat flow versus cosmic time t which shows the nature
of h1. From Eqs. (4.8) and (4.2), we also observe that σ2

h2
1
= constant which shows that shear

scalar is proportional to heat conduction.

5 Concluding Remarks

In this paper we have studied a spatially homogeneous and anisotropic Bianchi type-V space-
time within the framework of the scalar-tensor theory of gravitation proposed by Sáez and
Ballester [6]. The field equations have been solved exactly with suitable physical assumptions.
The solutions satisfy the energy conservation Eq. (3.11) identically. Therefore, new, exact and
physically viable Bianchi type-V model has been obtained. To find the deterministic solution,
we have considered scale factor which yields time dependent deceleration parameters. As we
have already discussed in Introduction that for a Universe which was deceleration in past and ac-
celerating at present time, the DP must show signature flipping [30-32] and so there is no scope
for a constant DP. The main features of the model are as follows:

• The model is based on exact and new solutions of Einstein’s modified field equations for
the anisotropic Bianchi type-V space time filled with perfect fluid and heat flow.
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• Our special choice of scale factor yields a time dependent deceleration parameter which
represents a model of the Universe which evolves from decelerating phase to an accelerating
phase. This scenario is consistent with recent observations [22-26].

• It has been observed that limt→0
(
ρ
θ2

)
turn out to be constant. Thus the model approaches

homogeneity and matter is dynamically negligible near the origin.

• We also observe that σ
2

h2
1
= constant which shows that shear scalar is proportional to heat

conduction (i.e. σ ∝ h1).

Finally, the solutions presented here can be one of the potential candidates to describe the
observed universe.
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